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Abstract: This study developed advanced ceramic materials with both healing and decomposition
functions using a metastable product generated under superheated steam. The developed composite
material comprises ZrC particles dispersed in a yttria-stabilized zirconia (YSZ) matrix. After intro-
ducing a surface crack of approximately 120 µm on the composite specimen, it showed a complete
strength recovery rate after one hour of heat treatment under superheated steam at 400 ◦C, while
it exhibited a decomposition behavior after one hour of heat treatment in air at 400 ◦C. The XRD
analysis of the heat-treated specimens showed that the final product was monoclinic ZrO2 under
both steam and air conditions. In other words, full strength recovery in superheated steam was
achieved by a chain reaction involving metastable intermediate products derived from H2O, unlike
the reaction in air.
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1. Introduction

With the spread and development of the circular economy, there is a growing demand
for the construction of sustainable material systems that enable advanced resource recy-
cling in ceramic materials [1–5]. According to OECD reports [6], the world population is
estimated to reach 8.5 billion by 2030 and over 10 billion by 2060, and the use of primary
resources is estimated to almost double from 89 Gt in 2017 to 167 Gt in 2060. In particular,
non-metallic minerals are expected to be used in larger amounts than other resources (such
as biomass, fossil fuels, and metals), and this trend is not expected to change.

Products manufactured in the future will have to be durable, repairable, upgradable,
designed for disassembly, informative, and easy to reuse and recycle. These requirements
require the development of materials that can be refurbished, remanufactured, or recycled
after their primary use [7–9]. However, refurbishing, remanufacturing, and recycling
technologies for ceramic materials are still in the research and development stages [10].

During refurbishing and remanufacturing, the manufacturer repairs or replaces de-
fective components to restore them to a state similar to that of the new product. However,
some reused components may contain defects, making it difficult to ensure their reliability.
Therefore, if healing technology can be utilized, the refurbishment and remanufacturing of
ceramics can be significantly expanded.

Simultaneously, advanced selective decomposition technologies are required. Ceram-
ics are being classified as multi-materials and, therefore, advanced selective decomposition
technologies, such as separating fibers from fiber composites, are required.

Materials 2024, 17, 647. https://doi.org/10.3390/ma17030647 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17030647
https://doi.org/10.3390/ma17030647
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0009-0006-1546-3624
https://doi.org/10.3390/ma17030647
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17030647?type=check_update&version=1


Materials 2024, 17, 647 2 of 9

1.1. Self-Healing

Self-healing is a process by which a material detects damage and repairs it. Self-
healing technology has been actively researched and developed for a wide variety of
material systems [11–22], especially ceramics, utilizing oxidation reactions as self-healing
functions [23–33].

Self-healing technology can repair the initial damage caused by machining and repair
damage to used parts [34,35] and is expected to be applied to refurbishing and remanufac-
turing. Shi et al. proposed a technique for electrochemically repairing cracks in an Al2O3
composite comprising Ti particles by applying a constant voltage at room temperature [36].
This technology has the potential to realize advanced reuse such as in the refurbishing and
remanufacturing of ceramics.

In self-healing ceramics, once self-healing is complete and an oxide is formed on the
surface of the self-healing agent, the supply rate of oxygen is extremely slow, thus inhibiting
excessive reactions. Once the crack is completely healed and the strength of the area is
increased, a second impact causes a crack to form elsewhere. Since this area has a fresh
self-healing function, self-healing occurs in the same manner as the first impact. Thus, the
entire material can experience repeatable self-healing [37].

Osada et al. proposed that self-healing ceramics undergo the following elementary
reactions for full-strength recovery [38]: (1) The inflammation stage, wherein the reaction is
triggered by contact with external substances. (2) The repair stage, wherein fluid materials
fill the cracks. (3) The remodeling stage, wherein the flowable material crystallizes and
solidifies, resulting in strength development. From the perspective of fracture mechanics,
the formation of a flowable material in the repair stage (2) is particularly important for
complete strength recovery.

1.2. Decomposition

Several studies have reported selective degradation techniques for organic materi-
als [39]; however, no such techniques have been reported for other material systems. This
is because organic materials have various bonding modes based on their main chains
and functional groups, whereas inorganic materials are composed of only homogeneous
bonds such as ionic and covalent bonds. This homogeneous bonding prevents the selective
decomposition of ceramics, which is a bottleneck for recycling.

Pest oxidation is an example of the degradation of homogeneous bonds in inorganic
materials; however, it has only been reported as a drawback. Therefore, there are few
reports on technologies that actively utilize these materials, such as MoSi2, NbAl, and
TiB2 [40,41].

Although MoSi2 decomposes via pest oxidation in air, it has also been reported that
oxidation under water vapor at (670 to 773) K is more suppressed than in air and does
not cause pest oxidation. The formation of a volatile substance called MO2(OH)2 in this
temperature range may influence this oxidation behavior [42].

The reason why we focused on ZrC as a new self-healing agent that can switch between
degradation and healing functions is because ZrC undergoes characteristic oxidation in
water vapor and air, as shown in the following Sections 1.3 and 1.4, respectively.

1.3. Steam Oxidation of ZrC

The steam oxidation of ZrC is expected to produce reactions via OH groups, similar to
those of Ti, a homologous element. Shimada et al. reported [43] the three-step oxidation
of TiC under Ar/O2/H2O = 90/5/5 kPa and showed that the rate constants for the first
and second steps at 300 ◦C were proportional to the first and second powers of the partial
pressure of water vapor, respectively. The dependence of k on the water vapor pressure
suggests that water may diffuse as H2O and OH in the first and second stages, respectively.
In addition, as previously mentioned, the formation of thermodynamically unstable hy-
droxides, which are transition elements of the same period, has been reported during the
steam oxidation of Mo carbides.
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The dehydration reaction of Zr(OH)4 has been reported in many reports in the field
of catalysis, and the dehydration reaction of Zr(OH)4 follows the reaction pathway given
below [44].

Zr(OH)4·xH2O → Zr(OH)4 → t-ZrO2 → m-ZrO2 (1)

First, the dehydration of adsorbed water occurs at 100 ◦C, followed by the formation
of tetragonal ZrO2 at 350 ◦C. Subsequently, tetragonal ZrO2 is formed. The tetragonal ZrO2
then undergoes a phase transformation to monoclinic ZrO2 at 470 ◦C.

We therefore assume that Zr(OH)4 will be formed in superheated steam, followed by
the second stage of dehydration, as shown in chemical reaction (1), and that ZrC (zirconium
carbide) will exhibit self-healing properties at temperatures above 350 ◦C.

1.4. Air Oxidation of ZrC

There have been many reports on the oxidation reaction of ZrC, but there are few
reports on the oxidation behavior at relatively low temperatures as low as 400 ◦C, except
for one by Shimada et al. [45]. Based on the oxidation mechanism of ZrC at high tem-
peratures [46–48], the reaction proceeds as follows. First, O solidly dissolves in ZrC to
form an oxycarbide layer on the surface. When the oxycarbide layer reaches a certain
thickness, cubic or tetragonal ZrO2 is nucleated. The oxide film grows and undergoes a
phase transformation to m-ZrO2 at a certain thickness. When ZrC oxidizes and becomes
m-ZrO2, a volume expansion of approximately 1.4 times occurs.

In this study, we fabricated a prototype advanced ceramic with dual functions of
healing and decomposition using ZrC and investigated its properties. Specifically, we
evaluated the conditions required for self-healing produced by oxidation under super-
heated steam. The decomposition window caused by oxidation in air was also evaluated.
By analyzing these behaviors in detail, the chemical reactions governing this function
were determined.

2. Methods
2.1. Material

The specimen used in this study is a particle-dispersed composite material consisting
of yttrium-stabilized zirconia (YSZ) and ZrC particles dispersed at a volume fraction of
30%. The raw materials are YSZ powder (HSY-3F, DAIICHI KIGENSO KAGAKU KOGYO
CO., LTD, Osaka, Japan) with an average grain size of 0.48 µm and ZrC powder (FSZ010,
DAIICHI KIGENSO KAGAKU KOGYO CO., LTD, Osaka, Japan) with an average grain
size of 1.5 µm. The chemical compositions of raw materials are shown in Table 1. The YSZ
and ZrC powders were mixed in isopropanol for 24 h via ball milling. The mixed powders
were hot-pressed and sintered at 1350 ◦C in an Ar atmosphere for 1 h and under a surface
pressure of 40 MPa to obtain plates.

Table 1. Chemical composition of raw materials.

ZrC
Zr + Hf C Fe Y2O3

wt% 87.83 12.0 <0.01 0.16

YSZ
ZrO2 Y2O3 Al2O3 Fe2O3 TiO2 SiO2

wt% 94.28 5.72 0.24 0.001 0.001 0.005

2.2. Indentation, Heat Treatment, Bending Test, and XRD Analysis

To investigate the self-healing and decomposition behaviors of the specimens, three-
point bending specimens were prepared and heat-treated in air and steam. The tensile
surfaces of the 3-point bend specimens were mirror-finished, and the edges were chamfered
at 45◦.

To investigate the self-healing behavior in detail, a crack with a surface length of
120 µm was introduced in the center of the specimen. A crack was introduced by pressing
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an indenter into the specimen with a load of 3 kgf, using a Vickers testing machine (VMT-7;
Matsuzawa Co., Ltd., Akita, Japan). A specimen with a crack introduced is referred to as a
pre-cracked specimen.

For heat treatment in air, the specimens were placed in an electric furnace, heated up
to 400 ◦C at 10 ◦C/min, held for 1 h, and then cooled in the furnace.

Heat treatment in steam was performed by spraying the specimens with superheated
steam at 400 ◦C produced by a steam generator [49]. As shown in Figure 1, the specimens
were placed in a heated stainless-steel pipe and superheated steam was directed into the
pipe for heat treatment. The heat treatment conditions were as follows: the specimen was
exposed to steam for one hour, removed from the atmosphere, and cooled by air.
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Figure 1. Steam generator and electric furnace.

Surface cracks were observed using a laser microscope (VK-X3000, KEYENCE COR-
PORATION, Osaka, Japan) before and after heat treatment to confirm the crack repair
conditions. The specimens were heat-treated in air and superheated steam, as described
above, and subjected to XRD analysis and SEM observations.

A three-point bending test was performed to investigate the strength recovery behavior
of the specimens after each heat treatment. The span was set to 30 mm. A universal strength-
testing machine (Autograph AGS-X, SHIMADZU CORPORATION, Kyoto, Japan) was
used to load the specimens at a crosshead speed of 0.5 mm/min. The load and displacement
were measured simultaneously. The number of specimens was taken as N = 3 for each
condition. After fracturing, the indentations on the specimens were observed using a
digital microscope (VHX-2000, KEYENCE CORPORATION, Osaka, Japan) to investigate
the relationship between the fracture initiation point and the pre-cracked area.

3. Results and Discussion

When the specimens were heat-treated in air and steam, there were significant dif-
ferences in the final shapes, as shown in Figure 2a–c. While the specimens decomposed
when heat-treated in air at 400 ◦C, they retained their original shapes when subjected
to heat treatment in superheated steam at the same temperature of 400 ◦C (Figure 2c).
Figure 2d,e show enlarged images of the pre-cracked area before and after heat treatment,
respectively. The pre-cracks were healed via the heat treatment in steam. Figure 2f shows
the healing behavior of the material. The flexural strength, which was significantly re-
duced by the introduction of the pre-crack, was recovered completely by heat treatment
in superheated steam. The average strength of a smooth specimen was 405.61 Mpa (maxi-
mum and minimum strength was 439.09 Mpa, 369.74 Mpa, respectively), while that of a
cracked specimen was 257.53 Mpa (maximum and minimum strength were 258.87 Mpa and
254.93 Mpa, respectively). The introduction of pre-cracks reduced the strength by up to
184.16 Mpa. After the heat treatment, the cracks were healed and the strength increased
to an average of 486.91 Mpa (maximum and minimum strength were 529.59 Mpa and
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450.26 Mpa, respectively). This was seen at the fracture initiation point, which was located
at the pre-crack in the pre-cracked specimen (Figure 2g) and shifted to a location other than
the pre-crack after the heat treatment (Figure 2h).
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(a) As-received specimen, (b) heat-treated in air at 400 ◦C for 1 h, (c) heat-treated in superheated
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Figure 3 shows the final products obtained in air and steam. Figure 3a shows that only
monoclinic ZrO2 exhibited peaks after heat treatment in either air or steam. Figure 3b shows
a surface SEM image of the specimen after heat treatment. Although the end products were
the same, no cracks were observed on the surface after steam treatment, whereas large
cracks were observed on the surface after air oxidation treatment.
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The results obtained in this study satisfied the original research objective of realizing
ceramics with both self-healing and decomposition functions.

However, the mechanism underlying the switch between these two functions cannot
be explained solely using the experimental results. Therefore, we cite the results of other
studies and discuss their behavior. The proposed mechanism is illustrated in Figure 4.

Materials 2024, 17, x FOR PEER REVIEW 6 of 9 
 

 

Figure 3. Final product under each heat treatment processes. (a) XRD profile; and (b) surface mor-
phology. 

The results obtained in this study satisfied the original research objective of realizing 
ceramics with both self-healing and decomposition functions. 

However, the mechanism underlying the switch between these two functions cannot 
be explained solely using the experimental results. Therefore, we cite the results of other 
studies and discuss their behavior. The proposed mechanism is illustrated in Figure 4. 

 
Figure 4. Decomposition and healing mechanism. 

Atmospheric oxidation involves a reaction similar to pest oxidation. It has been re-
ported that in many materials that undergo pest oxidation, the main cause is the volume 
expansion of oxides formed at defects inside the material, such as grain boundaries [50]. 
Pest oxidation consists of two stages: nucleation and growth. Cracking occurs because the 
nucleation site is an internal defect [51]. 

In ZrC, oxygen solidly dissolves to form an oxycarbide. When ZrO2 nucleates from 
this oxycarbide, it does not necessarily occur on the surface; however, internal defects may 
become nucleation sites, as in the case of pest-type oxidation. The formation of monoclinic 
ZrO2 from ZrC was accompanied by a volume expansion of approximately 1.4 times. 
Therefore, when nucleation occurs in the interior, large strains accumulate and cracks 
form. Once cracks are formed, oxidation proceeds at an accelerated rate, and decomposi-
tion is accelerated. 

Next, a first-principles study of the reactivity of ZrC with H2O reported that the H2O 
molecule was separated into H and OH at the surface of ZrC, forming the hydroxide Zr-
OH [52]. Therefore, it is possible that the ZrC in this study also formed Zr–OH as a meta-
stable phase during oxidation. According to Aghazadeh et al. [44], Zr(OH)4 slowly dehy-
drates with a peak at 350 °C, forming t-ZrO2. Then, t-ZrO2 undergoes a phase transfor-
mation to m-ZrO2 at 470 °C. 

The multistep reaction via the hydroxide significantly affects the self-healing func-
tion. According to Osada et al. [38], to achieve complete strength recovery via self-healing, 
it is necessary to include three elementary reaction processes: (1) inflammation, (2) repair, 
and (3) remodeling. In particular, it is important that a flowable material is generated and 
that cracks are healed during the repair stage to achieve full-strength recovery. 

In the reaction system used in this study, the metastable hydroxides temporarily 
formed by the non-equilibrium process of steam oxidation became fluid and reached the 
repair phase. It is also considered that this hydroxide serves as a nucleation site and 
thereby prevents the formation of cracks. 

Figure 4. Decomposition and healing mechanism.

Atmospheric oxidation involves a reaction similar to pest oxidation. It has been
reported that in many materials that undergo pest oxidation, the main cause is the volume
expansion of oxides formed at defects inside the material, such as grain boundaries [50].
Pest oxidation consists of two stages: nucleation and growth. Cracking occurs because the
nucleation site is an internal defect [51].

In ZrC, oxygen solidly dissolves to form an oxycarbide. When ZrO2 nucleates from
this oxycarbide, it does not necessarily occur on the surface; however, internal defects may
become nucleation sites, as in the case of pest-type oxidation. The formation of monoclinic
ZrO2 from ZrC was accompanied by a volume expansion of approximately 1.4 times.
Therefore, when nucleation occurs in the interior, large strains accumulate and cracks form.
Once cracks are formed, oxidation proceeds at an accelerated rate, and decomposition
is accelerated.

Next, a first-principles study of the reactivity of ZrC with H2O reported that the H2O
molecule was separated into H and OH at the surface of ZrC, forming the hydroxide
Zr-OH [52]. Therefore, it is possible that the ZrC in this study also formed Zr–OH as a
metastable phase during oxidation. According to Aghazadeh et al. [44], Zr(OH)4 slowly
dehydrates with a peak at 350 ◦C, forming t-ZrO2. Then, t-ZrO2 undergoes a phase
transformation to m-ZrO2 at 470 ◦C.

The multistep reaction via the hydroxide significantly affects the self-healing function.
According to Osada et al. [38], to achieve complete strength recovery via self-healing, it is
necessary to include three elementary reaction processes: (1) inflammation, (2) repair, and
(3) remodeling. In particular, it is important that a flowable material is generated and that
cracks are healed during the repair stage to achieve full-strength recovery.

In the reaction system used in this study, the metastable hydroxides temporarily
formed by the non-equilibrium process of steam oxidation became fluid and reached the
repair phase. It is also considered that this hydroxide serves as a nucleation site and thereby
prevents the formation of cracks.

Therefore, by strictly controlling the water vapor partial pressure, oxygen partial
pressure, and temperature, and by adjusting the rate of hydroxide formation and oxide
nucleation from oxycarbide, it is possible to use self-healing and decomposition separately.
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The authors believe that the results of this study are important for the realization
of reuse technologies for ceramics, such as “refurbishing”, “remanufacturing”, and
“advanced recycling”.

However, many technical issues remain to be resolved for the practical application of
ceramic reuse technology. For example, the dynamic competition between degradation and
repair is not well organized in the self-healing function, which is the subject of this study,
and it is widely known that the hydrothermal degradation (LTD) of YSZ causes strength
degradation [53]. Therefore, it is also necessary to analyze the kinetic competition between
repair and degradation reactions, as reported in our previous studies [54].

Other issues to be solved are as follows. For practical use, it is necessary to investigate
the size of cracks that can be healed and how many times they can be healed from a
kinetic viewpoint. In addition, since the hydroxide could not be identified in this study, the
mechanism of its formation could not be determined. We believe that the reason for the
lack of identification is that the reaction occurred only near the surface, and the metastable
hydroxides formed did not remain in sufficient quantities to be measured after the reaction.

We believe that identifying the formation mechanism of metastable hydroxides and
analyzing the kinetic competition will make it possible to control both the decomposition
and healing functions and pave the way for the practical application of this material.

4. Conclusions

In this study, we developed a new ceramic material with self-healing and decomposi-
tion functions comprising ZrC dispersed in ZrO2. The self-healing function was activated
through a heat treatment process in superheated steam at 400 ◦C for one hour. Initially, the
average strength of a smooth specimen was 405.61 MPa, while that of a cracked specimen
was 257.53 MPa. After the heat treatment, the cracks were healed and the strength increased
to 486.91 MPa, indicating a complete strength recovery. The decomposition function was
realized via heat treatment in air at 400 ◦C for one hour. The XRD results showed that
the products after steam and atmospheric oxidation were identical, indicating that full-
strength recovery under steam was achieved via a chain reaction involving a metastable
intermediate product derived from H2O.

Therefore, by utilizing nonequilibrium reactions, self-healing functions can be achieved
even in material systems that undergo pest oxidation, making it possible to provide a single
material with both healing and decomposition functions.
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