Assessing the Influence of Banana Leaf Ash as Pozzolanic Material for the Production of Green Concrete: A Mechanical and Microstructural Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production and Characterization of Ash
2.2. Concrete Mix—Design and Characterization
2.2.1. Compressive Strength of Cubic Mortar Specimens
2.2.2. Compressive Strength of Cylindrical Concrete Specimen
2.2.3. Splitting Tensile Strength of Cylindrical Concrete Specimen
2.2.4. Flexural Strength of the Concrete Beam
2.2.5. Scanning Electron Microscopy Analysis
2.2.6. Ultrasonic Pulse Velocity Test
3. Results
3.1. BLA as Partial Replacement of Cement (0%, 5%, 10%, 15%, 20%, 25% and 30%)—Phase A
3.1.1. Compressive Strength of Mortar Specimens
3.1.2. Compressive Strength of Cylindrical Concrete Specimens
3.1.3. Splitting Tensile Strength of Cylindrical Concrete Specimen
3.1.4. Correlation between Compressive Strength and Split Tensile Strength
3.1.5. Modulus of Elasticity of Concrete (Ec)
- specifies the 28-day compressive strength of concrete (lb/in2 or MPa);
- unit weight of concrete (lb/ft3 or kg/m3).
3.1.6. NDT Results
3.2. BLA as Partial Replacement of Cement (0%, 10%, 20% and 30%)—Phase B
3.2.1. Flexural Strength
3.2.2. Compressive Strength vs. Flexural Strength
3.2.3. Microstructural Analysis
4. Conclusions
- BLA has a chemical composition of 48.93% SiO2 and 3.48% Al2O3, indicating that BLA has the potential to be a pozzolanic material.
- Compressive, splitting tensile and flexure strength test results show that partial replacement with BLA of up to 20% resulted in minor strength loss (approximately 5%).
- UPV analysis indicated that 20% partially replaced BLA concrete could be classed as good-quality concrete, the same rating as the control concrete.
- SEM analysis revealed a lower quantity of microcracks in comparison with the control specimen. The slight decrease in strength observed is attributed to a weaker ITZ due to the fibrous nature of BLA, coupled with less CH and C-S-H being generated as the BLA content increases.
- The splitting, tensile and flexural strengths were in the acceptable range, which is approximately 2~5 MPa, as per ACI-318. Tensile strength relies on the interfacial transition zone; BLA replacement inhibits early PC hydration but enhances later-age hydration, increasing compressive strength by filling voids. The data indicated a strong positive linear correlation between compressive and tensile or flexural strength.
- The results indicate that BLA could be suitable as a partial replacement at up to 20% weight of cement, acting as a pozzolan to provide an alternative material in green concrete production.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blankendaal, T.; Schuur, P.; Voordijk, H. Reducing the environmental impact of concrete and asphalt: A scenario approach. J. Clean. Prod. 2014, 66, 27–36. [Google Scholar] [CrossRef]
- Gartner, E. Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 2004, 34, 1489–1498. [Google Scholar] [CrossRef]
- Karim, R.; Islam, M.H.; Datta, S.D.; Kashem, A. Synergistic effects of supplementary cementitious materials and compressive strength prediction of concrete using machine learning algorithms with SHAP and PDP analyses. Case Stud. Constr. Mater. 2023, 20, e02828. [Google Scholar] [CrossRef]
- Islam, M.H. Mechanical and Microscopic Investigation of Concrete Incorporating Ceramic Waste Powder as Partial Replacement of Binding Material. Master’s Thesis, Khulna University of Engineering & Technology (KUET), Khulna, Bangladesh, 2018. [Google Scholar]
- Tavares, J.C.; Lucena, L.F.; Henriques, G.F.; Ferreira, R.L.; dos Anjos, M.A. Use of banana leaf ash as partial replacement of Portland cement in eco-friendly concretes. Constr. Build. Mater. 2022, 346, 128467. [Google Scholar] [CrossRef]
- Sakthivel, S.; Parameswari, R.; Gomathi, M.; Sangeetha, S. Experimental investigation on concrete with banana fiber and partial replacement of cement by banana leaf ash. Int. Res. J. Eng. Technol. 2019, 6, 3914–3919. [Google Scholar]
- Pacheco-Torgal, F.; Jalali, S. Reusing ceramic wastes in concrete. Constr. Build. Mater. 2010, 24, 832–838. [Google Scholar] [CrossRef]
- Khongprom, P.; Champanoi, S.; Suwanmanee, U. An Input-Output Approach for Environmental Life Cycle Assessment of Cement Production. CET J. Chem. Eng. Trans. 2020, 81, 1345. [Google Scholar]
- Naik, T.R.; Singh, S.S.; Hossain, M.M. Permeability of High-Strength Concrete Containing Low Cement Factor. J. Energy Eng. 1996, 122, 21–39. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Chaikaew, C. Properties of concrete pedestrian block mixed with crumb rubber. Constr. Build. Mater. 2006, 20, 450–457. [Google Scholar] [CrossRef]
- Shayan, A.; Xu, A. Performance of glass powder as a pozzolanic material in concrete: A field trial on concrete slabs. Cem. Concr. Res. 2006, 36, 457–468. [Google Scholar] [CrossRef]
- Ganesan, K.; Rajagopal, K.; Thangavel, K. Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete. Constr. Build. Mater. 2008, 22, 1675–1683. [Google Scholar] [CrossRef]
- Rafieizonooz, M.; Mirza, J.; Salim, M.R.; Hussin, M.W.; Khankhaje, E. Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Constr. Build. Mater. 2016, 116, 15–24. [Google Scholar] [CrossRef]
- Asha, P.; Salman, A.; Kumar, R.A. Experimental study on concrete with bamboo leaf ash. Int. J. Eng. Adv. Technol. 2014, 3, 46–51. [Google Scholar]
- Pinto, J.; Cruz, D.; Paiva, A.; Pereira, S.; Tavares, P.; Fernandes, L.; Varum, H. Characterization of corn cob as a possible raw building material. Constr. Build. Mater. 2012, 34, 28–33. [Google Scholar] [CrossRef]
- Barreca, F.; Fichera, C.R. Use of olive stone as an additive in cement lime mortar to improve thermal insulation. Energy Build. 2013, 62, 507–513. [Google Scholar] [CrossRef]
- de Almeida Melo Filho, J.; de Andrade Silva, F.; Toledo Filho, R.D. Degradation kinetics and aging mechanisms on sisal fiber cement composite systems. Cem. Concr. Compos. 2013, 40, 30–39. [Google Scholar] [CrossRef]
- Mo, L.; Zhang, F.; Deng, M.; Jin, F.; Al-Tabbaa, A.; Wang, A. Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates. Cem. Concr. Compos. 2017, 83, 138–145. [Google Scholar] [CrossRef]
- Donatello, S.; Freeman-Pask, A.; Tyrer, M.; Cheeseman, C. Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash. Cem. Concr. Compos. 2010, 32, 54–61. [Google Scholar] [CrossRef]
- Frías, M.; de Rojas, M.I.S.; Rodríguez, O.; Jiménez, R.G.; de la Villa, R.V. Characterisation of calcined paper sludge as an environmentally friendly source of metakaolin for manufacture of cementitious materials. Adv. Cem. Res. 2008, 20, 23–30. [Google Scholar] [CrossRef]
- Massazza, F. Chemistry of pozzolanic additions and mixed cements. Il Cem. 1976, 1, 3–38. [Google Scholar]
- Mehta, P.K. Role of pozzolanic and cementious material in sustainable development of the concrete industry. Spec. Publ. 1998, 178, 1–20. [Google Scholar]
- Rojas, M.F.; De Rojas, M.S. Chemical assessment of the electric arc furnace slag as construction material: Expansive compounds. Cem. Concr. Res. 2004, 34, 1881–1888. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Rukzon, S. Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar. Constr. Build. Mater. 2008, 22, 1601–1606. [Google Scholar] [CrossRef]
- Vaičiukyniene, D.; Vaitkevičius, V.; Kantautas, A.; Sasnauskas, V. Utilization of by-product waste silica in concrete—based materials. Mater. Res. 2012, 15, 561–567. [Google Scholar] [CrossRef]
- Kanning, R.C. Utilização da Cinza de Folha de Bananeira Como Adição de Argamassas de Cimento Portland. Ph.D. Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 2013. [Google Scholar]
- Abd Karim, N.A. Strength Performance of Banana Fiber Ash as Cementitious Material with Different Temperature. Ph.D. Thesis, Universiti Malaysia Pahang, Pahang, Malaysia, 2014. [Google Scholar]
- Naceri, A.; Hamina, M.C. Use of waste brick as a partial replacement of cement in mortar. Waste Manag. 2009, 29, 2378–2384. [Google Scholar] [CrossRef]
- Akram, T.; Memon, S.A.; Obaid, H. Production of low cost self compacting concrete using bagasse ash. Constr. Build. Mater. 2009, 23, 703–712. [Google Scholar] [CrossRef]
- García, R.; de la Villa, R.V.; Rodríguez, O.; Frías, M. Mineral phases formation on the pozzolan/lime/water system. Appl. Clay Sci. 2009, 43, 331–335. [Google Scholar] [CrossRef]
- Habeeb, G.A.; Mahmud, H.B. Study on properties of rice husk ash and its use as cement replacement material. Mater. Res. 2010, 13, 185–190. [Google Scholar] [CrossRef]
- Kanning, R.C.; Portella, K.F.; Costa, M.R.M.; Puppi, R.F. Evaluation of pozzolanic activity of banana leaf ash. In Proceedings of the International Conference of Durability of Building Materials and Components, Porto, Portugal, 12–15 April 2011. [Google Scholar]
- Rossignolo, J.A. Effect of silica fume and SBR latex on the pasteaggregate interfacial transition zone. Mater. Res. 2007, 10, 83–86. [Google Scholar] [CrossRef]
- Safiuddin, M.; West, J.S.; Soudki, K.A. Flowing ability of the mortars formulated from self-compacting concretes incorporating rice husk ash. Constr. Build. Mater. 2011, 25, 973–978. [Google Scholar] [CrossRef]
- Veiga, M.R.; Velosa, A.; Magalhães, A. Experimental applications of mortars with pozzolanic additions: Characterization and performance evaluation. Constr. Build. Mater. 2009, 23, 318–327. [Google Scholar] [CrossRef]
- Frías, M.; Villar-Cociña, E.; de Rojas, M.I.S.; Valencia-Morales, E. The effect that different pozzolanic activity methods has on the kinetic constants of the pozzolanic reaction in sugar cane straw-clay ash/lime systems: Application of a kinetic–diffusive model. Cem. Concr. Res. 2005, 35, 2137–2142. [Google Scholar] [CrossRef]
- Frías, M.; Villar-Cociña, E.; Valencia-Morales, E. Characterisation of sugar cane straw waste as pozzolanic material for construction: Calcining temperature and kinetic parameters. Waste Manag. 2007, 27, 533–538. [Google Scholar] [CrossRef]
- Ganesan, K.; Rajagopal, K.; Thangavel, K. Evaluation of bagasse ash as supplementary cementitious material. Cem. Concr. Compos. 2007, 29, 515–524. [Google Scholar] [CrossRef]
- Morales, E.V.; Villar-Cociña, E.; Frías, M.; Santos, S.F.D.; Savastano, H., Jr. Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): Influence in the pozzolanic activation. Cem. Concr. Compos. 2009, 31, 22–28. [Google Scholar] [CrossRef]
- Villar-Cociña, E.; Frías, M.; Valencia-Morales, E. Sugar Cane Wastes as Pozzolanic Materials: Applications of Mathematical Model; American Concrete Institute: Farmington Hills, MI, USA, 2008. [Google Scholar]
- ASTM C125-13; Standard Terminology Relating to Concrete and Concrete Aggregates. ASTM International: West Conshohocken, PA, USA, 2013.
- Aurore, G.; Parfait, B.; Fahrasmane, L. Bananas, raw materials for making processed food products. Trends Food Sci. Technol. 2009, 20, 78–91. [Google Scholar] [CrossRef]
- Junior, G.D.S.S.; Morais, M.B.D.; Camara, T.R.; Willadino, L. Growth of dipoid banana genotypes under saline stress. Rev. Bras. Eng. Agrícola Ambient. 2012, 16, 1145–1151. [Google Scholar]
- Hossain, M. A study of banana production in Bangladesh: Area, yield and major constraints. J. Agric. Biol. Sci. 2014, 9, 206–210. [Google Scholar]
- Haque, M.M.; Hasan, M. Mechanical properties of betel nut and glass fibre reinforced hybrid polyethylene composites. Int. J. Automot. Mech. Eng. 2016, 13, 3763–3772. [Google Scholar] [CrossRef]
- Verma, D.; Jain, S.; Zhang, X.; Gope, P.C. Green Approaches to Biocomposite Materials Science and Engineering. In Advances in Chemical and Materials Engineering (ACME); IGI Global: Hong Kong, 2016; ISSN 2327-5448. [Google Scholar]
- Vigneswaran, C.; Pavithra, V.; Gayathri, V.; Mythili, K. Banana fiber: Scope and value added product development. J. Text. Appar. Technol. Manag. 2015, 9. [Google Scholar]
- Kanning, R.C.; Portella, K.F.; Bragança, M.O.; Bonato, M.M.; dos Santos, J.C. Banana leaves ashes as pozzolan for concrete and mortar of Portland cement. Constr. Build. Mater. 2014, 54, 460–465. [Google Scholar] [CrossRef]
- Mim, N.J.; Meraz, M.M.; Islam, M.H.; Farsangi, E.N.; Mehedi, M.T.; Arafin, S.A.K.; Shrestha, R.K. Eco-friendly and cost-effective self-compacting concrete using waste banana leaf ash. J. Build. Eng. 2023, 64, 105581. [Google Scholar] [CrossRef]
- Moropoulou, A.; Cakmak, A.; Labropoulos, K.; Van Grieken, R.; Torfs, K. Accelerated microstructural evolution of a calcium-silicate-hydrate (C-S-H) phase in pozzolanic pastes using fine siliceous sources: Comparison with historic pozzolanic mortars. Cem. Concr. Res. 2004, 34, 1–6. [Google Scholar] [CrossRef]
- Sabir, B.; Wild, S.; Bai, J. Metakaolin and calcined clays as pozzolans for concrete: A review. Cem. Concr. Compos. 2001, 23, 441–454. [Google Scholar] [CrossRef]
- Vayghan, A.G.; Khaloo, A.; Rajabipour, F. The effects of a hydrochloric acid pre-treatment on the physicochemical properties and pozzolanic performance of rice husk ash. Cem. Concr. Compos. 2013, 39, 131–140. [Google Scholar] [CrossRef]
- ASTM C150/C150M-21; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- ASTM C127-15a; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C128-15; Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate. ASTM International: West Conshohocken, PA, USA, 2015. [CrossRef]
- ASTM C136-19; Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- ASTM C29/C29M-17a; Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- ASTM C143/C143M-20; Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- ASTM C109/C109M-20; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- ASTM C39/C39M-20; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- ASTM C496/C496M-17; Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- ASTM D6272-17; Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending. ASTM International: West Conshohocken, PA, USA, 2017.
- Aït-Mokhtar, A.; Belarbi, R.; Benboudjema, F.; Burlion, F.; Capra, B.; Carcassès, M.; Colliat, J.-B.; Cussigh, F.; Deby, F.; Jacquemot, F.; et al. Experimental investigation of the variability of concrete durability properties. Cem. Concr. Res. 2013, 45, 21–36. [Google Scholar] [CrossRef]
- Vignesh, R.; Nevas, R.R.; Ruban, S.; Ramesh, C.; Gowtham, B. Experimental Study on Slump and Strength Properties of Concrete by Replacement of Cement Using Banana Leaf Ash. J. Solid Waste Technol. Manag. 2021, 47, 482–486. [Google Scholar] [CrossRef]
- Pawar, J.R.; Aman, S.K. Experimental investigation on properties of concrete by partial replacement of cement with banana leaves ash. In Proceedings of the 6th International Conference on Recent Trends in Engineering & Technology (ICRTET-2018), Maharashtra, India, 30–31 May 2018. [Google Scholar]
- Ndubuisi, O.I. Potentials of Banana Leaf Ash as Admixture in the Production of Concrete; Department of Civil Engineering, Michael Okpara University of Agriculture: Umudike, Nigeria, 2016; Volume 1, pp. 1–15. [Google Scholar]
- ACI Committee. Building code requirements for structural concrete (ACI 318-08) and commentary. Am. Concr. Inst. 2008, 1, 55–75. [Google Scholar]
- ASTM C597-22; Standard Test Method for Ultrasonic Pulse Velocity Through Concrete. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
Materials | Properties | Unit | Value |
---|---|---|---|
Fine Aggregate | Specific Gravity | - | 2.65 |
Absorption | % | 2.12 | |
Fineness Modulus | - | 2.87 | |
Unit Weight | Kg/m3 | 1495 | |
Coarse Aggregate | Specific Gravity | - | 2.55 |
Absorption | % | 1.35 | |
Fineness Modulus | - | 7.06 | |
Unit Weight | Kg/m3 | 1570 |
Mix ID | Cement (kg/m3) | BLA (kg/m3) | Sand (kg/m3) | Stone Chips (kg/m3) | Water (kg/m3) | Water/Binder Ratio |
---|---|---|---|---|---|---|
BLA0 | 300 | 0 | 450 | 900 | 150 | 0.50 |
BLA5 | 285 | 15 | 450 | 900 | 150 | |
BLA10 | 270 | 30 | 450 | 900 | 150 | |
BLA15 | 255 | 45 | 450 | 900 | 150 | |
BLA20 | 240 | 60 | 450 | 900 | 150 | |
BLA25 | 225 | 75 | 450 | 900 | 150 | |
BLA30 | 210 | 90 | 450 | 900 | 150 |
Sieve Size | Sieve Opening (mm) | Weight Retained (gm) | Cumulative Weight Retained (gm) | Cumulative Weight Retained (%) | % Finer | Fineness Modulus Value |
---|---|---|---|---|---|---|
#4 | 4.750 | 0.00 | 0.00 | 0.00 | 100.00 | 2.55 |
#8 | 2.360 | 25.50 | 25.500 | 5.10 | 94.90 | |
#16 | 1.180 | 85.50 | 111.00 | 22.20 | 77.80 | |
#30 | 0.600 | 162.00 | 273.00 | 54.60 | 45.40 | |
#50 | 0.300 | 121.75 | 394.75 | 79.95 | 20.05 | |
#100 | 0.150 | 71.25 | 466.00 | 93.20 | 6.80 |
Sieve Size | Sieve Opening (mm) | Weight Retained (gm) | Cumulative Weight Retained (gm) | Cumulative Weight Retained (%) | % Finer | F. M. Value |
---|---|---|---|---|---|---|
3.0″ | 75.00 | 0.00 | 0.00 | 0.00 | 100.00 | 7.06 |
1.5″ | 37.50 | 0.00 | 0.00 | 0.00 | 100.00 | |
1.0″ | 25.40 | 415.00 | 415.00 | 8.30 | 91.70 | |
3/4″ | 19.00 | 572.50 | 987.50 | 19.75 | 80.25 | |
1/2″ | 12.50 | 1232.50 | 2220.00 | 44.40 | 55.60 | |
3/8″ | 9.50 | 990.00 | 3210.00 | 64.20 | 35.80 | |
#4 | 4.75 | 777.50 | 3987.50 | 79.75 | 20.25 | |
#8 | 2.38 | 560.00 | 4547.50 | 90.95 | 9.05 | |
#16 | 1.19 | 377.50 | 4925.00 | 98.50 | 1.50 | |
#30 | 0.59 | 75.00 | 5000.00 | 100.00 | 0.00 | |
#50 | 0.30 | 0.00 | 5000.00 | 100.00 | 0.00 | |
#100 | 0.15 | 0.00 | 5000.00 | 100.00 | 0.00 |
Mix ID | Compressive Stregth (MPa) | Mean Compressive Strength (MPa) | Standard Deviation (SD) | Coefficient of Variation (CV) | Standard Error (SE) | 95% Confidence Interval | ||||
---|---|---|---|---|---|---|---|---|---|---|
Days | S1 | S2 | S3 | Upper Limit | Lower Limit | |||||
BLA0 | 7 | 25.28 | 25.60 | 24.95 | 25.28 | 0.325 | 0.013 | 0.188 | 26.084 | 24.469 |
28 | 32.88 | 33.00 | 32.75 | 32.88 | 0.125 | 0.004 | 0.072 | 33.187 | 32.566 | |
BLA5 | 7 | 25.12 | 24.84 | 24.50 | 24.82 | 0.310 | 0.013 | 0.179 | 25.591 | 24.049 |
28 | 31.49 | 31.67 | 31.50 | 31.55 | 0.101 | 0.003 | 0.058 | 31.805 | 31.302 | |
BLA10 | 7 | 23.65 | 24.00 | 24.15 | 23.93 | 0.257 | 0.011 | 0.148 | 24.571 | 23.296 |
28 | 30.29 | 30.22 | 30.45 | 30.32 | 0.118 | 0.004 | 0.068 | 30.613 | 30.027 | |
BLA15 | 7 | 22.76 | 23.25 | 23.12 | 23.04 | 0.254 | 0.011 | 0.147 | 23.674 | 22.413 |
28 | 29.82 | 30.11 | 30.13 | 30.02 | 0.173 | 0.006 | 0.100 | 30.451 | 29.589 | |
BLA20 | 7 | 22.55 | 22.67 | 22.95 | 22.72 | 0.205 | 0.009 | 0.119 | 23.233 | 22.213 |
28 | 30.00 | 29.97 | 29.50 | 29.82 | 0.280 | 0.009 | 0.162 | 30.520 | 29.127 | |
BLA25 | 7 | 21.44 | 21.50 | 21.66 | 21.53 | 0.114 | 0.005 | 0.066 | 21.816 | 21.251 |
28 | 28.51 | 28.50 | 28.22 | 28.41 | 0.165 | 0.006 | 0.095 | 28.819 | 28.001 | |
BLA30 | 7 | 21.00 | 20.85 | 20.55 | 20.80 | 0.229 | 0.011 | 0.132 | 21.369 | 20.231 |
28 | 27.25 | 26.78 | 26.85 | 26.96 | 0.254 | 0.009 | 0.146 | 27.590 | 26.330 |
Mix ID | Compressive Strength (MPa) | Mean Strength (MPa) | Standard Deviation (SD) | Coefficient of Variation (CV) | Standard Error (SE) | 95% Confidence Interval | ||||
---|---|---|---|---|---|---|---|---|---|---|
Days | S1 | S2 | S3 | Upper Limit | Lower Limit | |||||
BLA0 | 7 | 28.11 | 28.25 | 28.50 | 28.29 | 0.198 | 0.007 | 0.114 | 28.777 | 27.796 |
28 | 36.25 | 36.19 | 36.50 | 36.31 | 0.164 | 0.005 | 0.095 | 36.722 | 35.905 | |
BLA5 | 7 | 27.71 | 27.51 | 27.73 | 27.65 | 0.122 | 0.004 | 0.070 | 27.952 | 27.348 |
28 | 35.00 | 34.85 | 34.78 | 34.88 | 0.112 | 0.003 | 0.065 | 35.156 | 34.597 | |
BLA10 | 7 | 26.48 | 26.69 | 26.92 | 26.70 | 0.220 | 0.008 | 0.127 | 27.243 | 26.150 |
28 | 33.75 | 33.35 | 33.61 | 33.57 | 0.203 | 0.006 | 0.117 | 34.074 | 33.066 | |
BLA15 | 7 | 25.71 | 25.58 | 25.85 | 25.71 | 0.135 | 0.005 | 0.078 | 26.049 | 25.378 |
28 | 33.00 | 33.35 | 33.11 | 33.15 | 0.179 | 0.005 | 0.103 | 33.598 | 32.709 | |
BLA20 | 7 | 25.19 | 25.33 | 25.41 | 25.31 | 0.111 | 0.004 | 0.064 | 25.587 | 25.033 |
28 | 32.81 | 32.69 | 32.53 | 32.68 | 0.140 | 0.004 | 0.081 | 33.026 | 32.328 | |
BLA25 | 7 | 23.57 | 24.00 | 23.75 | 23.77 | 0.216 | 0.009 | 0.125 | 24.310 | 23.237 |
28 | 31.00 | 30.13 | 30.65 | 30.59 | 0.438 | 0.014 | 0.253 | 31.681 | 29.506 | |
BLA30 | 7 | 22.95 | 22.20 | 22.56 | 22.57 | 0.375 | 0.017 | 0.217 | 23.502 | 21.638 |
28 | 29.00 | 28.91 | 29.15 | 29.02 | 0.121 | 0.004 | 0.070 | 29.321 | 28.719 |
Mix ID | Splitting Tensile Strength (MPa) | Mean Strength (MPa) | Standard Deviation (SD) | Coefficient of Variation (CV) | Standard Error (SE) | 95% Confidence Interval | ||||
---|---|---|---|---|---|---|---|---|---|---|
Days | S1 | S2 | S3 | Upper Limit | Lower Limit | |||||
BLA0 | 7 | 2.82 | 2.75 | 2.95 | 2.84 | 0.101 | 0.036 | 0.059 | 3.092 | 2.588 |
28 | 4.13 | 4.35 | 3.97 | 4.15 | 0.191 | 0.046 | 0.110 | 4.624 | 3.676 | |
BLA5 | 7 | 2.68 | 2.55 | 2.71 | 2.65 | 0.085 | 0.032 | 0.049 | 2.858 | 2.435 |
28 | 3.86 | 3.99 | 3.62 | 3.82 | 0.188 | 0.049 | 0.108 | 4.290 | 3.357 | |
BLA10 | 7 | 2.31 | 2.38 | 2.33 | 2.34 | 0.036 | 0.015 | 0.021 | 2.430 | 2.250 |
28 | 3.79 | 3.65 | 4.00 | 3.81 | 0.176 | 0.046 | 0.102 | 4.251 | 3.376 | |
BLA15 | 7 | 2.09 | 2.22 | 2.18 | 2.16 | 0.067 | 0.031 | 0.038 | 2.329 | 1.998 |
28 | 3.67 | 3.40 | 3.76 | 3.61 | 0.187 | 0.052 | 0.108 | 4.075 | 3.145 | |
BLA20 | 7 | 2.07 | 2.15 | 2.10 | 2.11 | 0.040 | 0.019 | 0.023 | 2.207 | 2.006 |
28 | 3.51 | 3.29 | 3.34 | 3.38 | 0.115 | 0.034 | 0.067 | 3.667 | 3.093 | |
BLA25 | 7 | 2.05 | 2.00 | 1.95 | 2.00 | 0.050 | 0.025 | 0.029 | 2.124 | 1.876 |
28 | 3.19 | 3.25 | 3.31 | 3.25 | 0.060 | 0.018 | 0.035 | 3.399 | 3.101 | |
BLA30 | 7 | 1.92 | 1.85 | 1.98 | 1.92 | 0.065 | 0.034 | 0.038 | 2.078 | 1.755 |
28 | 3.08 | 3.15 | 3.00 | 3.08 | 0.075 | 0.024 | 0.043 | 3.263 | 2.890 |
Pulse Velocity (m/s) | Concrete Quality (Grading) |
---|---|
Above 4500 | Excellent |
3500 to 4500 | Good |
3000 to 3500 | Medium |
Below 3000 | Doubtful |
Mix ID | Flexural Stregth (MPa) | Mean Strength (MPa) | Standard Deviation (SD) | Coefficient of Variation (CV) | Standard Error (SE) | 95% Confidence Interval | ||||
---|---|---|---|---|---|---|---|---|---|---|
Days | S1 | S2 | S3 | Upper Limit | Lower Limit | |||||
BLA0 | 7 | 3.53 | 3.72 | 3.89 | 3.71 | 0.182 | 0.049 | 0.105 | 4.165 | 3.261 |
28 | 5.00 | 5.43 | 5.38 | 5.27 | 0.236 | 0.045 | 0.136 | 5.854 | 4.683 | |
BLA10 | 7 | 2.92 | 3.17 | 3.22 | 3.10 | 0.160 | 0.052 | 0.092 | 3.501 | 2.705 |
28 | 4.95 | 5.19 | 5.25 | 5.13 | 0.161 | 0.031 | 0.093 | 5.528 | 4.730 | |
BLA20 | 7 | 2.81 | 2.94 | 2.50 | 2.75 | 0.226 | 0.082 | 0.131 | 3.312 | 2.188 |
28 | 4.73 | 5.21 | 5.08 | 5.01 | 0.246 | 0.049 | 0.142 | 5.617 | 4.394 | |
BLA30 | 7 | 2.54 | 2.73 | 2.63 | 2.63 | 0.096 | 0.036 | 0.055 | 2.869 | 2.394 |
28 | 4.15 | 3.87 | 4.12 | 4.05 | 0.151 | 0.037 | 0.087 | 4.424 | 3.672 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.H.; Law, D.W.; Gunasekara, C.; Sobuz, M.H.R.; Rahman, M.N.; Habib, M.A.; Sabbir, A.K. Assessing the Influence of Banana Leaf Ash as Pozzolanic Material for the Production of Green Concrete: A Mechanical and Microstructural Evaluation. Materials 2024, 17, 720. https://doi.org/10.3390/ma17030720
Islam MH, Law DW, Gunasekara C, Sobuz MHR, Rahman MN, Habib MA, Sabbir AK. Assessing the Influence of Banana Leaf Ash as Pozzolanic Material for the Production of Green Concrete: A Mechanical and Microstructural Evaluation. Materials. 2024; 17(3):720. https://doi.org/10.3390/ma17030720
Chicago/Turabian StyleIslam, Md. Hamidul, David William Law, Chamila Gunasekara, Md. Habibur Rahman Sobuz, Md. Nafiur Rahman, Md. Ahsan Habib, and Ashanul Kabir Sabbir. 2024. "Assessing the Influence of Banana Leaf Ash as Pozzolanic Material for the Production of Green Concrete: A Mechanical and Microstructural Evaluation" Materials 17, no. 3: 720. https://doi.org/10.3390/ma17030720
APA StyleIslam, M. H., Law, D. W., Gunasekara, C., Sobuz, M. H. R., Rahman, M. N., Habib, M. A., & Sabbir, A. K. (2024). Assessing the Influence of Banana Leaf Ash as Pozzolanic Material for the Production of Green Concrete: A Mechanical and Microstructural Evaluation. Materials, 17(3), 720. https://doi.org/10.3390/ma17030720