Enhancing the Design of Experiments on the Fatigue Life Characterisation of Fibre-Reinforced Plastics by Incorporating Artificial Neural Networks
Abstract
:1. Introduction
1.1. Motivation
1.2. State of the Art in Fatigue Assessment of Fibre-Reinforced Plastics
1.2.1. Determination of S-N Curves: Horizon Method and Pearl–String Method
1.2.2. Consideration of Fibre Orientation
1.2.3. Further Influences on Fatigue Strength
1.3. Objectives and Novelty of This Contribution
2. Materials and Methods
2.1. Experiments and Evaluation Methods for Fatigue Life Prediction
2.1.1. Experimental Assessment of Fatigue Life
2.1.2. Interpolation of Arbitrary Fibre Orientations in Fatigue Life
2.1.3. Experimental Parameters and Their Restrictions
2.2. Method of Adaptive Sampling
2.3. Artificial Neural Networks (ANNs)
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klein, D.; Witzgall, C.; Wartzack, S. A novel approach for the evaluation of composite suitability of lightweight structures at early design stages. In Proceedings of the Design Society (Hrsg.): Proceedings of International Design Conference, DESIGN, Dubrovnik, Croatia, 19–22 May 2014; pp. 1093–1104. [Google Scholar]
- Krivachy, R.; Riedel, W.; Weyer, S.; Thoma, K. Characterisation and modelling of short fibre reinforced polymers for numerical simulation of a crash. Int. J. Crashworthiness 2008, 13, 559–566. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Sultan, M.T.H.; Rajeswari, N. Manufacturing techniques of composites for aerospace applications. In Sustainable Composites for Aerospace Applications; Mohammad, J., Mohammad, T., Eds.; Woodhead Publishing: Cambridge, MA, USA; Kidlington, UK, 2018; pp. 55–67. [Google Scholar]
- Nutini, M.; Vitali, M. Interactive failure criteria for glass fibre reinforced polypropylene: Validation on an industrial part. Int. J. Crashworthiness 2017, 24, 24–38. [Google Scholar] [CrossRef]
- Becker, F.; Kolling, S.; Schöpfer, J. Material Data Determination and Crash Simulation of Fiber Reinforced Plastic Components. In Proceedings of the 8th European LS-DYNA Conference, Straßburg, France, 23–24 May 2011. [Google Scholar]
- Markarian, J. Long fibre reinforced thermoplastics continue growth in automotive. Plast. Addit. Compd. 2007, 9, 20–24. [Google Scholar] [CrossRef]
- Hidayat, S. Influence of the Vacuum Bag Process on The Strength of Laminate Composite. In Proceedings of the IEEE 2018 International Conference on Applied Science and Technology (iCAST), Manado, Indonesia, 26–27 October 2018; pp. 754–757. [Google Scholar]
- Reithofer, P.; Jilka, B.; Fertschej, A. Considering the local anisotropy—Simulation process chain for short and long fibre reinforced thermoplastics. In Proceedings of the CARHS Automotive CAE Grand Challenge, Hanau, Germany, 5–6 April 2017. [Google Scholar]
- Mao, H.; Mahadevan, S. Fatigue damage modelling of composite materials. Compos. Struct. 2002, 58, 405–410. [Google Scholar] [CrossRef]
- Hosoi, A.; Sato, N.; Kusumoto, Y.; Fujiwara, K.; Kawada, H. High-cycle fatigue characteristics of quasi-isotropic CFRP laminates over 108 cycles (Initiation and propagation of delamination considering interaction with transverse cracks). Int. J. Fatigue 2010, 32, 29–36. [Google Scholar] [CrossRef]
- Wu, F.; Yao, W. A fatigue damage model of composite materials. Int. J. Fatigue 2010, 32, 134–138. [Google Scholar] [CrossRef]
- Fatemi, A.; Mortazavian, S.; Khosrovaneh, A. Fatigue Behavior and Predictive Modeling of Short Fiber Thermoplastic Composites. Procedia Eng. 2015, 133, 5–20. [Google Scholar] [CrossRef]
- Bernasconi, A.; Davoli, P.; Basile, A.; Filippi, A. Effect of fibre orientation on the fatigue behaviour of a short glass fibre reinforced polyamide-6. Int. J. Fatigue 2007, 29, 199–208. [Google Scholar] [CrossRef]
- Haibach, E. Betriebsfestigkeit. In Verfahren und Daten zur Bauteilberechnung; VDI-Buch. 3., korrigierte und erg. Aufl.; Springer: Berlin, Germany, 2006. [Google Scholar]
- Horst, J.J.; Spoormaker, J.L. Mechanisms of fatigue in short glass fiber reinforced polyamide 6. Polym. Eng. Sci. 1996, 36, 2718–2726. [Google Scholar] [CrossRef]
- Varvani-Farahani, A.; Shirazi, A. A Fatigue Damage Model for (0/90) FRP Composites based on Stiffness Degradation of 0° and 90° Composite Plies. J. Reinf. Plast. Compos. 2007, 26, 1319–1336. [Google Scholar] [CrossRef]
- DIN 50100:2016-12; Schwingfestigkeitsversuch—Durchführung und Auswertung von Zyklischen Versuchen mit Konstanter Lastamplitude für Metallische Werkstoffproben und Bauteile. Beuth: Berlin, Germany, 2016.
- Masendorf, R.; Müller, C. Execution and evaluation of cyclic tests at constant load amplitudes—DIN 50100:2016. Mater. Test. 2018, 60, 961–968. [Google Scholar] [CrossRef]
- Chebbi, E.; Mars, J.; Wali, M.; Dammak, F. Fatigue Behavior of Short Glass Fiber Reinforced Polyamide 66: Experimental Study and Fatigue Damage Modelling. Period. Polytech. Mech. Eng. 2016, 60, 247–255. [Google Scholar] [CrossRef]
- Guster, C.; Pinter, G.; Mösenbacher, A.; Eichlseder, W. Evaluation of a Simulation Process for Fatigue Life Calculation of Short Fibre Reinforced Plastic Components. Procedia Eng. 2011, 10, 2104–2109. [Google Scholar] [CrossRef]
- Amjadi, M.; Fatemi, A. A Fatigue Damage Model for Life Prediction of Injection-Molded Short Glass Fiber-Reinforced Thermoplastic Composites. Polymers 2021, 13, 2250. [Google Scholar] [CrossRef] [PubMed]
- Lizama-Camara, Y.; Pinna, C.; Lu, Z.; Blagdon, M. Effect of the injection moulding fibre orientation distribution on the fatigue life of short glass fibre reinforced plastics for automotive applications. Procedia CIRP 2019, 85, 255–260. [Google Scholar] [CrossRef]
- Moosbrugger, E.; DeMonte, M.; Jaschek, K.; Fleckenstein, J.; Büter, A. Multiaxial fatigue behaviour of a short-fibre reinforced polyamide—Experiments and calculations. Mater. Und Werkst. 2011, 42, 950–957. [Google Scholar] [CrossRef]
- De Monte, M.; Moosbrugger, E.; Jaschek, K.; Quaresimin, M. Multiaxial fatigue of a short glass fibre reinforced polyamide 6.6—Fatigue and fracture behaviour. Int. J. Fatigue 2010, 32, 17–28. [Google Scholar] [CrossRef]
- Marco, Y.; Le Saux, V.; Jégou, L.; Launay, A.; Serrano, L.; Raoult, I.; Calloch, S. Dissipation analysis in SFRP structural samples: Thermomechanical analysis and comparison to numerical simulations. Int. J. Fatigue 2014, 67, 142–150. [Google Scholar] [CrossRef]
- Mallick, P.; Zhou, Y. Effect of mean stress on the stress-controlled fatigue of a short E-glass fiber reinforced polyamide-6,6. Int. J. Fatigue 2004, 26, 941–946. [Google Scholar] [CrossRef]
- Santharam, P.; Marco, Y.; Le Saux, V.; Le Saux, M.; Robert, G.; Raoult, I.; Guévenoux, C.; Taveau, D.; Charrier, P. Fatigue criteria for short fiber-reinforced thermoplastic validated over various fiber orientations, load ratios and environmental conditions. Int. J. Fatigue 2020, 135, 105574. [Google Scholar] [CrossRef]
- Launay, A.; Marco, Y.; Maitournam, M.; Raoult, I. Modelling the influence of temperature and relative humidity on the time-dependent mechanical behaviour of a short glass fibre reinforced polyamide. Mech. Mater. 2013, 56, 1–10. [Google Scholar] [CrossRef]
- Advani, S.G.; Tucker, C.L. The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites. J. Rheol. 1987, 31, 751–784. [Google Scholar] [CrossRef]
- Folgar, F.; Tucker, C.L. Orientation Behavior of Fibers in Concentrated Suspensions. J. Reinf. Plast. Compos. 1984, 3, 98–119. [Google Scholar] [CrossRef]
- Bernasconi, A.; Kulin, R.M. Effect of frequency upon fatigue strength of a short glass fiber reinforced polyamide 6: A superposition method based on cyclic creep parameters. Polym. Compos. 2009, 30, 154–161. [Google Scholar] [CrossRef]
- D’amore, A.; Grassia, L. Constitutive law describing the strength degradation kinetics of fibre-reinforced composites subjected to constant amplitude cyclic loading. Mech. Time-Depend. Mater. 2016, 20, 1–12. [Google Scholar] [CrossRef]
- Witzgall, C.; Huber, M.; Wartzack, S. Berücksichtigung zyklischer Materialdegradation in der Crashsimulation kurzfaserverstärkter Thermoplaste/Consideration of Cyclic Material Degradation in the Crash Simulation of Short-fibre-reinforced Thermoplastics. Konstruktion 2020, 72, 78–82. [Google Scholar] [CrossRef]
- Azzi, V.D.; Tsai, S.W. Anisotropic strength of composites. Exp. Mech. 1965, 5, 283–288. [Google Scholar] [CrossRef]
- Witzgall, C.; Giolda, J.; Wartzack, S. A novel approach to incorporating previous fatigue damage into a failure model for short-fibre reinforced plastics. Int. J. Impact Eng. 2022, 162, 104155. [Google Scholar] [CrossRef]
- Witzgall, C.; Gadinger, M.; Wartzack, S. Fatigue Behaviour and Its Effect on the Residual Strength of Long-Fibre-Reinforced Thermoplastic PP LGF30. Materials 2023, 16, 6174. [Google Scholar] [CrossRef]
- De Monte, M.; Moosbrugger, E.; Quaresimin, M. Influence of temperature and thickness on the off-axis behaviour of short glass fibre reinforced polyamide 6.6—Cyclic loading. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1368–1379. [Google Scholar] [CrossRef]
- Santner, T.J.; Williams, B.J.; Notz, W.I. The Design and Analysis of Computer Experiments; Springer: New York, NY, USA, 2003. [Google Scholar]
- Fuhg, J.N.; Fau, A.; Nackenhorst, U. State-of-the-Art and Comparative Review of Adaptive Sampling Methods for Kriging. Arch. Comput. Methods Eng. 2020, 28, 2689–2747. [Google Scholar] [CrossRef]
- Krige, D.G. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. S. Afr. Inst. Min. Metall. 1951, 52, 119–139. [Google Scholar]
- EL-shahat, A. Advanced Applications for Artificial Neural Networks; BoD—Books on Demand: Norderstedt, Germany, 2018. [Google Scholar]
- Mumali, F. Artificial neural network-based decision support systems in manufacturing processes: A systematic literature review. Comput. Ind. Eng. 2022, 165, 107964. [Google Scholar] [CrossRef]
- Ding, M.; Wang, L.; Bi, R. An ANN-based Approach for Forecasting the Power Output of Photovoltaic System. Procedia Environ. Sci. 2011, 11, 1308–1315. [Google Scholar] [CrossRef]
- Kumar Dabbakuti, J.R.K.; Bhavya Lahari, G. Application of Singular Spectrum Analysis Using Artificial Neural Networks in TEC Predictions for Ionospheric Space Weather. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5101–5107. [Google Scholar] [CrossRef]
- Mungiole, M.; Wilson, D.K. Prediction of outdoor sound transmission loss with an artificial neural network. Appl. Acoust. 2006, 67, 324–345. [Google Scholar] [CrossRef]
- Noori, N.; Kalin, L. Coupling SWAT and ANN models for enhanced daily streamflow prediction. J. Hydrol. 2016, 533, 141–151. [Google Scholar] [CrossRef]
- Zamani, A.; Solomatine, D.; Azimian, A.; Heemink, A. Learning from data for wind–wave forecasting. Ocean Eng. 2008, 35, 953–962. [Google Scholar] [CrossRef]
- Ferrari, S.; Stengel, R. Smooth Function Approximation Using Neural Networks. IEEE Trans. Neural Netw. 2005, 16, 24–38. [Google Scholar] [CrossRef]
- Zhang, Z. Artificial Neural Network. In Multivariate Time Series Analysis in Climate and Environmental Research; Zhang, Z., Ed.; Springer Science and Business Media LLC.: Cham, Switzerland, 2018; ISBN 9783319673394. [Google Scholar]
- Maind, S.; Wankar, P. Research paper on basic of artificial neural network. Int. J. Recent Innov. Trends Comput. Commun. 2014, 2, 96–100. [Google Scholar]
- Uzair, M.; Jamil, N. Effects of Hidden Layers on the Efficiency of Neural networks. In Proceedings of the 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, 5–7 November 2020; pp. 1–6. [Google Scholar]
- Almeida, T.A.d.C.; Felix, E.F.; de Sousa, C.M.A.; Pedroso, G.O.M.; Motta, M.F.B.; Prado, L.P. Influence of the ANN Hyperparameters on the Forecast Accuracy of RAC’s Compressive Strength. Materials 2023, 16, 7683. [Google Scholar] [CrossRef]
- Mortazavian, S.; Fatemi, A. Fatigue behavior and modeling of short fiber reinforced polymer composites including anisotropy and temperature effects. Int. J. Fatigue 2015, 77, 12–27. [Google Scholar] [CrossRef]
- Klimkeit, B.; Nadot, Y.; Castagnet, S.; Nadot-Martin, C.; Dumas, C.; Bergamo, S.; Sonsino, C.; Büter, A. Multiaxial fatigue life assessment for reinforced polymers. Int. J. Fatigue 2011, 33, 766–780. [Google Scholar] [CrossRef]
- Oka, H.; Narita, R.; Akiniwa, Y.; Tanaka, K. Effect of Mean Stress on Fatigue Strength of Short Glass Fiber Reinforced Polybuthyleneterephthalate. Key Eng. Mater. 2007, 340–341, 537–542. [Google Scholar] [CrossRef]
- Jain, A.; Van Paepegem, W.; Verpoest, I.; Lomov, S.V. A feasibility study of the Master SN curve approach for short fiber reinforced composites. Int. J. Fatigue 2016, 91, 264–274. [Google Scholar] [CrossRef]
- Jain, A.; Veas, J.M.; Straesser, S.; Van Paepegem, W.; Verpoest, I.; Lomov, S.V. The Master SN curve approach—A hybrid multi-scale fatigue simulation of short fiber reinforced composites. Compos. Part A Appl. Sci. Manuf. 2016, 91, 510–518. [Google Scholar] [CrossRef]
- Ashhab, M.S.; Akash, O. Neural network based study of PV panel performance in the presence of dust. Int. J. Embed. Syst. 2019, 11, 38. [Google Scholar] [CrossRef]
- Ashhab, M.S.; Breitsprecher, T.; Wartzack, S. Neural network based modeling and optimization of deep drawing—Extrusion combined process. J. Intell. Manuf. 2014, 25, 77–84. [Google Scholar] [CrossRef]
Parameter | Value (Confidence Interval) |
---|---|
Fatigue strength, parallel direction, | 132.9 MPa (139.4 MPa, 126.3 MPa) |
Fatigue strength, perpendicular direction, | 102.3 MPa (107.0 MPa, 97.6 MPa) |
Fatigue shear strength, | 67.5 MPa (71.1 MPa, 63.8 MPa) |
Fatigue strength exponent, | −0.057 (−0.053, −0.062) |
ANN with… | Squared Error for… | |
---|---|---|
Training Data | Test Data | |
one hidden layer | 7.36 × 10−3 | 4.09 × 10−3 |
four hidden layers | 1.02 × 10−3 | 0.60 × 10−3 |
four hidden layers, additional experiments | 0.55 × 10−3 | 0.25 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witzgall, C.; Ashhab, M.S.; Wartzack, S. Enhancing the Design of Experiments on the Fatigue Life Characterisation of Fibre-Reinforced Plastics by Incorporating Artificial Neural Networks. Materials 2024, 17, 729. https://doi.org/10.3390/ma17030729
Witzgall C, Ashhab MS, Wartzack S. Enhancing the Design of Experiments on the Fatigue Life Characterisation of Fibre-Reinforced Plastics by Incorporating Artificial Neural Networks. Materials. 2024; 17(3):729. https://doi.org/10.3390/ma17030729
Chicago/Turabian StyleWitzgall, Christian, Moh’d Sami Ashhab, and Sandro Wartzack. 2024. "Enhancing the Design of Experiments on the Fatigue Life Characterisation of Fibre-Reinforced Plastics by Incorporating Artificial Neural Networks" Materials 17, no. 3: 729. https://doi.org/10.3390/ma17030729
APA StyleWitzgall, C., Ashhab, M. S., & Wartzack, S. (2024). Enhancing the Design of Experiments on the Fatigue Life Characterisation of Fibre-Reinforced Plastics by Incorporating Artificial Neural Networks. Materials, 17(3), 729. https://doi.org/10.3390/ma17030729