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Abstract: Fatigue life testing is a complex and costly matter, especially in the case of fibre-reinforced
thermoplastics, where other parameters in addition to force alone must be taken into account. The
number of tests required therefore increases significantly, especially if the influence of different fibre
orientations is to be taken into account. It is therefore important to gain the greatest possible amount
of knowledge from the limited number of available tests. In order to achieve this, this study aims
to utilise adaptive sampling, which is used in numerous areas of computational engineering, for
the design of experiments on fatigue life testing. Artificial neural networks (ANNs) are therefore
trained on data for the short-fibre-reinforced material PBT GF30, and their areas of greatest model
uncertainty are queried. This was undertaken with ANNs from various numbers of hidden layers,
which were analysed for their performance. The ideal case turned out to be four hidden layers, for
which a squared error as small as 1 × 10−3 was recorded. Locally resolved, the ANN was used to
identify the region of greatest uncertainty for samples of vertical orientation and small numbers of
cycles. With information such as this, additional data can be obtained in such uncertain regions in
order to improve the model prediction—almost halving the recorded error to only 0.55 × 10−3. In
this way, a model of comparable value can be found with less experimental effort, or a model of
better quality can be set up with the same experimental effort.

Keywords: fatigue life; artificial neural networks; design of experiments; increased efficiency; short-
fibre-reinforced thermoplastics; composites

1. Introduction
1.1. Motivation

Fibre-reinforced plastics have outstanding mechanical properties combined with a
low density [1]. They are therefore important materials in lightweight design and are
used in a wide range of applications, from the automotive industry [2] to aviation [3] or
from plant design to the transportation sector [4]. The range of materials belonging to this
material class extends from short-fibre- or long-fibre-reinforced thermoplastics produced
by injection moulding for large-scale production [5,6] to hand-laminated individual parts
made from continuous fibre-reinforced laminates [7]. However, what all of them have in
common is that the material properties are significantly influenced by the manufacturing
process. This means that material data cannot be taken at random from data sheets, but
must often be characterised for the specific application [8].

One area in which knowledge of material behaviour is of great importance is fatigue:
it is important to be able to predict the service life of a component under the application
loads [9]. However, the determination of material data in the field of fatigue is often very
time-consuming and cost-intensive due to long test durations [10,11]. S-N curves must
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be determined, which, unlike for metallic materials, depend not only on the load but also
on other parameters, such as the fibre orientation [12,13]. This significantly increases the
number of tests required. This article therefore aims to show how the use of artificial neural
networks can improve test planning. The aim is either to achieve a prediction of the same
quality with fewer tests or a prediction of better quality with the same number of tests.

1.2. State of the Art in Fatigue Assessment of Fibre-Reinforced Plastics
1.2.1. Determination of S-N Curves: Horizon Method and Pearl–String Method

The question of which service life can be expected at which load level must be an-
swered using S-N curves. They represent a relationship between the existing stress (S) and
the endured cycles (N). The tests are generally carried out by subjecting test specimens
to cyclic loads of constant amplitude until they fail. An S-N curve is formed from the
available test results, as shown in Figure 1 [14]. It is categorised into regions of low-cycle
(LCF), high-cycle (HCF) and long-life (LLF) fatigue. The exact definition of the limits of
these regions differs depending on the material and the source used [15]—but should be
disregarded at this point. It is more important to understand that an S-N curve, such as the
one shown, only represents the exact sample and test condition with which it was recorded.
A change in parameters such as fibre the orientation or stress ratio makes it necessary to
measure a separate S-N curve [16].
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Figure 1. Typical S-N curve with the regions of low-cycle (LCF), high-cycle (HCF) and long-life
fatigue (LLF).

The experimental characterisation of such an S-N curve is standardised in accordance
with DIN 50100 [17,18]. It essentially proposes two methods, the horizon method and
the pearl–string method, which are shown in Figure 2. In the horizon method, two load
horizons are selected, on which several repeat tests are carried out. This offers the advantage
that the scatter of the number of cycles can be analysed for each selected load level. In
order to determine the S-N curve as accurately as possible, it is important that the load
levels are selected in such a way that their results cover the range of the HCF as far as
possible. However, in order to achieve this, prior knowledge of the material behaviour is
always required. As that knowledge is not always known, it is a clear disadvantage of the
horizon method.
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Figure 2. Fatigue testing methods in comparison: horizon method (a) vs. pearl–string method (b) [17].

This is exactly where the pearl–string method comes in and aims to make it possible
to analyse a previously unknown material for which the load levels of the limits of the
HCF range cannot be estimated. It starts with a fairly arbitrary load level; the subsequent
load levels are determined on the basis of the results of the previous tests: if the service life
achieved is low, the load is reduced in order to achieve a higher number of cycles in the
next test and vice versa. In this way, the course of the S-N curve is scanned iteratively, i.e.,
the test points are strung together like a string of pearls.

A clear advantage of the pearl–string method is that no prior knowledge of the material
to be tested is required, and yet an S-N curve can be reliably determined. However, it can
only be assumed, for example, that the scatter of the test results is constant over the entire
load range. Furthermore, it must be noted that the standard for the pearl–string method
does not provide any information on the extent to which the load should be varied; it only
provides the general information: increase or decrease the load.

1.2.2. Consideration of Fibre Orientation

The methods described only provide for the load as a variable parameter in the
experiment. However, the load is only one parameter among several, at least in the case of
testing fibre-reinforced plastics. As the least considered requirement, the fibre orientation of
a sample relative to the force direction of the testing machine must be taken into account. Its
influence is the most relevant. Usually, dog-bone-shaped moulds are used as the specimen
geometry, but rectangular plates without a waist are also tested less frequently [19].

The orientations 0◦, 45◦ and 90◦ relative to the test force are frequently tested; more
rarely, only the parallel and vertical orientations are tested [20]. Other intermediate angles,
such as 30◦ or 60◦, are added less frequently [13]. The samples used are usually taken from
injection-moulded plates by machining or water-jet cutting [21]. In addition to the mere
orientation, the position within the plate is also changed in places [22].

Of course, the number of realistically feasible different fibre orientations in the samples
is limited. Modelling approaches have therefore been developed that allow the interpolation
of any orientation angle. One example is the concept of the master S-N curve according
to Bernasconi et al. [13], in which no absolute values are used for the stress level, but the
stress is considered in relation to the static breaking load.

Attempts have mainly so far been made to make the best possible use of the available
test results by means of downstream modelling procedures. Approaches to take better
account of the requirements of subsequent modelling as early as the test planning stage
have not yet been available to a sufficient extent if other parameters need to be varied
instead of the test load alone.

1.2.3. Further Influences on Fatigue Strength

If other influences, such as the stress ratio or temperature, are of interest, these would
also have to be varied in a suitable manner, which is not provided for in the standardisation.
In order to be able to investigate fatigue strength under multi-axial loading, Moosbrugger,
Monte et al. [23,24] designed a specially injection-moulded, tapered tube specimen that can
be tested simultaneously under axial force and torsion [24]. Marco et al. used a perforated,
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injection-moulded sample to determine the energy dissipation [25]. Furthermore, the ratio
of upper and lower load is varied, for example, by Mallick et al. [26] or Santharam et al. [27].
Launay et al. considered the influence of temperature and humidity on their specimens’
performance [28].

1.3. Objectives and Novelty of This Contribution

While methods of so-called adaptive sampling are already successfully used in fields
of simulation and can reduce the necessary number of passes, it is still rarely the case in
experimental material data determination. One reason for this is certainly the existence of
restrictions in the experimental world that are not found in simulation: for example, not all
parameters can be changed at will.

This study describes an approach that uses artificial neural networks (ANNs) to
characterise the fatigue behaviour of fibre-reinforced plastics more efficiently. The novelty
of the approach lies in the fact that, by considering the model uncertainty, the areas of
the parameter space are specifically fed with further experiments for which too few data
are available. Restrictions are taken into account, such as the fact that it is not possible to
produce an unlimited number of differently orientated samples.

2. Materials and Methods

All of the following observations were carried out on the short fibre-reinforced ther-
moplastic PBT GF30. This thermoplastic composite, based on polybutylene terephthalate,
is reinforced with 30% glass fibres, which have fibre diameters of less than 10 µm and fibre
lengths of up to 250 µm. To produce the sample material, plates were injection-moulded,
from which the test specimens were then removed in various orientations by milling. The
fibre orientation, depending strongly on the manufacturing process, was mostly parallel
to the flow direction; details were calculated by means of an injection-moulding simula-
tion [29,30].

2.1. Experiments and Evaluation Methods for Fatigue Life Prediction
2.1.1. Experimental Assessment of Fatigue Life

The HCT 25 servo-hydraulic pulser from ZwickRoell, Ulm, Germany is utilised to
characterise material behaviour under oscillating loads. It can apply axial tensile and
compressive forces of up to 25 kN at a frequency of up to 30 Hz. In accordance with
Bernasconi et al. [13,31], a stress ratio of 0.1 was applied to the minimum and maximum
stress for the current characterisation, resulting in a pulsating tensile stress state. Loads
were measured using piezoelectric load cells integrated into the testing machine.

All tests were conducted at a temperature of 23 ◦C. To prevent a significant rise
in temperature due to internal friction, the test frequency was restricted to 4 Hz with a
constant-load amplitude [32]. If the temperature increases by more than 10 ◦C, it can cause
a rapid decrease in strength and unwanted thermal failure [12]. Therefore, an infrared
thermometer was used to monitor and record the surface temperature of the specimen. If
there is a critical increase in temperature, premature failure of the specimen is expected.

To prevent exactly this effect, the test frequency remained low. In addition, the sample
surface was cooled with a constant flow of compressed air, which increased heat dissipation.
In this way, there was no critical temperature increase in the samples—if an increase was
detected, the test was declared invalid and discarded. The limit was drawn at a temperature
increase of 5 ◦C.

The tensile bar according to Becker [5] was used as the test specimen geometry, which
was taken from injection-moulded plates with a thickness of 2 mm by milling. Figure 3
shows the exact geometry of the tension rods, along with their locations within the injection-
moulded plates. The short fibres within the sheet were essentially oriented along the main
direction of the melt flow. By taking the samples at different angles relative to this flow
direction, it is possible to generate test specimens with different fibre orientations.
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2.1.2. Interpolation of Arbitrary Fibre Orientations in Fatigue Life

Our approach for interpolation was the use of a so-called S-N surface, which was
derived and used by Witzgall and Wartzack in [33]. In this approach, using the results
of different fibre orientations and including a failure criterion, a continuous surface was
drawn that indicates the stress that can be carried. The fibre orientation angle was plotted
here as the third dimension and the analytical function was derived using the Tsai–Hill
criterion as follows:

The failure criterion according to Tsai–Hill [34], here, for transversal–isotropic material
behaviour, is listed in Equation (1). It sets the existing fibre-parallel and -perpendicular
stresses in the material in relation to the bearable values, σ∥,max, σ⊥,max and τ∥⊥,max. If the
limit value of 1 is exceeded, the material will fail.

σ2
∥

σ2
∥,max

+
σ2
⊥

σ2
⊥,max

−
σ∥σ⊥

σ2
∥,max

+
τ2
∥⊥

τ2
∥⊥,max

= 1 (1)

The rotation of the stress tensor results in the maximum stress that can be applied to a
sample whose fibre orientation is rotated by an angle (θ) relative to the load direction:

σmax(θ) =

cos(θ)2 ·
(

cos(θ)2 − sin(θ)2
)

σ2
∥,max

+
sin(θ)4

σ2
⊥,max

+
cos(θ)2 · sin(θ)2

τ2
∥⊥,max

− 1
2

(2)

The maximum stress in Equation (2) is therefore only dependent on the angle of
orientation and the different material strengths. In addition, the basic equation of the S-N
curve is as follows:

σ f (N) = σ f · Nb (3)

The index f here denotes fatigue, N is the maximum number of cycles a specimen can
withstand and the exponent b describes the slope of the S-N curve. Merging the equations
provides a relationship that describes the fatigue strength of an arbitrarily orientated
specimen as a function of the orientation angle and the number of cycles:

σ f (θ, N) =

cos(θ)2 ·
(

cos(θ)2 − sin(θ)2
)

σ2
∥, f

+
sin(θ)4

σ2
⊥, f

+
cos(θ)2 · sin(θ)2

τ2
∥⊥, f

− 1
2

· Nb (4)

The strengths σi, f listed in the denominator correspond in very good approximation
to the respective static strengths, i.e., to a certain extent, the fatigue strength of a number of
cycles of 1.
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The approach described uses the assumption that the gradient of the S-N curves in
the N direction, or the skew of the S-N surface, is constant regardless of the orientation
angle. The good approximation of this assumption was proven for short-fibre-reinforced
thermoplastics in [35]. In the case of a variable gradient over the fibre orientation, a
dependence of the formerly constant exponent b towards an expression b(θ) was added to
the approach in [36].

2.1.3. Experimental Parameters and Their Restrictions

In order to clarify which parameters can generally be relevant in the present experiments,
but also which restrictions they are subject to, they will be dealt with individually here.

Firstly, it is worth recalling the representation of the S-N curve, in which the number
of cycles (N) is plotted on the abscissa, the horizontal axis, and the stress on the vertical
axis, the ordinate—this is carried out for historical reasons, so to speak. It suggests that the
number of cycles is the input parameter and the stress is the output parameter, as this is the
usual arrangement. In reality, however, the choice of test load is the variable parameter and
the tolerable number of cycles is the result of the experiment. The test load can be selected
quite freely and continuously. Other parameters of the tests can be the stress ratio of the
upper and lower load [26], the temperature [37] or the test frequency [31]. These can also
essentially be regarded as continuous parameters.

In contrast, the next parameter to be used is the fibre orientation. As described above,
the orientation is often only used in a few stages, for example, 0◦, 45◦ and 90◦. This is
solely for organisational reasons: it must be noted that, as a rule, the samples must be taken
from plates, a separate CNC program must be used for each different orientation, etc. In
addition, the sample cuts must be ordered and it is simply not practicable to have each
sample produced individually at any orientation angle. Accordingly, the fibre orientation,
if it is to be modelled continuously, must be regarded as a quasi-discrete parameter that
cannot be changed at will.

2.2. Method of Adaptive Sampling

Adaptive sampling is a method in which the design points still to be carried out are
selected depending on the results already obtained. In other terms, this means that the
test programme is not fixed from the outset, but is only determined gradually by looking
at all the results [38]. According to the above definition, the pearl–string method, which
was described earlier, is also basically an adaptive sampling method: here, the test force is
changed depending on the previously endured number of cycles.

Regardless of the scientific discipline in question, a relation for the entire parameter
space is created from individual samples in a parameter space by modelling, as shown in
Figure 4. It is obvious that the accuracy of the determined model depends strongly on the
samples. In addition, it is often very time-consuming to create the samples, either because
the experimental effort is very high or because simulation times are very long. It is therefore
a central goal to reduce the number of samples as much as possible, while generating a
proficient surrogate model [39].

A prominent method that is widely used today in the field of computer-aided simula-
tion is kriging, which was developed by Krige in connection with mining and geostatis-
tics [40]. The “experiments” carried out there were on boring probes, which could only be
made in limited quantities and therefore had to be placed in the best possible way in order
to deliver the greatest possible gain in knowledge.

In contrast to so-called space-filling designs, in which the samples are distributed
evenly over the parameter space, the samples are concentrated at locations of interest
during kriging, as Figure 5 shows.
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The identification of these regions of interest, where additional experiments have to
be carried out, is usually carried out by analysing the model uncertainty, for example,
through covariances.

2.3. Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) have received a lot of attention in the last few
decades due to their attractive capabilities in the modelling of complex nonlinear systems
and decision making in addition to the advances of computing. The applications of neural
networks are numerous and include many various fields, among which is engineering.
ANNs have been used for the prediction of manufacturing systems’ performance [41],
manufacturing process costs [42], photovoltaic solar integrated system efficiencies [43],
space weather [44], outdoor sound transmission [45], stream flow [46] and wind waves [47].

In this study, we deal with modelling the fatigue experimental data of fibre-reinforced
plastics using ANNs. The objective of the ANN model is to determine missing experimental
information which would improve the accuracy of the model. Towards this end, the
available experimental data are used to train an artificial neural network (ANN) model with
one hidden layer, which gives a good approximation for continuous functions. Appropriate
error analysis techniques can be applied to identify the regions of high errors, which initiate
the need to have more experimental data in these regions.

Knowledge about the system dynamics and mapping characteristics is implicitly
stored within the network that is trained with historical input–output process data. The
input–output data for the fibre-reinforced plastics’ fatigue characteristics were collected
experimentally. The simulation model approximates the real process well, except for a few
input locations with higher error, which indicate the need for more experiments around
these conditions. The ANN model is a nonlinear functional approximation of the real
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process [48]. Neural networks were originally inspired as being models of the human
nervous system [49]. They have been shown to exhibit many abilities, such as learning,
generalization and abstraction. These networks are used as models for processes that
have input–output data available. Historical observations allow the neural network to be
trained such that the error between the real output and the estimated (neural net) output is
minimized. The model is then used for different purposes, among which are estimation,
control and optimization.

The neural net structure is shown in Figure 6. The inputs feed forward through a
hidden layer to the outputs [50]. The hidden layer contains processing units called nodes
or neurons. Each neuron is described by a nonlinear sigmoid function. The inputs are
linked to the hidden layer, which is, in turn, linked to the outputs. Each interconnection is
associated with a multiplicative parameter called weight. The input weights are associated
with the links between the inputs and the hidden layer, whereas the output weights are
associated with the links between the hidden layer and the outputs.
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In the case of available data, the stress and the orientation angle of the specimen are
the setting variables of the test, i.e., the input parameters. The result of an experiment is
the number of cycles until the specimen breaks. The influence of the input variable on
the output variable is known from experience: with increasing load and with increasing
deviation of the fibre orientation from 0◦, the survival time of a sample will decrease. A
general challenge for the use of ANNs in experimental contexts is the small number of
available data points. For this reason, the nature of the ANN is limited to just a few hidden
layers in order to avoid overfitting the data. This behaviour occurs when the number of
hidden layers is greater than the complexity of the problem [51]. In this case, a number of
hidden layers up to 5 is envisaged. The phenomenon of overfitting is also discussed, for
example, by Almeida et al. [52] who, however, noticed it with a much higher number of
hidden layers, more than 30. The ideal number of hidden layers for the problem at hand is
determined in this study.

The Matlab software version 2022a was used to implement the ANN. The uncertainty
of the model was evaluated using the least square error. Matlab initiates the weight matrix
in each run and uses the backpropagation algorithm to find the optimum weights that
will produce the best approximation of the real stress values as compared to the ANN
output. This approach will provide the combinations of input parameters for which
there is still the greatest uncertainty and for which it is suggested that further data be
obtained by experimentation. Due to good practice with the method and, above all, the
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possible comparability of the error magnitude, standardised values are used for input and
output variables.

However, the selection of further tests is subject to restrictions due to the method
of sample preparation. This means that samples of any orientation cannot be produced
one after the other. Instead, a production order must be initiated before the test series is
carried out, from which the best outcome must be achieved. Requesting samples with any
orientation is not feasible from this point of view. These restrictions must be taken into
account by the ANN. In the case of the short fibre-reinforced samples made of PBT GF30,
the orientations are 0◦, 45◦ and 90◦.

3. Results

In the following section, we want to compare the method of using an ANN in the
test design with the traditional pearl–string method. This is undertaken on the basis of
two data sets for the material PBT GF30, whose fatigue behaviour has been published in
previous work [35].

The available data were determined from a total of 34 test runs for the fibre orientations
of 0◦, 45◦ and 90◦. The resulting S-N surface is shown in Figure 7. The following table
also lists the parameters of the surfaces according to Equation (4). The results obtained
are largely consistent with those found in the literature [21,53–55]. Oka et al. also found
fatigue strengths between 100 MPa and 70 MPa for the range of 103 to 106 cycles in their
tests on PBT GF30 [55]. A very similar slope of the S-N curves for all measured orientations
was also found, for example, by Jain et al. [56,57].
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For investigations with the neural network, numerous experiments with any com-
bination of parameters would have to be carried out, which would not be possible in
real experiments. In order to enable a large number of observations, further results are
virtualised by calculation with noisy input data from the models already identified. Ran-
domised values of the parameters within their confidence interval are used for this purpose.
Equation (4) is used for implementation in Matlab, whereby the parameters σ∥, σ⊥, τ∥⊥
and b are used as random numbers in the scattering range (see Table 1).
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Table 1. Parameter values of the fatigue model for PBT GF30.

Parameter Value (Confidence Interval)

Fatigue strength, parallel direction, σ∥ 132.9 MPa (139.4 MPa, 126.3 MPa)
Fatigue strength, perpendicular direction, σ⊥ 102.3 MPa (107.0 MPa, 97.6 MPa)

Fatigue shear strength, τ∥⊥ 67.5 MPa (71.1 MPa, 63.8 MPa)
Fatigue strength exponent, b −0.057 (−0.053, −0.062)

Fatigue experimental data for the material PBT GF30 contains information about the
stress, number of cycles and fibre orientation. The inputs are the stress and fibre orientation,
whereas the output is the number of cycles endured. It is worthwhile to mention here that
for the same values of stress and fibre orientation, experiments lead to varying values of
the number of cycles, which follows a probability distribution that needs to be identified.
Due to this fact, and with the use of neural networks to model the experimental data, it
was observed that much more accurate models are obtained when the inputs are taken
as the number of cycles and fibre orientation, with the output being the stress. From a
computing point of view, the results should be acceptable as long as they can suggest the
next experimental parameters to improve the predictive performance. Furthermore, the
neural network can be reversed with the aid of optimization techniques to come back to
the original input–output setup. The optimization procedure was attempted successfully
in other various past occasions [58,59].

In total, 85% of the data patterns are used to train an artificial neural net model for
the process, whereas the remaining 15% of data patterns are used to test the performance
of the net. The data set was divided into a training region and test region as follows: the
experimental data with the indices 7, 14, 21, . . . (every seventh set) were assigned to the test
region. All other data were categorised in the training region. The ANN model was then
updated and verified with newly generated data, which improved its accuracy considerably.

Training was carried out with the software package Matlab. The two inputs and the
output were normalized to the range from 0 to 1 between the minimum and maximum
values, respectively. The normalization procedure improves the accuracy of the neural net
model. We ran experiments for different numbers of hidden neurons. It was observed that
the quality of the results depends on the number of hidden neurons. The square error, S, is
defined as

S =
1
M

M

∑
1
(ynn − yr)

2 (5)

where M is the number of data points, ynn is the neural net output and yr is the real output.
The square error for the training and test data is plotted as a function of the number of
hidden neurons in Figure 8. Note that this function shows the optimum performance for
the training and test region with four hidden neurons, where the normalized data training
and test square errors were found as 1.02 × 10−3 and 0.60 × 10−3, respectively.

The real output and the optimum (four hidden neurons) neural net approximated
output are plotted in Figure 9a for the training region and in Figure 9b for the test region.
Note that the two outputs are both very close to each other in the training region and close
enough in the test region. To demonstrate the importance of the selection of the number
of hidden neurons, the corresponding training and test modelling results for one hidden
neuron are shown in Figure 10. The performance is much worse than the optimum one
where the normalized data training and test square errors were recorded as 7.36 × 10−3

and 4.09 × 10−3, respectively.
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The results indicate the accuracy of the selected neural net. It was observed that
the highest errors in the training region occur at a very low number of cycles, with more
repetitions at the fibre orientation of 90◦. This indicates the need for more experiments in
these regions. Towards this end, one more set of experimental data including the two inputs
and output was generated using a code that was calibrated to mimic the real experiment.
The optimum neural network with four hidden neurons was retrained by adding the
generated experimental data to the training region. The normalized data training and test
square errors were reduced to about half values; namely, they were found to be 0.55 × 10−3

and 0.25 × 10−3, respectively. This substantial improvement is clear in Figure 11, where
the real output and the optimum (four hidden neurons) neural net approximated output
are plotted (a) for the training region and (b) for the test region. The followed methodology
sets a new AI technique for suggesting parameters for the next experiments to improve
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the performance of the predicting model, which saves time and money and brings in more
accuracy.
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The squared errors for the training data and test data of the different configurations of
the ANN are summarised in Table 2. The substantial improvement in the squared error, by
a factor of seven, when comparing the ANN with one hidden layer with the ANN with
four hidden layers, emphasises its suitability. The error was reduced from 7.36 × 10−3

and 4.09 × 10−3 for the training data and test data, respectively, to just 1.02 × 10−3 and
0.60 × 10−3. Adding another experiment at a point of high uncertainty, in the region of a
90◦ fibre orientation, could further improve the squared error, even approximately halving
it. The error recorded then was only 0.55 × 10−3 and 0.25 × 10−3 for the training data and
test data, respectively.
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Table 2. Summary of squared errors for the different configurations of ANN.

ANN with. . .
Squared Error for. . .

Training Data Test Data

one hidden layer 7.36 × 10−3 4.09 × 10−3

four hidden layers 1.02 × 10−3 0.60 × 10−3

four hidden layers,
additional experiments 0.55 × 10−3 0.25 × 10−3

4. Discussion and Conclusions

The artificial neural networks (ANNs) showed promising results in proposing the
parameters of the next fatigue experiments for the material PBT GF30 by observing high
error regions. The goal was achieved successfully by switching the stress input with the
number-of-cycles output, as it helped in improving the ANN’s accuracy substantially.

This considerable improvement can also be recognised by looking at Figure 12, which
shows the S-N surface in the [N, θ, σ] space, on the left-hand side for the ANN with one
hidden neuron and on the right-hand side for the optimum ANN with four neurons. It can
be seen that, even with only one neuron, the ANN can map the dependence on the fibre
orientation (θ) in the range of small cycles (N). However, for increasing numbers of cycles,
it is noticeable that only a quasi-planar surface is displayed. The S-N surface, which was
formed with the four-neuron ANN, provides a much better picture. Here, the dependence
on both the fibre orientation (θ) and the number of cycles (N) appears to be mapped over
a large range of cycles. The behaviour of the surface is striking in the range of high fibre
orientations, θ → 90◦ , and low stresses, σ. This is also the region of greatest uncertainty,
where further experiments are necessary. The region comes to be identified by regionally
high values of the squared error.
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The quality of the ANN with four neurons is also confirmed when a direct comparison
with the given model is considered, as can be seen in Figure 13. The S-N surface of the
ANN, shown in a transparent orange colour, matches the given model in large areas of the
parameter space. The points of low overlap are only found in the area that is also suggested
for carrying out further experiments.
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Figure 13. Comparison of resulting S-N surfaces from the optimum 4-neuron ANN vs. given model.

Optimization techniques can be applied to the ANN to return to the original input–
output setup. The difference in performance when switching between input and output
happened because the map is not one-to-one and the experimental data follow a probability
distribution. Even though the results presented in this paper achieve the goal of experimen-
tal improvement, the neural network’s efficiency can be further improved by incorporating
the probability distribution parameters within the inputs of the net. This study is worth
undertaking in the future, as it will give more information on the fatigue life with success
percentages. It has now been shown that the use of an ANN can make experimental design
more efficient. After this proof of concept for just a few parameters, it will be possible to
think further in the future: for example, influencing factors such as the temperature or
stress ratio can also be taken into account. There seems to be much evidence to suggest
that the use of ANNs to analyse uncertainties offers advantages. For the final modelling
of the material behaviour in an S-N surface, it still seems reasonable to rely on the robust
analytical model derived on the basis of material mechanics. Its stability, especially in
the boundary regions of the parameter space, for example, due to fixed monotonicity and
symmetry conditions, cannot be dismissed out of hand.

The main contribution to the novelty of this paper is the consideration of uncertainties
in fatigue modelling with the help of the ANN in order to specifically underpin these
areas with further experiments. It could be shown that the proposed approach works
conceptually and can and should be taken up in the future.

For further research, it seems beneficial to combine the best of the worlds of neural
networks, experimental data acquisition and analytical modelling. It will definitely be nec-
essary in future work to validate the approach found with a detailed study of experimental
investigations, possibly also with a material other than the one used here. Furthermore, it
will be of interest in the future to extend the consideration of the ANN to other parameters,
such as the temperature, the stress ratio (R) or the test frequency (f ).
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