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Abstract: Cylinder liners, considered a crucial component of internal combustion (IC) engines,
often require excellent mechanical properties to ensure optimal engine performance under elevated
temperatures, pressures, and varying loads. In this work, a new low-alloy cylinder liner, incorporating
a low content of molybdenum, copper, and chromium into gray cast iron, was fabricated using a
centrifugal casting process. Subsequently, the heat treatment processes were designed to achieve
bainite microstructures in the cylinder liner through rapid air cooling, isothermal transformation, and
tempering. The effects of different air-cooling rates and tempering temperatures on the microstructure
evolution and mechanical properties of cylinder liner were investigated. The results revealed that
during the supercooled austenite transformation process, rapid air cooling at a rate of 14.5–23.3 ◦C/s
can effectively bypass the formation of pearlitic structures and directly induce the formation of bainite
structures. Once the temperature exceeded 480–520 ◦C, hardness and tensile strength increased with
the temperature increase owing to the enhancement of the lower bainite content, the reduction of
residual austenite, and the precipitation of the fine hard carbides in the matrix. With temperatures
above 520–550 ◦C, the carbide and lower bainite organization coarsened, thereby reducing the
hardness and tensile strength of the material. Therefore, the optimal heat treatment parameters were
rapid cooling at 14.5–23.3 ◦C/s rate to obtain bainite, and tempering of 480–520 ◦C for finer and more
uniform bainite. In addition, the results of the characterization of the mechanical properties of the
cylinder liner after heat treatment showed that the hardness, tensile strength, and wear resistance
were improved with the refinement of the bainite.

Keywords: low-alloy cast bainite; heat treatment; hardness; tensile strength; wear resistance

1. Introduction

The internal combustion (IC) engine manufacturing industry plays a vital role in
achieving green development and double-carbon targets [1]. Improving thermal efficiency
is crucial to reducing carbon emissions from IC engines. However, a substantial increase in
thermal efficiency can significantly increase the engine’s burst pressure, leading to serious
deterioration of the lubrication environment. As a key component of the IC engine, the
cylinder liner can be severely worn when it directly interacts with elevated temperatures,
high-pressure gas, and the rapid movement of the piston. Therefore, excellent mechanical
properties of cylinder liners are essential to withstand harsh environments, such as high
hardness, exceptional tensile strength, and good wear resistance [2]. The cylinder liners
are manufactured by centrifugal casting and subsequently undergo heat treatment. Heat
treatment greatly affects the liners’ microstructures and mechanical properties; therefore,
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studying heat treatment parameters is decisive for developing high-performance cylinder
liners and improving the reliability and service life of IC engines [3].

Gray-cast iron is widely used in the manufacturing of cylinder liners [4]. However,
its properties do not meet the high-performance requirements of modern IC engines.
Numerous studies have been reported on improving the performance indicators of gray
cast iron. For instance, researchers have proposed using composite materials [5,6] and
applying surface modification technologies [7–12] to enhance the mechanical properties
and wear resistance of cylinder liners. However, cylinder liner materials such as boron
alloy cast iron, high-phosphorus cast iron, and vanadium–titanium cast iron have higher
wear rates [13], lower strength, and lesser wear resistance [14] due to the increased spacing
between pearlite structures in cast iron. The tensile strength of these materials is low,
with σb ranging from 200 MPa to 300 MPa and hardness from 210 HB to 260 HB. These
values do not meet the high burst pressure requirements of modern IC engines. Therefore,
the research and development of new cylinder liner materials are essential to meet high-
standard emission requirements. In this perspective, as-cast bainite is a good substitute
due to its high mechanical properties and wear resistance [15]. Substantial research has
been conducted on obtaining bainite microstructures.

Adding various alloying elements can improve the mechanical properties of gray cast
iron while satisfying the requirements of harsh working conditions [16–19]. For instance,
Zhou et al. [20] found that adding copper helps obtain austenite and bainite microstructures
through a three-step heat treatment process, improving the material’s yield and tensile
strength. Shantanu and Kuldeep [21] studied the effects of molybdenum and copper in gray
cast iron on mechanical properties. They found that by increasing the proportions of molyb-
denum and copper in gray cast iron, the material’s tensile strength and hardness increased,
and impact energy decreased. Jose et al. [22] studied the effect of different nickel contents
on bainite and found that nickel slowed down the transformation kinetics of pearlite and
ferrite phases, favoring the formation of martensite and bainite. Numerous studies have
shown that obtaining bainite through alloying improved the austempering process, thereby
obtaining the bainite’s matrix microstructures and improving its mechanical properties.
Krzysztof et al. [23] proposed a heat treatment of the medium carbon steel surface contain-
ing 20%, 40%, and 100% bainite transformation by combining bainitization and quenching
partitioning processes. Their study showed that the quenching treatment can form multi-
phase microstructures comprising nano-bainite, ultrafine martensite, and retained austenite,
thereby improving the material’s hardness and wear resistance. Bakhtiari and Ekrami [24]
investigated high-bainitic dual-phase steel and obtained different bainite morphologies
by changing the austempering temperature. They found that the samples’ yield strength,
tensile strength, and hardness quenched at 450 ◦C increased due to the formation of finer
bainite microstructures. Li et al. [25] proposed an austempering treatment process to obtain
the mixed microstructures of bainite, martensite, and retained austenite. The evolution
of bainite microstructures and its properties under different quenching parameters were
studied. Their study revealed that the material’s tensile strength, toughness, and work
hardening rate increased with the increased volume fraction of bainite. These studies
imply that adding appropriate alloying elements and adjusting heat treatment parameters
to obtain bainite microstructures can effectively improve the mechanical properties of
cylinder liners. Sarkar et al. [26] used the salt bath isothermal quenching method for heat
treatment of copper-alloyed gray cast iron to obtain bainitic cast iron microstructures. The
results showed that the hardness and tensile strength of bainitic gray cast iron increased
and decreased with the extension of isothermal hold time up to 60 min. With increasing
isothermal holding temperature, the hardness and tensile strength of the alloy decreased.
Hsu et al. [27] used isothermal quenching heat treatment to obtain bainite structures. It was
shown that the hardness values of the heat-treated bainitic gray cast iron were increased
compared to the as-cast microstructures. While the previous studies revealed the effect of
isothermal quenching parameters on the bainite microstructures and mechanical properties,
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there remains a challenge to find a suitable method for industrial production of bainitic
cylinder liners.

In this study, a new cylinder liner was manufactured by a centrifugal casting process in
industrial conditions, incorporating low levels of molybdenum, copper, and chromium into
gray cast iron. A heat treatment process was designed to obtain the bainite microstructures.
The effects of air-cooling rate, insulation, and tempering on the microstructures of cylinder
liners were studied. Experiments were conducted to evaluate liners’ hardness, tensile
strength, and wear resistance under different heat treatment parameters. The optimal heat
treatment parameters of the cylinder liner were determined through a comprehensive eval-
uation of their microstructures and performance, including a 14.5–23.3 ◦C/s air cooling rate
and a 480–520 ◦C tempering temperature. This study provides a theoretical foundation for
obtaining cylinder liners with bainite microstructures and excellent mechanical properties.

2. Materials and Methods

The chemical composition of cast iron studied in this work is presented in Table 1. The
alloying elements of molybdenum, copper, and chromium were added into the cast iron to
improve the properties of corrosion and wear resistance of cylinder liners. The fabrication
process of cylinder liners includes the centrifugal casting process and subsequent heat
treatment, as illustrated in Figure 1. Figure 2 exhibits the centrifugal casting process of
cylinder liners. The material was melted in a 500 kg medium-frequency induction furnace,
and subsequently shaped into cylinder liners using an automated horizontal centrifugal
casting machine, the ZNJZ-8 (Jinan Intelligent Technology Ltd., Jinan, China). The ironing
temperature ranged from 1480 ◦C to 1520 ◦C, the casting temperature ranged from 1420 ◦C
to 1450 ◦C, and the out-mold temperature ranged from 850 ◦C to 890 ◦C. It is noted that
the temperature of the billet after being removed from the mold depends on the cooling
time in actual production [28,29]. Previous study has shown that the incoming water
time has a great effect on the graphite morphology of cylinder liners, which often have
A-type graphite, with fatigue resistance and fewer dendritic aggregation [30], as shown in
Table 2. Therefore, experimental results of the effect of incoming water time of 15 s and
20 s, exchanging time of 25 s, 30 s, and 35 s, and reduction time of 30 s, 40 s, and 50 s on
the mold-out temperature are shown in Table 3. To austenitize the casting and increase
productivity, an incoming time of 15 s, exchanging time of 35 s, and a reduction time within
the range of 30–50 s were employed. According to the fabrication process depicted in
Figure 1, the cylinder liners, after being ejected from the mold, were rapidly cooled to
500 ◦C using compressed air, and then placed in a holding tank for heat preservation. The
temperature of the heat preservation box was maintained within a temperature range of
320–400 ◦C for 90 min. Subsequently, the cylinder liner blanks were removed and cooled to
room temperature.

Table 1. Chemical composition (wt%) of the cylinder liners.

C Mo Cu Si Mn Cr P S

2.95 0.55 0.79 2.39 0.51 0.20 0.040 0.045

Table 2. Effect of incoming water time on the graphite morphology of the cylinder liners.

Incoming Water
Time (s)

Metallographic Morphology

Graphite Types Dendrite Aggregation

5 E yes yes
10 D + A yes yes
15 50% A no no
20 50% A no no
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Table 3. The mold-out temperatures correspond to various incoming water times, exchanging times,
and reduction times.

Incoming Water
Time (s) Exchanging Time (s) Reduction Time (s) Mold-Out

Temperature (◦C)

15

25
30 932
40 925
50 911

30
30 910
40 899
50 886

35
30 890
40 876
50 868

20

25
30 912
40 895
50 882

30
30 892
40 879
50 865

35
30 876
40 865
50 855
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It is worth noting that the air-cooling rate, heat preservation process, and tempering
temperatures have an important effect on the microstructures and properties of cylinder
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liners. In this work, eight cylinder liners were fabricated using a centrifugal casting process
to investigate the influence of air-cooling rate on the microstructures and properties. The
air-cooling rates were 11.6 ◦C/s, 12.9 ◦C/s, 14.5 ◦C/s, 16.6 ◦C/s, 19.4 ◦C/s, and 23.3 ◦C/s
to test. Fourteen specimens with a size of 20 mm × 25 mm × 10.7 mm were separated
from each cylinder liner, as illustrated in Figure 3a. These specimens were prepared for
tempering treatment. Each specimen was individually heated at a rate of 160 ◦C/h to
temperatures of 250 ◦C, 300 ◦C, 350 ◦C, 400 ◦C, 450 ◦C, 500 ◦C, and 550 ◦C, respectively.
They were then held at each temperature for a duration of 2 h before being cooled down to
200 ◦C in the furnace and subsequently gradually cooled to room temperature.
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An optical metallographic microscope (Leica’s DM2500M, Wetzlar, Germany) and
scanning electron microscope EVO18 (SEM with Tungsten Filament, Zeiss, Jena, Germany)
were applied to explore the influence of air-cooling parameters, isothermal transformation,
and tempering temperatures on the microstructures of the cylinder liners. Moreover, the
microstructure composition of the cylinder liners was analyzed using Leica’s metallurgical
microscope DM2500M with analysis software Profound iron&Steel, version 8.1 of the
metallographic image analysis system. Tensile tests, hardness tests, and wear resistance
tests were employed to investigate the influence of air-cooling parameters and tempering
temperature on the properties of cylinder liners. Tensile tests were conducted at a room
temperature using a WDW-300 KN testing machine (Wintime Machinery Co., Ltd., Guilin,
China). The standard tensile specimens were machined according to GB/T228.1-2010 [31],
as depicted in Figure 3b. Hardness tests were performed using a TH608 Brinell hardness
tester (Beijing TIME High Technology Ltd., Beijing, China). Wear resistance tests were
carried out on the UMT-3 wear testing machine (BRUKER, Billerica, MA, USA). A schematic
illustration and the testing machine used in the wear tests are shown in Figure 4a,b,
respectively. The heat-treated specimens were subjected to wear resistance tests under
the following conditions: lubricant temperature of 50 ◦C, host speed of 350 r/min, and an
applied load of 20 kg for 4 h. The wear resistance of cylinder liners was evaluated through
the wear loss and wear morphologies on the surface of specimens.
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3. Results and Analyses
3.1. Effect of Heat Treatment Parameters on the Microstructure of Cylinder Liners
3.1.1. Characterization of Microstructures under Different Air-Cooling Parameters

To analyze the effect of air-cooling parameters on the microstructures of cylinder liners,
the specimens were rapidly cooled at different cooling rates and durations. Figure 5a–d
illustrate the microstructures of cylinder liners under different air-cooling parameters. It can
be seen from Figure 5a–d that during the cooling and solidification of the casting, eutectic
cluster structures were formed, and interfaces were generated between these structures.
With an increase in the cooling rate, the eutectic clusters were gradually refined and formed
feathery bainite structures. At a cooling rate of 11.6 ◦C/s, the microstructure fraction was
20% pearlite (P), 60% bainite (B), 18% austenite (A), and 2% carbide. At 12.9 ◦C/s, the
matrix organization comprised 5% P, 75% B, 18% A, and 2% carbide. When the cooling
was 14.5 ◦C/s, 16.6 ◦C/s, 19.4 ◦C/s, and 23.3 ◦C/s, at corresponding reduced cooling
times of 24 s, 21 s, 18 s, and 15 s, the microstructure fractions of cylinder liners in all
cases were 80% B, 18% A, and 2% carbide, as depicted in Figure 5e. Table 4 presents the
microstructure components corresponding to experimental air-cooling rates of 11.6 ◦C/s,
12.9 ◦C/s, 14.5 ◦C/s, 16.6 ◦C/s, 19.4 ◦C/s, and 23.3 ◦C/s, with corresponding cooling
durations of 30 s, 27 s, 24 s, 21 s, 18 s, and 15 s, respectively, for a temperature difference
of about 348 ◦C. The reason for this trend is that, after 14.5 ◦C/s, the cooling rate was
increased, and the cooling duration was shortened, causing the supercooled austenite to
bypass pearlite and undergo an as-cast bainite transformation, leading to the formation of
a microstructure predominantly characterized by bainite, austenite, and carbide.

Table 4. Microstructures obtained under different air-cooling parameters.

No. Cooling Speeds
(◦C/s) Cooling Times (s) Microstructures

1 11.6 30 20% P + 60% B + 18% A + 2% Carbide
2 12.9 27 5% P + 75% B + 18% A + 2% Carbide
3 14.5 24 80% B + 18% A + 2% Carbide
4 16.6 21 80% B + 18% A + 2% Carbide
5 19.4 18 80% B + 18% A + 2% Carbide
6 23.3 15 80% B + 18% A + 2% Carbide
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3.1.2. Characterization of Microstructures in Isothermal Transformation

The process of bainite isothermal transformation takes place in a heat preservation
box. The blank was cooled as gradually as possible in the heat preservation box, while
maintaining the temperature within the range of 320–400 ◦C, and holding it at this level
for a duration of 90 min. As observed with scanning electron microscopy in Figure 6a,b,
numerous bainite needles accumulated around the graphite sheet, with the untransformed
carbon-rich austenite film and residual austenite occupying the vacant areas between
graphite structures. The bainite needles grew from the surface of flake graphite particles,
not as incomplete bainite needles, but rather as clusters of finer bainite subunits, exhibiting
irregular distribution. This microstructure occurred when the cylinder liner entered the
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bainite transformation zone during the solidification process, and saturated ferrite nuclei
precipitated onto the flake graphite. These nuclei caused the surrounding carbon-rich
austenite to diffuse, which created a carbon-poor zone, ultimately leading to the formation
of new bainite nuclei. This process resulted in a series of nuclei gradually growing into
a bainite subunit structure, and repeated subunit growth led to the coarsening of the
bainite needles. Since bainite nucleation and growth depend on graphite organization, only
austenite remained in the spaces between the graphite particles. The presence of significant
amounts of residual austenite and the accumulation of bainite near the graphite resulted in a
coarse bainite structure with low hardness and strength, which do not meet the demanding
requirements of high-performance engines and strict waste/gas emission standards.
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Figure 6. SEM microstructures showing the isothermal transformation of cast bainite at (a) low and
(b) high magnifications.

3.1.3. Characterization of Microstructures in Tempering Process

In the process of casting cylinder liners, stress is generated, particularly after the solid
phase transformation and upon entering the elastic deformation region, due to temperature
changes. This leads to inherent inhomogeneity and angular distortion within the structure.
Furthermore, as depicted in Figure 6, the isothermal transformation process of bainite
was characterized by a coarse tissue structure, requiring tempering of the specimens to
achieve a uniform distribution of fine bainite structure. Figure 7 presents a comparison
of the microstructures of specimens before and after tempering. It is seen that tempering
resulted in a more uniformly distributed and finer needle-like bainite structure. The bainite
needles were composed of smaller clusters of bainite subunits, with dispersed thin films
of untransformed carbon-rich austenite. Post-tempering, recrystallization occurred in the
original residual austenite and bainite organization. The presence of grain boundary defects
facilitated the gradual precipitation of bainite nuclei, resulting in significant refinement of
the needle-like bainite organization.
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3.2. Effect of Heat Treatment Parameters on the Mechanical Properties of Cylinder Liners
3.2.1. Effect of Air-Cooling Parameters on Hardness and Tensile Strength

The variation in hardness and tensile strength of the specimens subjected to different
air-cooling rates is depicted in Figure 8. At a cooling rate of 11.6 ◦C/s, the average values
of hardness and tensile strength of the specimens were 258 HBS and 262 MPa, respectively,
with no observed transformation of the bainite microstructures. When the cooling rate
was increased to 12.9 ◦C/s, the average value of hardness increased to 262 HBS, and the
tensile strength increased to 315 MPa, accompanied by a transformation of the bainite
microstructures. The hardness and tensile strength of the castings continued to increase as
the cooling rate was increased further. Specifically, the average value of hardness reached
282 HBS, and the tensile strength reached 356 MPa, accompanied by an increase in the
transformation of the bainite microstructures, at an air cooling rate of 14.5 ◦C/s. Further
transformation of the bainite microstructures occurred in the range of air-cooling rates of
14.5–23.3 ◦C/s. In this range of air-cooling rates, the average hardness of the specimens
was 282.5 HBS, and the average tensile strength was 357.8 MPa. Compared with the stage
with no bainite transformation, the hardness increased by 26 HBS, and the tensile strength
increased by 97 MPa. The increase in hardness and tensile strength with a higher cooling
rate is attributed to the realization of eutectic cluster refinement, the shear resistance at
grain boundaries that inhibits bainite growth, which ultimately improves the stability of
the supercooled austenite in bainite transformation [32] (see Figure 5c,d, for instance).
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Figure 8. The variation in the average values of hardness, tensile strength, and the fraction of bainite
in the specimens subjected to different air-cooling rates.

3.2.2. Effect of Tempering Temperature on Hardness and Tensile Strength

Table 5 presents the average values of hardness and tensile strength for specimens
tempered within the range of 250–550 ◦C. The cylinder liner specimens were subjected
to tempering heat treatment at an air-cooling rate of 14.5 ◦C/s for 24 s and exhibited an
initial average hardness of 281 HBS and tensile strength of 358 MPa before tempering.
The tempering temperatures were incremented in intervals of 50 ◦C, and the hardness
and tensile strength of the specimens were measured at each tempering temperature.
The hardness and tensile strength of the cylinder liners remained relatively stable in the
temperature range of 250–350 ◦C during tempering. However, at 400 ◦C, 450 ◦C, and
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500 ◦C, there was a notable increase in the hardness and tensile strength of the specimens.
However, both the hardness and the tensile strength decreased significantly at 550 ◦C.

Table 5. Mechanical properties at tempering temperatures in the range of 250–550 ◦C.

Tempering Temperature (◦C) After Tempering

Average Hardness (HBS) Tensile Strength (MPa)

250 281 358
300 281 358
350 281 358
400 285 365
450 298 352
500 312 413
550 285 321

Figure 9 illustrates that within the tempering temperature range of 250–350 ◦C, there
was no significant change in hardness and tensile strength compared to the pre-tempered
state of the specimens. In the temperature range of 350–450 ◦C, although there was a slight
increase in hardness, the magnitude of the increase was minimal, while the tensile strength
decreased, indicating inadequate enhancement of the mechanical properties of cast bainite.
Conversely, at temperatures in the range 450–530 ◦C, both hardness and tensile strength
exhibited significant increases after tempering. However, it is important to note that within
this temperature range, there is a relatively large span of temperatures. To better specify
the range of tempering temperatures for improving the mechanical properties of cylinder
liners, the temperatures were subdivided in the range of 470–550 ◦C.
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Figure 9. The variation in hardness and tensile strength at tempering temperatures in the range of
250–550 ◦C.

Table 6 presents the average values of hardness and tensile strength of the cylinder liner
specimens at tempering temperatures ranging from 470 ◦C to 550 ◦C in 10 ◦C increments
following subdivision. Between 480 ◦C and 520 ◦C, the hardness and tensile strength of
the specimens significantly exceeded the pre-tempering levels of 281 HBS and 358 MPa,
respectively. Then, the average hardness of cast bainite was 310 HBS and the average tensile
strength was 384.8 MPa in the temperature range of 480–520 ◦C.
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Table 6. Mechanical properties at a tempering temperature range of 470–550 ◦C.

Tempering Temperature (◦C) After Tempering

Average Hardness (HBS) Tensile Strength (MPa)

470 292 358
480 309 375
490 310 378
500 312 413
510 311 379
520 308 379
530 291 362
540 283 342
550 285 321

It was interesting to observe that the maximum hardness was 312 HBS and the maxi-
mum tensile strength was 413 MPa at 500 ◦C (e.g., the highest point in Figure 10), repre-
senting an increase of 31 HBS and 55 MPa of the hardness and tensile strength, respectively,
from the pre-tempered state. By comparison with the results in reference [26], the hardness
of 266 HBS and strength of 262 MPa of bainitic gray cast iron obtained at an isothermal-
quenching 335 ◦C holding condition for 30 min were improved by 46 HBS and 151 MPa,
correspondingly. This can be attributed to an increased proportion of lower bainite (e.g.,
Figure 7b) and the presence of hard diffuse carbides with increases in tempering tempera-
ture. The increased proportion of lower bainite and the presence of hard diffuse carbides led
to adequate lower bainite transformation, reduced residual austenite content, precipitation
of fine carbides in the matrix, and a consequent increase in the hardness and tensile strength
of the casting. At temperatures in the range of 520–550 ◦C, carbide and lower-bainite struc-
tures coarsened, leading to decreased material hardness and tensile strength. In summary,
maintaining the tempering temperature in the range of 480–520 ◦C resulted in improved
mechanical properties of the specimens.
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Figure 10. The variation in hardness and tensile strength in a tempering temperature range of
470–550 ◦C.

3.2.3. Wear Testing of Heat-Treated Cylinder Liners

To further evaluate the wear resistance of the cylinder liners following heat treatment,
a test was conducted using a cylinder liner-piston ring fast wear tester to compare boron
cast iron and low-alloy bainite. Boron cast iron is widely used in the manufacture of cylin-
der liners due to its exceptional wear resistance [33]. The tensile strength of boron cast iron
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cylinder liners ranges from 260 MPa to 310 MPa, and the hardness is 200–260 HBS [29]. To
further evaluate the wear resistance of low-alloy bainite cylinder liners, the wear resistance
of cylinder liners made of boron cast iron and low-alloy bainite was compared by analyzing
wear loss and surface morphology, respectively. Both materials underwent the heat treat-
ment process outlined in this study. Then, these two different cylinder liner materials were
subjected to wear tests under the same conditions as previously mentioned. Following the
conclusion of the tests, the average performance of the two types of cylinder liner materials
was evaluated, as shown in Table 7. Wear loss in the X-X and Y-Y directions, which were
perpendicular to each other, was separately measured at the cylinder liner bore. The X-X
direction was parallel to the engine crankshaft, while the Y-Y direction was perpendicular
to it, with the cylinder liner assembly serving as the reference for the engine position. The
total average wear loss for the two materials was calculated. The boron cast iron cylinder
liner had a total average wear loss of 0.044 mm, while the low-alloy cast bainite exhibited a
total average wear loss of 0.014 mm. This signifies a reduction in wear loss of 0.03 mm.

Table 7. Wear loss for boron cast iron and low-alloy bainite cylinder liners (mm).

Wear Loss Boron Cast Iron Low-Alloy Bainite

X-X 0.022 0.022 0.023 0.005
Y-Y 0.058 0.074 0.021 0.007

Average Value 0.040 0.048 0.022 0.006
Overall

Averages 0.044 0.014

X-X values measured in the parallel crankshaft direction; Y-Y values measured in the vertical crankshaft direction;
Overall Averages = Mean of two groups/2.

Figure 11 shows surface morphologies of the boron cast iron and low-alloy cast bainite
cylinder liners after the fast grinding test. The figure illustrates that the boron cast iron
cylinder liner exhibits significant surface wear, with noticeable wear marks and small pieces
falling off. Adhesive wear is also evident (see Figure 11a). In contrast, the low-alloy cast
bainite cylinder sleeve has a relatively smooth and flat surface, with lighter wear marks
on the base body (see Figure 11b). Through analysis of the cylinder liner’s wear surface, it
was observed that the boron cast iron matrix cylinder liner generated wear debris during
the wear process. This debris underwent extrusion, forming abrasive particles with higher
hardness. These particles continuously exerted pressure on the friction pair’s surface,
leading to the occurrence of fatigue cracks and local shedding.
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Figure 11. Surface wear morphologies of boron cast iron and low-alloy cast bainite cylinder liners:
(a) boron cast iron cylinder liner; (b) low-alloy cast bainite cylinder liner.

Cast bainite cylinder liners exhibit enhanced strength and wear resistance due to
the abundance of dislocations and the dislocation substructure present in the retained
austenite. The high density of dislocations restricted their movement, thereby enhancing
the strength and wear resistance of cast bainite. Additionally, a solid solution strengthening
effect occurred as the cast bainite underwent a phase transformation process, leading to
the diffusion of carbon atoms. This resulted in the presence of oversaturated carbon in
the ferrite matrix, causing distortion resulting in a non-cubic-type crystal structure. The
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presence of carbon also increased the strength of the bainite organization through solid
solution strengthening.

4. Conclusions

This work fabricated a new low-alloy cylinder liner and investigated the heat treatment
parameters on the microstructures and mechanical properties of the fabricated cylinder liner.
The results show that the microstructures of the low-alloy cylinder liner were characterized
as bainite, austenite, and carbides after centrifugal casting, air-cooling, isothermal bainite
transformation, and tempering. The heat treatment parameters were carefully controlled to
bypass the formation of pearlite and promote the development of finer and homogeneous
bainite. To obtain the desired microstructure characteristics and enhanced mechanical
properties, the air-cooling rate was optimized within the range of 14.5–23.3 ◦C/s, and the
tempering temperature was controlled within the range of 480–520 ◦C. The resulting speci-
mens of the cylinder liner exhibited tensile strength of 413 MPa and average hardnesses of
312 HBS. In addition, the low-alloy bainite cylinder liner showed greater wear resistance
when compared to the boron cast iron liner. This work provides a cost-effective alterna-
tive to conventional cylinder liners and supports the requirements of practical industrial
production applications.
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