Fluorinated TiO2 Hollow Spheres for Detecting Formaldehyde under UV Irradiation
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of the F-TiO2 Hollow Spheres
2.2. Characterizations
2.3. Sensor Fabrication and Electrical Measures
3. Results and Discussion
3.1. Morphological and Structural Characteristics of Sensing Materials
3.2. Electrical Measurements and Gas-Sensing Properties
3.3. Gas-Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walker, J.M.; Akbar, S.A.; Morris, P.A. Synergistic effects in gas sensing semiconducting oxide nanoheterostructures: A review. Sens. Actuators B Chem. 2019, 286, 624–640. [Google Scholar] [CrossRef]
- Wang, P.; Zheng, Z.; Cheng, X.; Sui, L.; Gao, S.; Zhang, X.; Xu, Y.; Zhao, H.; Huo, L. Ionic liquid-assisted synthesis of α-Fe2O3 mesoporous nanorod arrays and their excellent trimethylamine gas-sensing properties for monitoring fish freshness. J. Mater. Chem. A 2017, 5, 19846–19856. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, S.; Huang, B.; Wang, N.; Li, X. UV-enhanced formaldehyde sensor using hollow In2O3@TiO2 double-layer nanospheres at room temperature. ACS Appl. Mater. Interfaces 2023, 15, 4329–4342. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Wang, Y. Humidity activated ionic-conduction formaldehyde sensing of reduced graphene oxide decorated nitrogen-doped MXene/titanium dioxide composite film. Sens. Actuators B Chem. 2020, 323, 128695. [Google Scholar] [CrossRef]
- Wang, T.S.; Jiang, B.; Yu, Q.; Kou, X.Y.; Sun, P.; Liu, F.M.; Lu, H.Y.; Yan, X.; Lu, G.Y. Realizing the Control of Electronic Energy Level Structure and Gas-Sensing Selectivity over Heteroatom-Doped In2O3 Spheres with an Inverse Opal Microstructure. ACS Appl. Mater. Interfaces 2019, 11, 9600–9611. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, J.; Yao, P. Formaldehyde sensing properties of electrospun NiO-doped SnO2 nanofibers. Sens. Actuators B Chem. 2011, 156, 723–730. [Google Scholar] [CrossRef]
- Ueda, T.; Matsuo, T.; Hyodo, T.; Shimizu, Y. Effects of heat treatments of Pt-loaded Al2O3 on catalytic activities of CO oxidation and combustion-type CO sensors. J. Mater. Sci. 2023, 58, 9459–9472. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, Y.; Gopalan, S.; Luo, F.; Amreen, K.; Singh, R.K.; Goel, S.; Lin, Z.; Naidu, R. Review and Perspective: Gas Separation and Discrimination Technologies for Current Gas Sensors in Environmental Applications. ACS Sens. 2023, 8, 1373–1390. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.; Wang, W.; Yang, S.; Lee, K. Development of SAW-based multi-gas sensor for simultaneous detection of CO2 and NO2. Sens. Actuators B Chem. 2011, 154, 9–16. [Google Scholar] [CrossRef]
- Xu, K.; Ha, N.; Hu, Y.; Ma, Q.; Chen, W.; Wen, X.; Ou, R.; Trinh, V.; McConville, C.F.; Zhang, B.Y.; et al. A room temperature all-optical sensor based on two-dimensional SnS2 for highly sensitive and reversible NO2 sensing. J. Hazard. Mater. 2022, 426, 127813. [Google Scholar] [CrossRef] [PubMed]
- Qi, P.; Xu, Z.; Zhang, T.; Fei, T.; Wang, R. Chitosan wrapped multiwalled carbon nanotubes as quartz crystal microbalance sensing material for humidity detection. J. Colloid Interface Sci. 2020, 560, 284–292. [Google Scholar] [CrossRef]
- Li, X.; Sun, S.; Wang, N.; Huang, B.; Li, X. SnTe/SnSe heterojunction based ammonia sensors with excellent withstand to ambient humidities. Small 2023, 2309831. [Google Scholar] [CrossRef]
- Proença, M.; Rodrigues, M.S.; Moura, C.; Machado, A.V.; Borges, J.; Vaz, F. Nanoplasmonic Au: CuO thin films functionalized with APTES to enhance the sensitivity of gas sensors. Sens. Actuators B Chem. 2024, 401, 134959. [Google Scholar] [CrossRef]
- Pusch, A.; De Luca, A.; Oh, S.S.; Wuestner, S.; Roschuk, T.; Chen, Y.; Boual, S.; Ali, Z.; Phillips, C.C.; Hong, M.; et al. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices. Sci. Rep. 2015, 5, 17451. [Google Scholar] [CrossRef]
- Qin, J.; Jiang, S.; Wang, Z.; Cheng, X.; Li, B.; Shi, Y.; Tsai, D.P.; Liu, A.Q.; Huang, W.; Zhu, W. Metasurface micro/nano-optical sensors: Principles and applications. ACS Nano 2022, 16, 11598–11618. [Google Scholar] [CrossRef]
- Bogue, R. Detecting Gases with Light: A Review of Optical Gas Sensor Technologies. Sens. Rev. 2015, 35, 133–140. [Google Scholar] [CrossRef]
- Tabassum, R.; Kant, R. Recent trends in surface plasmon resonance based fiber–optic gas sensors utilizing metal oxides and carbon nanomaterials as functional entities. Sens. Actuators B Chem. 2020, 310, 127813. [Google Scholar] [CrossRef]
- Guner, H.; Ozgur, E.; Kokturk, G.; Celik, M.; Esen, E.; Topal, A.E.; Ayas, S.; Uludag, Y.; Elbuken, C.; Dana, A. A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sens. Actuators B Chem. 2017, 239, 571–577. [Google Scholar] [CrossRef]
- Pei, Z.; Balitskiy, M.; Thalman, R.; Kelly, K.E. Laboratory Performance Evaluation of a Low-Cost Electrochemical Formaldehyde Sensor. Sensors 2023, 23, 7444. [Google Scholar] [CrossRef]
- Shi, Y.; Li, X.; Sun, X.; Shao, X.; Wang, H. Strategies for improving the sensing performance of In2O3-based gas sensors for ethanol detection. J. Alloys Compd. 2023, 963, 171190. [Google Scholar] [CrossRef]
- Huang, B.Y.; Zhang, Z.X.; Zhao, C.H.; Cairang, L.M.; Bai, J.L.; Zhang, Y.X.; Mu, X.M.; Du, J.W.; Wang, H.; Pan, X.J.; et al. Enhanced gas-sensing performance of ZnO@In2O3 core@shell nanofibers prepared by coaxial electrospinning. Sens. Actuators B Chem. 2018, 255, 2248–2257. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, T.; Pei, W.; Li, F.; Yang, Y.; Yu, H.; Dong, X. One-step fabrication of TiO2@polyoxometalates@α-Fe2O3 one-dimensional tandem heterojunctions for conductometric acetone sensors. Sens. Actuators B Chem. 2023, 378, 133088. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, L.; Liu, Y.; Liu, F.; Liang, X.; Liu, F.; Gao, Y.; Yan, X.; Lu, G. UV-activated ultrasensitive and fast reversible ppb NO2 sensing based on ZnO nanorod modified by constructing interfacial electric field with In2O3 nanoparticles. Sens. Actuators B Chem. 2020, 305, 127498. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, L.; Huang, B.; Li, X. Enhanced sensing performance of Au-decorated TiO2 nanospheres with hollow structure for formaldehyde detection at room temperature. Sens. Actuators B Chem. 2022, 358, 131465. [Google Scholar] [CrossRef]
- Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuator A Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Park, S.H.; An, S.Y.; Ko, H.S.; Lee, S.M.; Lee, C.M. Synthesis, structure, and UV-enhanced gas sensing properties of Au-functionalized ZnS nanowires. Sens. Actuators B Chem. 2013, 188, 1270–1276. [Google Scholar] [CrossRef]
- Wang, H.; Dai, M.; Li, Y.; Bai, J.; Liu, Y.; Li, Y.; Wang, C.; Liu, F.; Lu, G. The influence of different ZnO nanostructures on NO2 sensing performance. Sens. Actuators B Chem. 2021, 329, 129145. [Google Scholar] [CrossRef]
- Espid, E.F. Taghipour Development of highly sensitive ZnO/In2O3 composite gas sensor activated by UV-LED. Sens. Actuators B Chem. 2017, 241, 828–839. [Google Scholar] [CrossRef]
- Zhou, Y.; Zou, C.; Lin, X.; Guo, Y. UV light activated NO2 gas sensing based on Au nanoparticles decorated few-layer MoS2 thin film at room temperature. Appl. Phys. Lett. 2018, 113, 082103. [Google Scholar] [CrossRef]
- Li, G.; Sun, Z.; Zhang, D.; Xu, Q.; Meng, L.; Qin, Y. Mechanism of sensitivity enhancement of a ZnO nanofilm gas sensor by UV light illumination. ACS Sensors 2019, 4, 1577–1585. [Google Scholar] [CrossRef]
- Li, Z.J.; Yan, S.N.; Zhang, S.C.; Wang, J.Q.; Shen, W.Z.; Wang, Z.G.; Fu, Y.Q. Ultra-Sensitive UV and H2S Dual Functional Sensors Based on Porous In2O3 Nanoparticles Operated at Room Temperature. J. Alloys Compd. 2019, 770, 721–731. [Google Scholar] [CrossRef]
- Zhang, S.; Lei, T.; Li, D.; Zhang, G.; Xie, C. UV light activation of TiO2 for sensing formaldehyde: How to be sensitive, recovering fast, and humidity less sensitive. Sens. Actuators B Chem. 2014, 202, 964–970. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Wang, J.; Lin, S. Highly sensitive and selective room-temperature formaldehyde sensors using hollow TiO2 microspheres. Sens. Actuators B Chem. 2015, 219, 158–163. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Xie, C.; Wu, J.; Zeng, D.; Liao, Y. A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature. Ceram. Int. 2012, 38, 503–509. [Google Scholar] [CrossRef]
- Oguchiand, T.; Fujishima, A. Photocatalytic degradation of gaseous formaldehyde using TiO2 film. Environ. Sci. Tech. 1998, 32, 3831–3833. [Google Scholar]
- Xu, C.; Yang, W.; Guo, Q.; Dai, D.; Minton, T.K.; Yang, X. Photoinduced decomposition of formaldehyde on a TiO2 (1 1 0) surface, assisted by bridge-bonded oxygen atoms. J. Phys. Chem. Lett. 2013, 4, 2668–2673. [Google Scholar]
- Im, J.S.; Kang, S.C.; Bai, B.C.; Bae, T.; In, S.J.; Jeong, E.; Lee, S.; Lee, Y. Thermal fluorination effects on carbon nanotubes for preparation of a high-performance gas sensor. Carbon 2011, 49, 2235–2244. [Google Scholar] [CrossRef]
- Park, M.; Kim, K.H.; Kim, M.; Lee, Y. NH3 gas sensing properties of a gas sensor based on fluorinated graphene oxide. Colloids Surf. A Physicochem. Eng. Asp. 2016, 490, 104–109. [Google Scholar] [CrossRef]
- Xiang, Q.; Lv, K.; Yu, J. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (0 0 1) facets for the photocatalytic degradation of acetone in air. Appl. Catal. B 2010, 96, 557–564. [Google Scholar] [CrossRef]
- Yu, J.; Wang, W.; Cheng, B.; Su, B. Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment. J. Phys. Chem. C 2009, 113, 6743–6750. [Google Scholar] [CrossRef]
- Mrowetz, M.; Selli, E. Enhanced photocatalytic formation of hydroxyl radicals on fluorinated TiO2. Phys. Chem. Chem. Phys. 2005, 7, 1100–1102. [Google Scholar] [CrossRef]
- Mrowetz, M.; Selli, E. H2O2 evolution during the photocatalytic degradation of organic molecules on fluorinated TiO2. New J. Chem. 2006, 30, 108–114. [Google Scholar] [CrossRef]
- Tiemann, M. Porous metal oxide as gas sensors. Chem. Eur. J. 2007, 13, 8376–8388. [Google Scholar] [CrossRef]
- Lee, J.H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuators B Chem. 2009, 140, 319–336. [Google Scholar] [CrossRef]
- Seo, M.-H.; Yuasa, M.; Kida, T.; Huh, J.-S.; Yamazoe, N.; Shimanoe, K. Microstructure control of TiO2 nanotubular films for improved VOC sensing. Sens. Actuators B Chem. 2011, 154, 251–256. [Google Scholar] [CrossRef]
- Mintcheva, N.; Srinivasan, P.; Rayappan, J.B.B.; Kuchmizhak, A.A.; Gurbatov, S.; Kulinich, S.A. Room-temperature gas sensing of laser-modified anatase TiO2 decorated with Au nanoparticles. Appl. Surf. Sci. 2020, 507, 145169. [Google Scholar] [CrossRef]
- Tshabalala, Z.P.; Shingange, K.; Dhonge, B.P.; Ntwaeaborwa, O.M.; Mhlongo, G.H.; Motaung, D.E. Fabrication of ultra-high sensitive and selective CH4 room temperature gas sensing of TiO2 nanorods: Detailed study on the annealing temperature. Sens. Actuators B Chem. 2017, 238, 402–419. [Google Scholar] [CrossRef]
- Kruse, N.; Chenakin, S. XPS characterization of Au/TiO2 catalysts: Binding energy assessment and irradiation effects. Appl. Catal. A Gen. 2011, 391, 367–376. [Google Scholar] [CrossRef]
- Maziarz, W. TiO2/SnO2 and TiO2/CuO thin film nano-heterostructures as gas sensors. Appl. Surf. Sci. 2019, 480, 361–370. [Google Scholar] [CrossRef]
- Luo, L.; Yang, Y.; Zhang, A.; Wang, M.; Liu, Y.; Bian, L.; Jiang, F.; Pan, X. Hydrothermal synthesis of fluorinated anatase TiO2/reduced graphene oxide nanocomposites and their photocatalytic degradation of bisphenol A. Appl. Surf. Sci. 2015, 353, 469–479. [Google Scholar] [CrossRef]
- Udo, W.; Wolfgang, G. AC Measurements on Tin Oxide Sensors to Improve Selectivities and Sensitivities. Sens Actuators B Chem. 1995, 26, 13–18. [Google Scholar]
- Bârsan, N.; Weimar, U. Understanding the Fundamental Principles of Metal Oxide Based Gas Sensors; the Example of CO Sensing with SnO2 Sensors in the Presence of Humidity. J. Phys. Condens. Matter 2003, 15, R813. [Google Scholar] [CrossRef]
- Joshi, N.; da Silva, L.F.; Jadhav, H.S.; Shimizu, F.M.; Suman, P.H.; M’Peko, J.C.; Orlandi, M.O.; Seo, J.G.; Mastelaro, V.R.; Oliveira, O.N. Yolk-Shelled ZnCo2O4 Microspheres: Surface Properties and Gas Sensing Application. Sens Actuators B Chem. 2018, 257, 906–915. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Arés, L.; Horillo, M.; Sayago, I.; Agapito, J.; López, L. Use of Complex Impedance Spectroscopy in Chemical Sensor Characterization. Sens. Actuators B Chem. 1991, 4, 359–363. [Google Scholar] [CrossRef]
- Hyodo, T.; Baba, Y.; Wada, K.; Shimizu, Y.; Egashira, M. Hydrogen Sensing Properties of SnO2 Varistors Loaded with SiO2 Surface Chemical Modification with Diethoxydimethylsilane. Sens. Actuators B Chem. 2000, 64, 175–181. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; Dutta, P.K.; Wang, J. Room Temperature Impedance Spectroscopy-Based Sensing of Formaldehyde with Porous TiO2 under UV Illumination. Sens. Actuators B Chem. 2013, 185, 1–9. [Google Scholar] [CrossRef]
- Mu, J.; Chen, B.; Zhang, M.; Guo, Z.; Zhang, P.; Zhang, Z.; Sun, Y.; Shao, C.; Liu, Y. Enhancement of the visible-light photocatalytic activity of In2O3–TiO2 nanofiber heteroarchitectures. ACS Appl. Mater. Interfaces 2012, 4, 424–430. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.J.; Ye, Q.; Cinke, M.; Han, J.; Meyyappan, M. Carbon Nanotube Sensors for Gas and Organic Vapor Detection. Nano Lett. 2003, 3, 929–933. [Google Scholar] [CrossRef]
- Van Duy, L.; Nguyet, T.T.; Hung, C.M.; Le, D.T.T.; Van Duy, N.; Hoa, N.D.; Biasioli, F.; Tonezzer, M.; Natale, C.D. Ultrasensitive NO2 gas sensing performance of two dimensional ZnO nanomaterials: Nanosheets and nanoplates. Ceram. Int. 2021, 47, 28811–28820. [Google Scholar] [CrossRef]
- Liu, Q.; Fan, S.; Fu, L.; Liu, C.; Xu, J.; Tang, W. Carbon quantum dot modified electrospun TiO2 nanofibers for flexible formaldehyde gas sensor under UV illumination at room temperature. Diam. Relat. Mater. 2023, 140, 110542. [Google Scholar] [CrossRef]
- Tang, X.; Raskin, J.P.; Lahem, D.; Krumpmann, A.; Decroly, A.; Debliquy, M. A formaldehyde sensor based on molecularly-imprinted polymer on a TiO2 nanotube array. Sensors 2017, 17, 675. [Google Scholar] [CrossRef]
- Wu, G.Q.; Zhang, J.W.; Wang, X.Y.; Liao, J.J.; Xia, H.; Akbar, S.A.; Li, J.B.; Lin, S.W.; Li, X.G.; Wang, J. Hierarchical Structured TiO2 Nano-Tubes for FormaldehydeSensing. Ceram.Int. 2012, 38, 6341–6347. [Google Scholar] [CrossRef]
- Chen, K.Q.; Pi, M.Y.; Zhang, D.K. Ultraviolet irradiation enhanced formaldehyde-sensing performance based on SnO2@TiO2 nanofiber heteroarchitectures. J. Phys. Appl. Phys. 2020, 53, 125301. [Google Scholar] [CrossRef]
- Wagner, T.; Kohl, C.D.; Morandi, S.; Malagù, C.; Donato, N.; Latino, M.; Neri, G.; Tiemann, M. Photoreduction of mesoporous In2O3: Mechanistic model and utility in gas sensing. Chem. A Eur. J. 2012, 18, 8216–8223. [Google Scholar] [CrossRef]
- Wang, Z.; Men, G.; Zhang, R.; Gu, F. Dongmei Han Pd loading induced excellent NO2 gas sensing of 3DOM In2O3 at room temperature. Sens. Actuators B Chem. 2018, 263, 218–228. [Google Scholar] [CrossRef]
- Comini, E.; Ottini, L.; Faglia, G.; Sberveglieri, G. SnO2 RGTO UV Activation for CO Monitoring. IEEE Sens. J. 2004, 4, 17–20. [Google Scholar] [CrossRef]
- Fan, S.W.; Srivastava, A.K.; Dravid, V.P. UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 2009, 95, 2007–2010. [Google Scholar] [CrossRef]
- Pan, J.H.; Zhang, X.; Du, A.J.; Sun, D.D.; Leckie, J.O. Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. J. Am. Chem. Soc. 2008, 130, 11256–11257. [Google Scholar] [CrossRef]
HCHO Conc. | R1 | R2 | CPE1-T | CPE1-P |
---|---|---|---|---|
Air | 5235 | 2.21 × 107 | 2.46 × 10−11 | 0.977 |
0.5 ppm | 5187 | 2.08 × 107 | 2.27 × 10−11 | 0.961 |
1 ppm | 5123 | 1.73 × 107 | 1.82 × 10−11 | 0.960 |
5 ppm | 5098 | 1.60 × 107 | 1.47 × 10−11 | 0.973 |
10 ppm | 4892 | 1.48 × 107 | 9.35 × 10−12 | 0.959 |
Sensing Material | Temp. (°C) | Res. | Conc. (ppm) | Detection Limit (ppm) | Res./Recov. Time (s) | Ref. |
---|---|---|---|---|---|---|
TiO2 nanofibers | RT | 1.41 | 10 | 10 | 135/85 | 60 |
CQD/TiO2 nanofibers | RT | 1.62 | 0.5 | 0.5 | 45/60 | 60 |
MIP/TiO2 NTA | RT | 13% | 1 | 1 | 300/300 | 61 |
TiO2 (nanotube) | RT | 2.3 | 50 | 10–50 | 180/120 | 62 |
Au/TiO2 | RT | 8.5 | 5 | 0.1 | 36/110 | 24 |
SnO2@TiO2 | 240 | 18.3 | 100 | 5 | 13/9 | 63 |
F-TiO2-0.3 | RT | 1.56 | 10 | 0.5 (LOD: 0.0185 ppm) | 56/64 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Huang, B.; Li, X.; Yang, C.; Zhao, W.; Xie, X.; Wang, N.; Li, X. Fluorinated TiO2 Hollow Spheres for Detecting Formaldehyde under UV Irradiation. Materials 2024, 17, 904. https://doi.org/10.3390/ma17040904
Zhang J, Huang B, Li X, Yang C, Zhao W, Xie X, Wang N, Li X. Fluorinated TiO2 Hollow Spheres for Detecting Formaldehyde under UV Irradiation. Materials. 2024; 17(4):904. https://doi.org/10.3390/ma17040904
Chicago/Turabian StyleZhang, Jianwei, Baoyu Huang, Xinlei Li, Chao Yang, Wenzhuo Zhao, Xiuhua Xie, Nan Wang, and Xiaogan Li. 2024. "Fluorinated TiO2 Hollow Spheres for Detecting Formaldehyde under UV Irradiation" Materials 17, no. 4: 904. https://doi.org/10.3390/ma17040904
APA StyleZhang, J., Huang, B., Li, X., Yang, C., Zhao, W., Xie, X., Wang, N., & Li, X. (2024). Fluorinated TiO2 Hollow Spheres for Detecting Formaldehyde under UV Irradiation. Materials, 17(4), 904. https://doi.org/10.3390/ma17040904