Analysis of the Uniformity of Mechanical Properties along the Length of Wire Rod Designed for Further Cold Plastic Working Processes for Selected Parameters of Thermoplastic Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characteristics of the Wire Rod Rolling Process—Main Process Parameters of Thermoplastic Processing
2.3. Methods
2.4. Numerical Modelling—Mathematical Model of QTSteel® Software
3. Results and Discussion
3.1. Numerical Modelling Results—QTSteel® Software
3.2. Physical Modelling Results—Multi-Sequence Non-Free Torsion—STD 812 Torsion Plastometer
3.3. Thermovision Investigation Results—ThermaCAM SC640 Thermovision Camera
3.4. Mechanical Properties Test Results and Upsetting Tests Results along Wire Rod Length—Zwick Z/100 Testing Machine
3.5. Results of Metallographic and Hardness Tests of the Wire Rod along Its Length—Nikon Eclipse MA 200 Microscope, FM 700 Microhardness Tester
4. Conclusions
- Based on the analysis of the microstructure of 20MnB4 steel samples after physical modeling of the wire rod rolling process, it was determined that in all analyzed technological variants, the material after hardening had a martensitic structure throughout its mass with some residual autenite (not exceeding 4%). Since no other phases were identified in the test samples, it can be concluded that under real conditions (in all the analyzed variants), the tested steel was deformed in the RSM rolling block in a single-phase (austenitic) state.
- Statistical processing of the obtained test results and analysis of the normal distributions of the technological variants of the wire rod rolling process analyzed in this study showed some nonuniformity of the analyzed mechanical properties along the length of the finished product.
- One of the factors causing the nonuniformity of mechanical properties along the wire rod length is the different coil temperatures during the cooling of the wire rod, resulting from their characteristic arrangement on the roller conveyor—spiral.
- For the analyzed thermoplastic processing parameters, increasing the rolling temperature in the RSM block from 800 °C (V1) to 850 °C (V2) and increasing the cooling rate to 10 °C/s (V3) resulted in an improved combination of the analyzed mechanical properties.
- Under the analyzed thermoplastic processing conditions, wire rods produced according to technological variant V3 showed the lowest microstructure variation.
- Increasing the cooling rate in the STELMOR® line in the V3 variant (despite the higher temperature of the rolled material in the RSM rolling block) resulted in greater fragmentation in the microstructure on the longitudinal section of the finished product by about 18% compared with the V2 variant and by about 50% compared with the V1 variant.
- In the studied range of thermoplastic processing parameters, the observed nonuniformity of mechanical properties along the length of the 5.5 mm diameter wire rod of 20MnB4 steel does not adversely affect the capacity for further cold-forming, which has been confirmed by upsetting tests with a relative plastic strain of up to 75%.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorbanev, A.A.; Zhuchkov, S.M.; Filippov, V.V.; Timoshpolskij, V.I.; Steblov, A.B.; Junakov, A.M.; Tishhenko, V.A. Theoretical and Technological Basis of High Speed Wire Rod Production; Izdatelstvo Vyshehjshaja Shkola (College Publishing House): Minsk, Belarus, 2003. [Google Scholar]
- Zhang, H.; Feng, G.; Wang, B.; Liu, X.; Liu, X. Influence of Temperature Uniformity of Billet before Rolling on Microstructure and Properties of Hot Rolled Rebar. J. Phys. Conf. Ser. 2019, 1213, 052021. [Google Scholar] [CrossRef]
- Dyja, H.; Mróz, S.; Sygut, P.; Sygut, M. Technology and Modelling of the Rolling Process of Round Bars with Narrowed Dimensional Tolerance; Publishing House of the Faculty of Process Engineering, Materials and Applied Physics of the Czestochowa University of Technology: Czestochowa, Poland, 2012. [Google Scholar]
- Jain, I.; Lenka, S.; Ajmani, S.; Kundu, S. An Approach to Heat Transfer Analysis of Wire Loops Over the Stelmor Conveyor to Predict the Microstructural and Mechanical Attributes of Steel Rods. J. Therm. Sci. Eng. Appl. 2016, 8, 021019-1. [Google Scholar] [CrossRef]
- Hwang, J.-K. Effect of Contact Point of Wire Ring on Cooling Behavior during Stelmor Cooling. Materials 2022, 15, 8262. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.J.; Lin, Y.Y. A novel temperature diagnostic system for Stelmor air-cooling of wire rods. China Steel Tech. Rep. 2022, 25, 66–72. [Google Scholar]
- Lambert, N.; Wilmotte, S.; Economopoulos, M. Improving the Properties of Wire by Suppressing the Recalescence on a Stelmor Conveyor, Technical Steel Research, Mechanical Working; Contract No. 7210.EA/2/205; Commission of the European Communities: Brussels, Luxembourg, 1983.
- Lindemann, A.; Schmidt, J. ACMOD-2D—A heat transfer model for the simulation of the cooling of wire rod. J. Mater. Process. Technol. 2005, 169, 466–475. [Google Scholar] [CrossRef]
- Morales, R.D.; Lopéz, A.G.; Olivares, I.M. Mathematical simulation of Stelmor process. Ironmak. Steelmak. 1991, 18, 128–138. [Google Scholar]
- Viéitez, I.; López-Cancelos, R.; Martín, E.B.; Varas, F. Predictive model of wire rod cooling. In Proceedings of the 28th ASM Heat Treating Society Conference, Detroit, MI, USA, 20–22 October 2015; pp. 518–524. [Google Scholar]
- Vincent, J.C.; Kiefer, B.V. Modernization of Stelmor conveyor systems for expanded process capability and improved product quality. Wire J. Int. 2004, 37, 158–161. [Google Scholar]
- Yu, W.H.; Chen, S.H.; Kuang, Y.H.; Cao, K.C. Development and application of online Stelmor controlled cooling system. Appl. Therm. Eng. 2009, 29, 2949–2953. [Google Scholar] [CrossRef]
- Morgan Stelmor Controlled Cooling Conveyor System—The Most Effective Cooling Conveyor on the Market; Brochure No.: T06-0-N175-L2-P-V1-EN; Primetals Technologies USA LLC: Canonsburg, PA, USA, 2020.
- Grosman, F.; Woźniak, D. Aspects of Rolling Wire Rod from Modern Steel. Metall.-Metall. News 2002, 69, 408–414. [Google Scholar]
- Kazeminezhad, M.; Karimi Taheri, A. The effect of controlled cooling after hot rolling on the mechanical properties of a commercial high carbon steel wire rod. Mater. Des. 2003, 24, 415–421. [Google Scholar] [CrossRef]
- Knapiński, M.; Koczurkiewicz, B.; Dyja, H.; Kawałek, A.; Laber, K. The analysis of influence production conditions on properties C70D 5,5 mm diameter wire rod. In Proceedings of the 23rd International Conference on Metallurgy and Materials–METAL 2014, Brno, Czech Republic, 21–23 May 2014. [Google Scholar]
- Koczurkiewicz, B.; Dyja, H.; Niewielski, G. The influence of cooling conditions on perlite morphology of high carbon wire rods. In Proceedings of the 24th International Conference on Metallurgy and Materials–METAL 2015, Brno, Czech Republic, 3–5 June 2015; pp. 699–703. [Google Scholar]
- Kuc, D.; Szala, J.; Bednarczyk, I. Influence of Rolling Temperature on the Properties and Microstructure of C70D Steel Intended for Wire Rod. Metall.-Metall. News 2016, 83, 348–350. [Google Scholar]
- Laber, K.; Dyja, H.; Koczurkiewicz, B. Analysis of the industrial conditions of the multi-stage cooling process of the 5.5 mm in diameter wire rod of C70D high-carbon steel. Mater. Test. 2015, 57, 301–305. [Google Scholar] [CrossRef]
- Majta, J.; Łuksza, J.; Bator, A.; Szynal, H. Microalloyed steel wire rod for subsequent cold forming. Metall.-Metall. News. 2003, 3, 95–103. [Google Scholar]
- Niewielski, G.; Kuc, D.; Hadasik, E.; Bednarczyk, I. Influence of hot working and cooling conditons on the microstructure and properties of C70D steel for wire rod. In Proceedings of the 26th International Conference on Metallurgy and Materials–METAL 2017, Brno, Czech Republic, 24–26 May 2017; pp. 490–495. [Google Scholar]
- Kuc, D.; Niewielski, G.; Bednarczyk, I.; Schindler, I. Influence of rolling temperature and cooling conditions on 23MnB4 steel properties and microstructure designed for cold upsetting. Metall.-Metall. News 2016, 9, 413–416. [Google Scholar] [CrossRef]
- Kuc, D.; Niewielski, G.; Schindler, I.; Bednarczyk, I. Influence of rolling temperature and cooling conditions on the properties and microstructure of steel 23MnB4 for cold-heading. In Proceedings of the 25th Anniversary International Conference on Metallurgy and Materials–METAL 2016, Brno, Czech Republic, 25–27 May 2016; pp. 452–457. [Google Scholar]
- Kuc, D.; Szala, J.; Bednarczyk, I. Quantitative evaluation of the microstructure and mechanical properties of hot rolled 23MnB4 steel grade for cold upsetting. Arch. Metall. Mater. 2017, 62, 551–556. [Google Scholar] [CrossRef]
- Woźniak, D.; Garbarz, B.; Żak, A.; Marcisz, J.; Adamczyk, M.; Walnik, B. Determination of The Values of Microstructural and Mechanical Parameters of a Pearlitic 0.7%C-0.60/0.70%Mn Steel Wire Rod Enabling to Achieve High Ability to Drawing with the Use of Large Cross Section Reduction. J. Met. Mater. 2019, 71, 16–24. [Google Scholar] [CrossRef]
- Koczurkiewicz, B.; Dyja, H.; Kawałek, A.; Stefanik, A. Modeling of Microstructure Changes of C70D Wire Rod. Sovremennye Metody i Tekhnologii Sozdanija i Obrabotki Materialov: Minsk, Belarus, 2016; pp. 76–82. [Google Scholar]
- Koczurkiewicz, B.; Stefanik, A.; Laber, K. The model of austenite microstructure of high-carbon steel. In Proceedings of the 25th Anniversary International Conference on Metallurgy and Materials–METAL 2016, Brno, Czech Republic, 25–27 May 2016. [Google Scholar]
- Stradomski, G. Modelling of Microstructure Development Processes during Thermoplastic Treatment of Round Bars Made of S355J0 Steel Grade; Metallurgy, New technologies and Achievements, Collected monograph; Dyja, H., Ed.; Publishing House of the Faculty of Process Engineering, Materials and Applied Physics of the Czestochowa University of Technology: Czestochowa, Poland, 2009; pp. 53–77. ISSN 2080-2072. ISBN 978-83-87745-13-4. [Google Scholar]
- PN-EN 10263-4:2004; Wire Rod, Rods and Wire for Upsetting and Cold Extrusion. Part 4: Technical Delivery Conditions for Steel for Heat Treatment. Polish Committee for Standardization: Warsaw, Poland, 2004.
- Laber, K. New Aspects of Wire Rod Production from Steel for Cold Heading; Series: Monograph No. 79; Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology Publishing House: Czestochowa, Poland, 2018; ISBN 978-83-63989-64-4. ISSN 2391-632X. [Google Scholar]
- Laber, K.; Knapiński, M. Determining conditions for thermoplastic processing guaranteeing receipt of high-quality wire rod for cold upsetting using numerical and physical modelling methods. Materials 2020, 13, 711. [Google Scholar] [CrossRef] [PubMed]
- Laber, K. Innovative Methodology for Physical Modelling of Multi-Pass Wire Rod Rolling with the Use of a Variable Strain Scheme. Materials 2023, 16, 578. [Google Scholar] [CrossRef] [PubMed]
- Dobrzański, L.A. Metal Science with the Basics of Materials Science; Scientific and Technical Publishers: Warsaw, Poland, 1996. [Google Scholar]
- Kajzer, S.; Kozik, R.; Wusatowski, R. Rolling of Long Products. Rolling Technologies; Silesian University of Technology Publishing House: Gliwice, Poland, 2004. [Google Scholar]
- PN-EN 10025; Hot Rrolled Products of Non-Alloy Constructional Steels. Technical Conditions of Delivery. Polish Committee for Standardization: Warsaw, Poland, 2002.
- Paduch, J.; Szulc, W. (Eds.) Shaping New Qualities and Rationalizing of the Steel Products Production Costs Adapted to the Market’s Competitive Requirements; Part 3: Adaptation of Metallurgical Technologies to the Application and Quality Needs of the Market; Iron Metallurgy Institute: Gliwice, Poland, 2000; Volume 52, pp. 17,19,24–25. [Google Scholar]
- QTSteel Software. In Metallurgical Software for Simulating the Quench and Tempering of Steels; User’s Guide. Release 3.4.1–including the rolling option; ITA-Technology and Software: Ostrava, Czech Republic; MSL-Metaltech Services Ltd.: Gateshead, UK, 2015.
- User’s Manual: FLIR 640 Series; FLIR Systems, 30.06.2008, publication no. 1558550; Teledyne FLIR LLC: Wilsonville, OR, USA, 2008.
- PN-EN ISO 6892-1:2016-09; Metals-Tensile Test-Part 1: Room Temperature Test Method. Polish Committee for Standardization: Warsaw, Poland, 2016.
- Dyja, H.; Krakowiak, M. The 60th Anniversary Chronicle-from the Faculty of Metallurgy to the Faculty of Process, Materials Engineering and Applied Physics; Czestochowa University of Technology, Faculty of Process, Materials Engineering and Applied Physics Publishing House: Częstochowa, Poland, 2010. [Google Scholar]
- PN-83/H-04411; Metal Upsetting Test. Polish Committee for Standardization, Measures and Quality, Alfa Standardization Publishing House: Warsaw, Poland, 1983.
- Šimeček, P.; Hajduk, D. Prediction of mechanical properties of hot rolled steel products. J. Achiev. Mater. Manuf. Eng. 2007, 20, 395–398. [Google Scholar]
- Šimeček, P.; Turoň, R.; Hajduk, D. Computer model for prediction of mechanical properties of long products after heat treatment. In Proceedings of the 68th ABM International Annual Congress, Belo Horizonte Minas Gerais, Brazil, 30 July–2 August 2013. [Google Scholar]
- Laber, K.; Koczurkiewicz, B. Determination of optimum conditions for the process of controlled cooling of rolled products with diameter 16.5 mm made of 20MnB4 steel. In Proceedings of the 24th International Conference on Metallurgy and Materials-METAL 2015, Brno, Czech Republic, 3–5 June 2015; pp. 364–370. [Google Scholar]
- Głowacka, M. Metallography; Gdansk University of Technology Publishing House: Gdansk, Poland, 1996; p. 219. [Google Scholar]
- Minkina, W. Thermovion Measurements—Instruments and Methods; Częstochowa University of Technology Publishing House: Czestochowa, Poland, 2004. [Google Scholar]
- Orlove, G.L. Practical thermal measurement techniques. In Proceedings of the Thermosense V, Thermal Infrared Sensing Diagnostics, 21 March 1983; SPIE: Paris, France, 1983; Volume 371, pp. 72–81. [Google Scholar]
- PN-84/H-04507/01; Metals–Metallographic Grain Size Testing. Microscopic Methods for Determining Grain Size. Polish Committee for Standardization, Measures and Quality, Alfa Standardization Publishing House: Warsaw, Poland, 1985.
Steel Grade | Steel Number | Melt Analysis, mass% | ||||||
---|---|---|---|---|---|---|---|---|
20MnB4 | 1.5525 | C | Si | Mn | Pmax, Smax | Cr | Cumax | B |
0.18 ÷ 0.23 | ≤0.30 | 0.90 ÷ 1.20 | 0.025 | ≤0.30 | 0.25 | 0.0008 ÷ 0.005 |
Pass No. | Temperature T [°C] | Strain [−] | Strain Rate [s−1] | Break Time after Deformation t [s] 2 | Pass No. | Temperature T [°C] | Strain [−] | Strain Rate [s−1] | Break Time after Deformation t [s] 2 | |
---|---|---|---|---|---|---|---|---|---|---|
Continuous rolling mill | NTM block of wire rod rolling mill | |||||||||
1 | 1086 | 0.18 | 0.16 | 26.47 | 18 | 851 | 0.49 | 156.02 | 0.091 | |
2 | 1057 | 0.39 | 0.35 | 19.89 | 19 | 860 | 0.51 | 171.25 | 0.074 | |
3 | 1037 | 0.28 | 0.39 | 29.98 | 20 | 867 | 0.56 | 276.33 | 0.058 | |
4 | 1023 | 0.59 | 0.96 | 11.33 | 21 | 883 | 0.54 | 303.93 | 0.048 | |
5 | 1010 | 0.46 | 1.15 | 8.91 | 22 | 892 | 0.56 | 477.46 | 0.037 | |
6 | 995 | 0.50 | 2.02 | 6.13 | 23 | 908 | 0.53 | 584.28 | 0.032 | |
7 | 997 | 0.45 | 2.45 | 11.65 | 24 | 918 | 0.62 | 991.51 | 0.024 | |
8 | 1005 | 0.48 | 4.71 | 3.35 | 25 | 941 | 0.57 | 1042.10 | 0.020 | |
9 | 1009 | 0.44 | 5.57 | 2.63 | 26 | 956 | 0.62 | 1753.46 | 0.015 | |
10 | 1022 | 0.54 | 10.39 | 1.85 | 27 | 982 | 0.56 | 1809.67 | 0.82 | |
11 | 1030 | 0.48 | 12.07 | 3.09 | V1 | V2, V3 | RSM block of wire rod rolling mill | |||
12 | 1049 | 0.50 | 20.53 | 2.28 | 28 | 796 | 845 | 0.53 | 2368.05 | 0.012 |
13 | 1052 | 0.51 | 24.74 | 3.18 | 29 | 831 | 873 | 0.48 | 2275.43 | 0.007 |
14 | 1069 | 0.50 | 46.34 | 1.35 | 30 | 850 | 894 | 0.13 | 1853.11 | 0.004 |
15 | 1072 | 0.41 | 47.13 | 1.11 | 31 | 853 | 895 | 0.10 | 1680.68 | |
16 | 1087 | 0.51 | 79.93 | 0.90 | ||||||
17 | 1091 | 0.31 | 70.63 | 8.52 |
Temperature before RSM Rolling Block T [°C] | Cooling Method after Rolling Process 2 | |||
---|---|---|---|---|
Stage No. 1 | ||||
Desired Temperature Value T [°C] | Cooling Time t, s | Cooling Rate Cr, °C/s | ||
800 | (V1) | 575 | 475 | 0,4 |
850 | (V2) | 500 | 70 | 5 |
850 | (V3) | 500 | 35 | 10 |
Temperature before RSM Rolling Block T [°C] | Contribution of Microstructure Components [%] | Vickers Hardness [HV] | Yield Strength YS [MPa] | Ultimate Tensile Strength UTS [MPa] | Plasticity Reserve YS/UTS | Characteristic Temperature | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ferrite | Pearlite | Ac3 | Ac1 | Ar3 | Ar1 | ||||||
800 | (V1) | 94.5 | 5.5 | 173 | 319 | 516 | 0.618 | 827 | 719 | 744 | 655 |
850 | (V2) | 84.4 | 15.6 | 186 | 370 | 560 | 0.661 | 752 | 639 | ||
850 | (V3) | 83.7 | 16.3 | 194 | 392 | 589 | 0.666 | 742 | 631 |
Sample Number | Technological Variant—V1 | Technological Variant—V2 | Technological Variant—V3 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yield Strength YS [MPa] | Ultimate Tensile Strength UTS [MPa] | Unit Elongation A [%] | Relative Reduction in Area at Fracture Z [%] | Plasticity Reserve YS/UTS | Yield Strength YS [MPa] | Ultimate Tensile Strength UTS [MPa] | Unit Elongation A [%] | Relative Reduction in Area at Fracture Z [%] | Plasticity Reserve YS/UTS | Yield Strength YS [MPa] | Ultimate Tensile Strength UTS [MPa] | Unit Elongation A [%] | Relative Reduction in Area at Fracture Z [%] | Plasticity Reserve YS/UTS | |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
1 | 314.93 | 502.74 | 19.10 | 70.46 | 0.626 | 354.12 | 507.40 | 24.43 | 70.32 | 0.698 | 389.76 | 547.35 | 20.02 | 71.71 | 0.712 |
2 | 267.18 | 489.56 | 21.10 | 68.10 | 0.546 | 351.74 | 505.57 | 22.80 | 67.94 | 0.696 | 401.69 | 570.55 | 20.78 | 72.00 | 0.704 |
3 | 281.48 | 498.20 | 21.04 | 68.72 | 0.565 | 364.18 | 522.59 | 23.42 | 69.60 | 0.697 | 394.54 | 548.26 | 20.66 | 72.11 | 0.720 |
4 | 335.63 | 518.86 | 24.24 | 69.97 | 0.647 | 352.72 | 501.56 | 24.89 | 70.51 | 0.703 | 380.49 | 541.51 | 19.44 | 70.84 | 0.703 |
5 | 333.23 | 522.58 | 22.73 | 69.95 | 0.638 | 359.33 | 505.09 | 21.06 | 67.02 | 0.711 | 399.55 | 556.18 | 23.40 | 73.16 | 0.718 |
6 | 296.57 | 510.49 | 22.42 | 67.20 | 0.581 | 361.14 | 514.56 | 24.61 | 68.58 | 0.702 | 402.74 | 567.44 | 20.59 | 73.72 | 0.710 |
7 | 317.25 | 522.13 | 22.74 | 69.17 | 0.608 | 353.16 | 502.45 | 24.74 | 69.78 | 0.703 | 400.64 | 555.63 | 18.16 | 72.31 | 0.721 |
8 | 297.08 | 511.19 | 22.28 | 67.72 | 0.581 | 355.45 | 496.54 | 24.00 | 69.69 | 0.716 | 390.24 | 569.73 | 20.83 | 72.88 | 0.685 |
9 | 280.09 | 517.29 | 23.27 | 67.51 | 0.541 | 358.10 | 514.39 | 24.16 | 71.32 | 0.696 | 400.97 | 560.57 | 16.53 | 72.69 | 0.715 |
10 | 313.50 | 522.80 | 21.47 | 68.35 | 0.600 | 358.80 | 507.77 | 22.00 | 68.76 | 0.707 | 405.96 | 566.54 | 22.75 | 73.07 | 0.717 |
11 | 286.24 | 507.12 | 21.68 | 67.78 | 0.564 | 362.95 | 510.95 | 21.69 | 67.77 | 0.710 | 392.96 | 541.29 | 19.00 | 70.96 | 0.726 |
12 | 295.42 | 506.49 | 22.85 | 67.42 | 0.583 | 355.48 | 510.26 | 21.66 | 68.29 | 0.697 | 403.71 | 558.66 | 21.37 | 73.44 | 0.723 |
13 | 326.01 | 507.31 | 19.54 | 69.84 | 0.643 | 368.36 | 535.31 | 24.74 | 68.76 | 0.688 | 390.20 | 567.80 | 21.55 | 73.08 | 0.687 |
14 | 291.13 | 500.29 | 23.24 | 69.05 | 0.582 | 355.06 | 520.59 | 20.61 | 67.99 | 0.682 | 381.31 | 562.00 | 19.93 | 73.62 | 0.678 |
15 | 287.95 | 522.09 | 23.16 | 69.52 | 0.552 | 360.88 | 517.94 | 22.94 | 69.20 | 0.697 | 398.01 | 553.20 | 20.25 | 74.29 | 0.719 |
16 | 312.53 | 522.65 | 22.88 | 69.15 | 0.598 | 347.54 | 503.24 | 21.29 | 68.34 | 0.691 | 404.93 | 575.94 | 23.80 | 74.73 | 0.703 |
17 | 307.24 | 520.99 | 25.14 | 70.27 | 0.590 | 356.16 | 521.38 | 22.84 | 68.36 | 0.683 | 406.82 | 566.57 | 20.78 | 69.84 | 0.718 |
18 | 309.41 | 523.65 | 21.74 | 68.97 | 0.591 | 362.79 | 517.90 | 22.75 | 68.89 | 0.701 | 404.21 | 560.22 | 21.75 | 72.10 | 0.722 |
19 | 291.87 | 514.10 | 21.86 | 68.26 | 0.568 | 376.00 | 546.00 | 24.70 | 71.80 | 0.689 | 418.14 | 587.66 | 21.64 | 74.92 | 0.712 |
20 | 312.91 | 522.95 | 23.47 | 69.93 | 0.598 | 372.00 | 541.00 | 21.00 | 67.70 | 0.688 | 412.18 | 573.28 | 21.43 | 73.52 | 0.719 |
Average value | 302.88 | 513.17 | 22.30 | 68.87 | 0.590 | 359.30 | 515.12 | 23.02 | 69.03 | 0.698 | 398.95 | 561.52 | 20.73 | 72.75 | 0.711 |
Statistical Parameter | Technological Variant—V1 | Technological Variant—V2 | Technological Variant—V3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yield Strength YS [MPa] | Ultimate Tensile Strength UTS [MPa] | Unit Elongation A [%] | Relative Reduction in Area at Fracture Z [%] | Yield Strength YS [MPa] | Ultimate Tensile Strength UTS [MPa] | Unit Elongation A [%] | Relative Reduction in Area at Fracture Z [%] | Yield Strength YS [MPa] | Ultimate Tensile Strength UTS [MPa] | Unit Elongation A [%] | Relative Reduction in Area at Fracture Z [%] | |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Arithmetic average | 302.88 | 513.17 | 22.30 | 68.87 | 359.30 | 515.12 | 23.02 | 69.03 | 398.95 | 561.52 | 20.73 | 72.75 |
Standard deviation | 18.34 | 10.08 | 1.44 | 1.03 | 7.03 | 13.28 | 1.46 | 1.25 | 9.50 | 11.77 | 1.69 | 1.30 |
Coefficient of variation | 0.061 | 0.020 | 0.065 | 0.015 | 0.020 | 0.026 | 0.064 | 0.018 | 0.024 | 0.021 | 0.082 | 0.018 |
Median | 302.16 | 515.70 | 22.58 | 69.01 | 358.45 | 512.67 | 22.89 | 68.76 | 400.81 | 561.29 | 20.78 | 72.98 |
Technological Variant—V1 | Technological Variant—V2 | Technological Variant—V3 | ||||||
---|---|---|---|---|---|---|---|---|
Measurement Location (According to the Figure 14) | Average Ferrite Grain Size Dα [μm] | Average Hardness Value [HV] | Measurement Location (According to the Figure 14) | Average Ferrite Grain Size Dα [μm] | Average Hardness Value [HV] | Measurement Location (According to the Figure 14) | Average Ferrite Grain Size Dα [μm] | Average Hardness Value [HV] |
1 | 16.82 | 175.90 | 1 | 12.24 | 174.40 | 1 | 8.95 | 193.50 |
2 | 16.81 | 178.30 | 2 | 11.40 | 175.90 | 2 | 7.58 | 197.50 |
3 | 15.18 | 178.70 | 3 | 9.13 | 183.15 | 3 | 7.57 | 197.75 |
4 | 13.96 | 181.15 | 4 | 8.80 | 186.60 | 4 | 6.15 | 201.50 |
5 | 12.73 | 184.25 | 5 | 8.77 | 194.35 | 5 | 5.51 | 216.90 |
6 | 17.39 | 174.45 | 6 | 12.38 | 171.05 | 6 | 10.27 | 189.30 |
7 | 15.96 | 176.00 | 7 | 11.97 | 172.25 | 7 | 8.71 | 194.70 |
8 | 14.30 | 182.20 | 8 | 9.63 | 176.40 | 8 | 8.43 | 196.05 |
9 | 13.88 | 182.30 | 9 | 8.72 | 188.00 | 9 | 8.40 | 197.00 |
10 | 13.29 | 188.10 | 10 | 8.46 | 195.80 | 10 | 7.13 | 201.45 |
11 | 18.36 | 172.60 | 11 | 13.78 | 169.85 | 11 | 9.27 | 192.05 |
12 | 15.35 | 179.85 | 12 | 11.16 | 176.13 | 12 | 8.64 | 196.15 |
13 | 15.00 | 180.00 | 13 | 9.34 | 177.83 | 13 | 7.69 | 197.75 |
14 | 14.03 | 181.10 | 14 | 9.09 | 178.55 | 14 | 7.24 | 198.55 |
15 | 12.64 | 184.90 | 15 | 4.92 | 201.40 | 15 | 6.53 | 204.75 |
16 | 18.57 | 169.85 | 16 | 11.46 | 176.70 | 16 | 9.78 | 190.55 |
17 | 18.41 | 170.50 | 17 | 9.99 | 178.15 | 17 | 9.78 | 191.90 |
18 | 17.95 | 173.25 | 18 | 9.27 | 181.55 | 18 | 9.68 | 192.60 |
19 | 16.79 | 176.15 | 19 | 9.20 | 183.10 | 19 | 9.18 | 196.45 |
20 | 16.75 | 176.90 | 20 | 8.91 | 192.15 | 20 | 9.00 | 198.00 |
21 | 18.29 | 171.30 | 21 | 11.12 | 180.70 | 21 | 10.08 | 190.45 |
22 | 17.91 | 173.75 | 22 | 10.50 | 181.15 | 22 | 9.76 | 192.05 |
23 | 16.61 | 173.95 | 23 | 9.05 | 187.10 | 23 | 7.22 | 199.35 |
24 | 16.19 | 178.45 | 24 | 8.61 | 189.10 | 24 | 7.14 | 199.45 |
25 | 15.86 | 182.40 | 25 | 4.66 | 210.77 | 25 | 4.01 | 222.65 |
26 | 19.04 | 168.80 | 26 | 11.69 | 172.90 | 26 | 9.41 | 192.75 |
27 | 18.31 | 172.55 | 27 | 11.08 | 174.75 | 27 | 9.21 | 193.05 |
28 | 16.94 | 173.50 | 28 | 10.64 | 176.30 | 28 | 7.16 | 199.50 |
29 | 16.89 | 174.25 | 29 | 10.39 | 178.90 | 29 | 6.87 | 200.00 |
30 | 15.99 | 180.45 | 30 | 9.56 | 180.50 | 30 | 5.79 | 211.35 |
Average value | 16.21 | 177.20 | Average value | 9.86 | 182.18 | Average value | 8.07 | 198.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laber, K.B. Analysis of the Uniformity of Mechanical Properties along the Length of Wire Rod Designed for Further Cold Plastic Working Processes for Selected Parameters of Thermoplastic Processing. Materials 2024, 17, 905. https://doi.org/10.3390/ma17040905
Laber KB. Analysis of the Uniformity of Mechanical Properties along the Length of Wire Rod Designed for Further Cold Plastic Working Processes for Selected Parameters of Thermoplastic Processing. Materials. 2024; 17(4):905. https://doi.org/10.3390/ma17040905
Chicago/Turabian StyleLaber, Konrad Błażej. 2024. "Analysis of the Uniformity of Mechanical Properties along the Length of Wire Rod Designed for Further Cold Plastic Working Processes for Selected Parameters of Thermoplastic Processing" Materials 17, no. 4: 905. https://doi.org/10.3390/ma17040905
APA StyleLaber, K. B. (2024). Analysis of the Uniformity of Mechanical Properties along the Length of Wire Rod Designed for Further Cold Plastic Working Processes for Selected Parameters of Thermoplastic Processing. Materials, 17(4), 905. https://doi.org/10.3390/ma17040905