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Abstract: High-frequency traveling-wave magnetic fields refer to alternating magnetic fields that
propagate through space in a wave-like manner at high frequencies. These magnetic fields are
characterized by their ability to generate driving forces and induce currents in conductive materials,
such as liquids or metals. This article investigates the application and approaches of a unique form of
high-frequency traveling-wave magnetic fields to low-conductivity liquids with conductivity ranging
from 1 to 102 S/m. Experiments were conducted using four representative electrolytic solutions
commonly employed in the chemical industry: sulfuric acid (H2SO4), sodium hydroxide (NaOH),
sodium chloride (NaCl), and ionic liquid ([Bmim]BF4). The investigation focuses on the impact
of high-frequency magnetic fields on these solutions at the optimal operating point of the system,
considering the effects of Joule heating. The findings reveal that the high-frequency traveling magnetic
field exerts a significant volumetric force on all four low-conductivity liquids. This technology,
characterized by its non-contact and pollution-free nature, high efficiency, large driving volume,
and rapid driving speeds (up to several centimeters per second), also provides uniform velocity
distribution and notable thermal effects. It holds considerable promise for applications in the chemical
industry, metallurgy, and other sectors where enhanced three-phase transfer processes are essential.

Keywords: electromagnetic drive; high-frequency traveling magnetic field; low electrical conductivity;
ionic liquid

1. Introduction

Electromagnetic drive technology plays a critical role in the electromagnetic pro-
cessing of materials and can be broadly categorized into electromagnetic stirring and
electromagnetic pumps [1]. In metallurgy, electromagnetic stirring utilizes the Lorentz
force to agitate high-temperature metal liquids in continuous-casting billets that have not
solidified. This contactless method enhances the convection of the metal liquid, control-
ling the solidification process and ensuring a high-quality output. On the other hand,
electromagnetic pumps, employed in industries such as chemical, atomic energy, and
metallurgical foundries, generate a directional flow of liquid metal through the interaction
between magnetic fields and electric currents. Sulfuric acid, sodium hydroxide, and sodium
chloride solutions represent acidic, alkaline, and neutral electrolyte systems commonly
employed across industries such as metallurgy, chemical engineering, and food processing.
Their experimental investigation provides useful insights into driving low-conductivity
liquids with varying physicochemical properties.

This technology is indispensable for the transportation of hazardous heavy metals
(e.g., mercury, liquid lead, and their alloys) and chemically active metals (e.g., potassium,
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sodium, and their alloys) as well as high-temperature metal liquids. Currently, electro-
magnetic drive technology is predominantly applied to liquids with a high conductivity
(105–107 S/m). However, there exists significant potential for its application in low-
conductivity liquids (1–102 S/m), which the existing technology, typically operating below
100 Hz [2], struggles to effectively drive due to the limited generation of Lorentz force under
these conditions. High-frequency magnetic fields in industry are mainly harnessed for their
thermal effects, such as in high-frequency induction heating, and are not commonly used
for electromagnetic drive due to the skinning effect. To drive a low-conductivity liquid
through electromagnetic technology, the effectiveness of the electromagnetic drive can be
assessed through the skinning depth δ, as outlined in Equation (1):

δ =

√
1

π f µ0σ
(1)

where f is the frequency of the input current, µ0 is the vacuum permeability, and σ is the
conductivity of the liquid. Optimal magnetic field penetration occurs when the skinning
depth is between 0.2 and 0.5 times the container’s diameter. Contrary to traditional ap-
plications, this necessitates a high-frequency operating current to drive low-conductivity
liquids effectively. Inspired by single-phase asynchronous motors, Ernst et al. [3] inno-
vated a high-frequency electromagnetic drive capable of operating above 100 kHz. This
technology successfully propelled a saturated NaCl solution (conductivity of 40 S/m) at
centimeter-per-second speeds, demonstrating its potential for low-conductivity liquids.
Subsequent research, including the work of Xiaodong et al. [4] and Li Yong [5], further
validated this approach through theoretical analysis and experimental design. Wang et al.
developed a numerical model of electromagnetism, enhancing our understanding of the
high-frequency traveling magnetic field’s principles, while Li Yong focused on optimizing
the circuit-operating point by analyzing coil distances. Additionally, Guo et al. [6] examined
the effects of various electrical parameters and coil configurations on the flow and tempera-
ture fields of low-conductivity liquids, contributing to the optimization of this technology.
However, previous studies primarily tested simple media like NaCl solutions and lacked a
comprehensive exploration of the driving effect on diverse electrically conductive solutions
from an industrial perspective. This paper addresses this gap by using a high-frequency
traveling-wave magnetic field to drive various low-conductivity industrial liquids, in-
cluding H2SO4, NaOH, NaCl solutions, and the ionic liquid [Bmim]BF4. By employing
particle image velocimetry (PIV), we quantitatively and dynamically measured the flow
fields, comparing the driving effects on different media and analyzing the thermal effects
produced. This study demonstrates the potential of high-frequency traveling magnetic
field technology for industrial applications.

High-frequency traveling-wave magnetic field drive technology offers significant
advantages, including non-contact operation, pollution-free processes, and high efficiency.
Capable of propelling low-conductivity liquids at speeds of centimeters per second in
large containers, it also imparts a measurable thermal effect. This technology finds diverse
applications in various industries. In iron and steel metallurgy, for instance, where liquid
steel slag typically has a conductivity of around 100 S/m [4], the conventional iron recovery
process involves screening, crushing, and magnetic separation. This method is energy-
intensive and generates substantial amounts of dust. Employing high-frequency traveling-
wave magnetic field technology for separating liquid steel and slag can not only reduce
pollution but also simplify the process.

In non-ferrous metallurgy, the pressurized leaching method is often used for low-
grade ore processing, applicable to metals like copper, zinc, nickel, cobalt, tungsten, and
various rare metals [5]. This method involves submerging the ore in acidic solutions for
pressurization, heating, and stirring. Traditional mechanical stirring in pressurized leaching
kettles often leads to poor sealing, risking hazardous liquid leakage and corrosion by acidic
solutions [6]. High-frequency traveling-wave magnetic field technology can overcome
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these challenges by providing non-contact stirring and heating, enhancing uniformity and
reducing equipment failure. The chemical industry frequently employs the hydrothermal
method for inorganic synthesis and material processing, such as in the production of nano-
powders or thin films [7]. In traditional methods, the utilization of concentrated acids or
alkalis in industrial processes necessitates the use of equipment capable of withstanding
high temperatures, pressures, and corrosive environments. However, achieving adequate
stirring under these conditions poses a challenge, making large-scale reactor production
technically intricate and costly [8–11]. To address these issues, high-frequency traveling-
wave magnetic field drive technology offers a solution by enabling non-contact stirring
and heating of the electrolyte within enclosed reactors. Ionic liquids, which are organic
salts with melting points below 100 ◦C, are commonly employed in solid–liquid stirring
systems within the chemical industry due to their favorable electrical conductivity and
thermal stability. For instance, [Bmim]BF4 exhibits a conductivity of up to 4.7 S/m. The
conventional mechanical stirring method often results in uneven flow fields and stagnant
areas. Electromagnetic drive technology has the potential to revolutionize this process by
utilizing Lorentz forces to uniformly and efficiently stir the entire conductive liquid [8].

This article shows a detailed experimental study of the high-frequency traveling-wave
magnetic field drive device proposed by R. Ernst et al. [3]. The experiments utilized
four different solutions—H2SO4, NaOH, NaCl, and the ionic liquid [Bmim]BF4—each
representing distinct industrial applications. The objective of this study was to explore the
driving effect of the high-frequency traveling-wave magnetic field on these solutions and
analyze its influences of conductivity.

2. Experimental Setup and Test System

In this study, R. Ernst et al. [3] designed a magnetic traveling field stirring installation.
The setup comprises a high-frequency generator, a pair of capacitors, two-phase induc-
tive coils, and cylindrical containers filled with electrolyte. A schematic diagram of this
installation is presented in Figure 1.
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Figure 1. Simplified schematic of double-phase magnetic traveling field stirring installation [3].

The low-conductivity liquids tested in this experiment included aqueous solutions of
30% mass fraction sulfuric acid (H2SO4), 20% mass fraction sodium hydroxide (NaOH),
saturated sodium chloride (NaCl), and an aqueous solution of 2.5 mol/L ionic liquid
([Bmim]BF4).

The high-frequency generator used in this study is the CELES MP25kW GRI 25/4,
manufactured by Five Celes, France. It operates based on the principle illustrated in
Figure 1, generating a high-frequency current through an internal MOS transistor generator.
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This generator features an output frequency range of 100 to 400 kHz and a power output
of 25 kW. Its display terminal shows the real-time output current and voltage, frequency,
power, and other system states, also enabling control over power output percentage. The
accompanying capacitors, also from Five Celes, are of the ALU CU model with a capacitance
of 0.21 µF. As shown in Figures 2 and 3, the two-phase inductor coils consist of a drive
phase and an induction phase. These high-frequency inductor coils, made from 10 mm
diameter copper tubing in a reverse-winding configuration, incorporate internal cooling
water and are configured into helical coils with a 320 mm diameter. The neighboring coils of
the same phase have currents flowing in opposite directions. The system involves a mutual
inductance circuit composed of two-phase coils connected in parallel to the capacitor box.
A drive-phase coil, connected to a high-frequency generator, generates an alternating
magnetic field, while an induction-phase coil induces a high-frequency current. The
specified capacitance of the capacitor box ensures an appropriate phase difference between
the two-phase coils, resulting in the creation of an axial traveling magnetic field within
the coil space. The direction of the magnetic field relies on the phase difference between
the currents in the two-phase coils, with an upward-moving traveling-wave magnetic
field occurring when the induction phase current lags behind the drive phase, and vice
versa. The mutual inductance value can be adjusted by changing the spacing between the
two-phase coils, thereby modifying the amplitude ratio and phase difference of the currents.
This, in turn, alters the spatial distribution and motion pattern of the traveling-wave
magnetic field. Inside the coil, an acrylic drum with dimensions of 390 mm in height and
290 mm in inner diameter is positioned, maintaining an 11 mm gap between the inner wall
of the drum and the coil. The low-conductivity liquids tested in this experiment included
H2SO4, NaOH, NaCl solutions, and an ionic liquid solution ([Bmim]BF4), representing
acidic, alkaline, neutral, and organic solution systems in the chemical industry, respectively.
Table 1 presents the relevant physical parameters of these liquids. While their densities and
viscosities are similar, their conductivities vary significantly. Prior to driving each liquid,
determining the system’s optimal operating point is essential [5]. This point depends
solely on the mutual and self-inductance of the drive and induction phases. Since the
self-inductance coefficient of the coil is fixed post winding, and the capacitance value
of the capacitor box is also set, adjusting the spacing between the two-phase coils is the
only way to achieve the optimal working point. Within the inductance adjustment range
of the driving phase, increasing the distance between the two-phase inductors elevates
circuit impedance. Hence, adjusting this distance enables impedance matching between
the high-frequency generator and the load, optimizing the generator’s output power. In
this experiment, a two-dimensional PIV system was employed, using a 5 MP high-speed
camera capturing images at 200 fps with an exposure time of 300 µs and a resolution of
932 × 864 pixels. Hollow glass beads averaging 50 µm in diameter were used as tracers. The
laser sheet was generated by a 5 W diode laser positioned 600 mm above the container, and
the camera was laterally situated 1000 mm from the vessel center to capture a 27.5 × 25.5 cm
field of view in the meridional plane.

Table 1. Main physical parameters of the low-conductivity liquid to be driven in this experiment.

Conductivity
25 ◦C, S/m

Intensity
g/cm3

Concentration
cP

H2SO4 (30%) 82.5 1.22 1.4
NaOH (20%) 40.0 1.21 1.8

NaCl (saturated) 23.1 1.33 1.9
[Bmim]BF4 (2.5 mol/L) 4.7 1.08 1.5
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The output parameters of the high-frequency (HF) power supply, including current,
voltage, frequency, and power, can be ascertained by reading the display screen on the
power supply cabinet. Additionally, the phase difference and amplitude ratio of the currents
in the two-phase coils are measured using two Roche coils (CWT mini HF 30R). In this
research, a two-dimensional particle image velocimetry (PIV) system was employed to
measure the flow field distribution of a liquid within the meridional plane of a cylindrical
vessel. To minimize laser shielding by the coil and maximize the field of view, the laser
sheet light source (SM-SEM1-10W) was positioned above the vessel. This setup aligned the
vertical laser plane with the vessel’s center plane, while a high-speed camera (5KF10) was
situated laterally to capture the flow field in this central plane, as illustrated in Figure 2.
Hollow glass beads, averaging 50 µm in diameter, served as particle tracers. The high-speed
camera recorded at 200 frames per second with an exposure time of 300 µs, producing
images with a resolution of 930 × 860 pixels. For image analysis, the open-source Matlab-
based software PIVlab (GUI. Version 2.63.0.) was utilized. This involved setting a query
window of 32 × 32 pixels to analyze pairs of adjacent images via a mutual correlation
algorithm (FFT). The process of filtering, correcting, and smoothing the data led to the
derivation of velocity vector fields and velocity intensity gradient cloud maps within
the interrogation windows. Post-processing utilizing vector validation and smoothing
functions derived the final flow characterization results.

3. Operating Parameters of the System

For each low-conductivity liquid drive, the distance between the drive-phase and
induction-phase coils was adjusted, thereby altering the mutual inductance between the
two. This adjustment facilitated impedance matching between the high-frequency generator
and the load, optimizing the power supply’s output to its maximum. At this optimal
operating point, the phase difference between the two-phase coils approached 90◦, ensuring
the most effective driving action of the high-frequency traveling-wave magnetic field. The
optimal operating parameters for different media are presented in Table 2.

Table 2. Electrical parameters of the optimal operating point of the system when driving different media.

Conductivity
σ

25 ◦C, S/m

Frequency f
kHz

Power
P

kW

Phase
Difference φ

◦

Skin Depth
δm

H2 SO4 (30%) 82.5 238 24.3 109 0.11
NaOH (20%) 40.0 248 17.0 62.3 0.16

NaCl (saturated) 23.1 254 13.1 40.6 0.21
[Bmim]BF4 (2.5 mol/L) 4.7 262 6.8 33.2 0.45

Skin depth (δ) refers to the penetration depth of an electromagnetic field into a con-
ductor, which is inversely proportional to the square root of conductivity, frequency, and
permeability. As indicated by the table, the conductivity of the driving medium signifi-
cantly influences the system’s operating parameters. This is due to the interplay between
the output power of the high-frequency generator and the external circuit’s impedance.
Changes in the conductivity of the low-conductivity liquid result in corresponding changes
in the external circuit’s impedance, dynamically affecting the power supply’s output power
and the phase difference in the two-phase coil. In optimal operating conditions, a higher
conductivity of the driven liquid correlates with an increased power supply output and
a phase difference in the two-phase coil closer to 90◦. The table also reveals that a lower
conductivity in the driving liquid necessitates a higher output frequency from the generator.
This is because the impedance characteristics of the two-phase inductive system and the
resonance frequency of the two-phase coil current vary with the conductivity of the driving
solution. Consequently, the high-frequency generator must operate at the resonance point
of the parallel connection, necessitating an adjustment in the output frequency. The rela-
tionship between operating parameters and conductivity in Table 2 can be mathematically
expressed using Ohm’s law. According to Ohm’s law, conductivity plays a crucial role
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in determining impedance, which, in turn, affects the current induced and the driving
force generated for a specific voltage input. A higher conductivity value leads to lower
impedance and stronger driving effects.

4. Flow Field Analysis

Given the motion pattern of the high-frequency traveling-wave magnetic field, the
coil winding method, and the properties of the driven cylindrical liquid, it is clear that the
driving solution must generate a three-dimensional flow.

The flow field in the meridional plane of the container, which is primarily influenced
by the axial direction of the traveling-wave magnetic field and the Lorentz force, is subjected
to a quantitative analysis. To effectively illustrate the driving effect of the high-frequency
traveling-wave magnetic field, the flow field within this plane is photographed and exam-
ined. At the optimal working point specified in Table 2, the axial center plane’s flow field
is captured using a high-speed camera. Due to partial obstruction of the field of view by
the coil and optical aberrations from the cylindrical container’s curved edges, the analysis
requires cropping areas with excessive aberrations and the laser reflection’s highlighted
area at the bottom. Consequently, a rectangular section with dimensions of 27.5 × 25.5 cm
in the center plane is selected for flow field analysis, as depicted in Figure 3, with the coil
masked out. One limitation of the current study is that the flow field analysis is conducted
within a rectangular section of dimensions 27.5 × 25.5 cm, selected to minimize optical
aberrations while encompassing a representative area. However, as this section size repre-
sents only a subset of the full experimental container, its proportions relative to the overall
vessel dimensions may impact the generalizability of the conclusions drawn regarding the
flow behavior. While the analyzed region aims to capture characteristic flow patterns, its
dimensions could potentially influence the representativeness of the overall flow field. This
limitation should be acknowledged. Optimization of the analysis section dimensions and
techniques enabling whole-field visualization, such as advanced particle image velocimetry
(PIV), may help validate the conclusions by further establishing the translatability of in-
sights beyond the bounds of the measurement area. Dimensional refinement and full-field
approaches in future work could strengthen the validity of flow characterization. Hollow
glass beads, 50 µm in average diameter, are used as tracer particles in the solution. The
camera captures images at 200 frames per second with an exposure time of 300 µs, and
these images are processed using PIVlab to analyze and calculate the flow field distribution
of the driven liquid.

4.1. Analysis of Flow Patterns

Figure 4 illustrates the flow field of a 30% mass fraction H2SO4 solution in a container,
captured 15 s after initiating the high-frequency power supply. As depicted in Figure 4a,
upon activation of the power supply, the liquid demonstrates a rapid flow response,
transitioning from a state of disordered thermal motion to gradual acceleration under
an electromagnetic force. Within 5 s, directional movement tendencies emerge, with
the solution’s central part beginning to flow downward. Figure 4b shows that, under
an electromagnetic driving force, the solution’s flow rate increases, leading to forced
convection. This results in a double-loop flow, where the upper part of the container’s
two measured solutions converges towards the center. As driving time progresses, the
Joule heat generated near the container wall adjacent to the coil accumulates, raising the
temperature and initiating thermal convection. This, combined with forced convection,
forms a turbulent vortex, as illustrated in Figure 4c. At this stage, the average flow rate
reaches 7.2 cm/s, with a maximum of 13 cm/s, significantly enhancing the solution’s flow
under the influence of the high-frequency traveling-wave magnetic field.
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Figure 4. Velocity vectors and intensity distributions of the meridional flow field within 15 s after
the startup of the high-frequency power supply: (a) t = 5 s, (b) t = 10 s, and (c) t = 15 s (the driving
electrolytic solution is 30% H2SO4).

The solution’s flow progression under the high-frequency traveling-wave magnetic
field can be categorized into three phases: (1) acceleration from disordered thermal motion
to directional motion; (2) a directional flow phase dominated by forced convection; and
(3) a turbulent phase featuring a combination of thermal and forced convection. Figure 5
shows that, in the initial 0–6 s, the solution gradually accelerates to form an annular flow
converging from both sides to the center due to the electromagnetic driving force. Between
6–12 s, the solution achieves the maximum forced convection velocity, with new vortices
forming near the walls due to added thermal convection, further increasing the velocity.
After 12 s, the velocity stabilizes, and the solution undergoes vigorous flow under the
combined effects of electromagnetic and thermal buoyancy forces.
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(the driving electrolytic solution is 30% H2SO4).

As shown in Figure 5, in order to investigate the driving effect of the high-frequency
traveling magnetic field on the solutions at different locations in the container, we pho-
tographed the flow fields in the four regions from one to four within a short period of
time, and, each time, the interval between the photographs was relatively short so that
the effect of the temperature change due to Joule heat could be neglected. It can be seen
that the average flow rate of the solution in the four regions is close, and the flow trend
is consistent, as shown by the red trend line in the figure. They are all upward on both
sides and downward in the center of the circulation, and the center part of the flow is
stronger, but the regularity of the flow field in the local region is not obvious. Figure 6
shows the velocity gradient of region 2 when the maximum driving speed is reached, and
it can be seen that the change in the flow velocity inside the whole fluid does not vary
much, which also means that the high-frequency traveling magnetic field acts on the whole
container, and there is no dead zone, which is significantly different from the mechanical
stirring characteristics.

The momentum equation for the driving process is represented by Equations (2) and (3),
which account for the thermal convection scenario and incorporate an electromagnetic
force source term. In these equations, t denotes time, p represents pressure, ν is the kinetic
viscosity, g signifies gravitational acceleration, β0 is the coefficient of thermal expansion,
∆T indicates the temperature change, and Fem is the electromagnetic force source term. The
driving process is influenced by the output power of the high-frequency power supply:
a higher output power results in an increased coil current, thereby generating a stronger
Lorentz force in the liquid and enhancing the driving speed. Concurrently, as the liquid’s
temperature rises, the role of thermal convection in influencing the liquid’s flow also
increases. The transition time between the different flow phases is dependent on the
magnitude of the electromagnetic force and the thermal effect. Thus, liquids with a higher
conductivity exhibit shorter transition times.

ρ
Du
Dt

+ ρ(u·∇)u = −∇p + ν∇2u + Fem + ρβ0∆Tg (2)

ρ∇·u = 0 (3)
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The average flow rate of the solution is relatively uniform, exhibiting a coherent and
consistent flow trend with upward movement on both sides and a downward circulation
at the center, where the flow intensity is greater. Figure 6 presents the velocity gradi-
ent diagram at the point of maximum driving speed, indicating minimal change in the
flow velocity throughout the fluid. This suggests that the high-frequency traveling-wave
magnetic field influences the entire vessel uniformly, without creating any dead zones, a
stark contrast to the characteristics of mechanical stirring. Furthermore, as inferred from
both Figure 6 and Equation (2), since the Lorentz force acts as a non-contact volumetric
force and the electromagnetic force source term in Equation (2) represents force density,
the larger the fluid volume affected by the magnetic field, the greater the driving force.
Consequently, the high-frequency traveling-wave magnetic field can uniformly drive low-
conductivity fluids even in larger-sized containers. The homogeneous distribution of the
high-frequency traveling-wave magnetic field throughout the container ensures that each
component of the solution experiences a propelling force. This stands in contrast to tradi-
tional mechanical stirring methods, which, especially in the case of large containers, require
careful consideration of factors such as the size and shape of the stirring paddle and are
more susceptible to mechanical failures. Therefore, the implementation of high-frequency
traveling-wave magnetic field drive technology offers significant advantages in various
industrial applications.

4.2. Effect of High-Frequency Traveling-Wave Magnetic Field Direction on the Flow Field

During the operation of the high-frequency power supply, electrical energy is trans-
formed into kinetic and thermal energy. In the solution, the induced current interacts
with the high-frequency magnetic field to generate a driving force, while simultaneously
producing Joule heat. Thus, the liquid’s flow results from the combined effects of forced
convection and thermal convection. In the solution, Joule heat-induced natural convection
moves upward along the container walls, where the liquid near the wall is subjected to
upward thermal buoyancy. In accordance with the principles of high-frequency traveling-
wave magnetic field drive, the proximity to the coil amplifies magnetic induction, thereby
generating stronger induced currents and more substantial Lorentz forces. The movement
direction of the high-frequency magnetic field and, consequently, the direction of the driv-
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ing force on the liquid are influenced by the phase of the currents in the two-phase coils.
This can lead to an upward or downward movement of the high-frequency magnetic field.

As shown in Figure 7, in Figure 7A, the driving phase current’s phase leads the induc-
tion phase current, resulting in an upward direction of the traveling-wave magnetic field
and aligning the electromagnetic force with the direction of thermal convection. Conversely,
in Figure 7B, where the driving phase current’s phase lags behind the induction phase
current, the traveling-wave magnetic field moves downward, opposing the direction of
thermal convection. It is evident that changing the direction of the traveling-wave magnetic
field can significantly alter the flow direction of the liquid, while the maximum driving
speed remains relatively constant. Therefore, by modifying the direction of the traveling-
wave magnetic field, it is possible to achieve directional driving of low-conductivity liquids
in various directions, leading to more optimal driving outcomes.

4.3. The Driving Effects of Different Liquids

Figure 8 displays the flow field distribution of three other low-conductivity solutions
used in this experiment, captured at room temperature when the maximum driving effect
was achieved after starting the high-frequency power supply (t = 200 s). The maximum
flow speeds calculated for the H2SO4 solution, the NaOH solution, the NaCl solution, and
the [Bmim]BF4 ionic liquid solution in this region were 13, 9, 6, and 3 cm/s, respectively.
Comparing the flow fields of solutions with different conductivities, it is observed that all
four liquids exhibit a similar flow pattern, with higher conductivity fluids demonstrating
more pronounced driving effects. This is attributed to the electromagnetic driving force
being directly correlated with the liquid’s conductivity. Furthermore, the densities and
viscosities of these solutions are relatively similar. A higher conductivity results in a greater
electromagnetic force and more significant Joule heating during the driving process, leading
to more pronounced thermal convection and increased driving speeds. Consequently, a
direct positive relationship exists between the driving speed and conductivity, as exempli-
fied in Figure 9. Remarkably, even for ionic liquid solutions with a conductivity as low as
4.7 S/m, an average directional driving effect of 2 cm/s can be achieved. To accommodate
liquids with varying conductivities, adjustments such as modifying the spacing between
coils or altering the capacitor and resistor configurations of the system can be made to
enhance the output power of the high-frequency power supply, thereby augmenting the
driving effect. The advantage of the high-frequency traveling-wave magnetic field is its
uniform distribution throughout the entire container, ensuring that each portion of the
solution experiences a propelling force. This presents a clear advantage over the mechanical
stirring methods currently utilized in industrial applications involving ionic liquids.
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Figure 7. (A) Illustrates the driving effects of traveling-wave magnetic fields in different directions
on low-conductivity liquids: (a) with the traveling-wave magnetic field oriented upwards, and
(b) with the traveling-wave magnetic field oriented downwards (30% H2SO4). (B) Velocity vectors
and intensity distributions of the flow field when driving different liquids: (a) NaOH (20%), (b) NaCl
(saturated), and (c) [Bmim]BF4 (2.5 mol/L).
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Extensive research has been conducted across various industries, such as metallurgy,
chemical engineering, and plasma processing, to study electromagnetic drive technol-
ogy [12–14]. Its potential applications in improving convection and controlling solidifica-
tion processes in high-temperature metal liquids through techniques like electromagnetic
stirring and pumps have been investigated. The interaction between electromagnetic fields
and different types of liquids, including ionic liquids and aqueous solutions, has also
been examined [15–18]. Furthermore, the utilization of high-frequency magnetic fields,
microwave, and ultrasonic processing has been explored for these methods’ industrial
applications. The generation and practical use of high-frequency electromagnetic waves,
including the development of microwave sources, have been the subjects of thorough
research [19–25]. The impact of magnetic fields on fluid flow and the challenges associated
with generating millimeter-wave-to-terahertz and high-power microwaves have been ex-
tensively discussed. Additionally, the application of high-frequency electromagnetic fields
in plasma processing, materials processing, and the electrical properties of foods has been
investigated [26–32].
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Despite these advancements, further research is necessary, particularly in exploring
the potential of electromagnetic drive technology in low-conductivity liquids. Recent
scientific investigations have studied a wide range of materials and their mechanical and
chemical properties [33–37]. These studies include the manipulation of charge density
in a solid–liquid triboelectric nanogenerator system, the development of sulfur-doped
carbon-enhanced nanocomposites for sodium-ion storage, and the analysis of composite
solid electrolytes for all-solid-state lithium metal batteries. Significant findings have been
made in areas such as the controllable conductivity and ferromagnetism of secondary
growth materials, the evaluation of hydrogen embrittlement behavior in stainless steel
joints, and the measurement of residual stress in welding [38–42]. Many works’ efforts
have also focused on advancing high-entropy coatings with exceptional thermal protection
properties, exploring metastable structures in superconducting films, and improving epoxy
resin performance through the incorporation of boron nitride networks. Some research
studies have developed the electrical resistivity–temperature characteristics of composite
materials, developed efficient nanorod arrays for photoelectrochemical hydrogen evo-
lution, and created flexible papers with superior electromagnetic interference shielding
properties [43–47]. Considerations have also examined the sedimentation process in fer-
rofluids, utilized fluorophore molecules for dual-channel fluorescence chemo sensing, and
employed MOFs as probes for water content measurement. Additionally, research has
explored terahertz meta sensors for refractive index sensing and molecular identification,
proposed linear free energy relationships for predicting partition coefficients in organic
compounds, and studied the properties of conductive concrete mixed with nano graphite
and magnetite sand [48–51].

5. Thermal Effect

While driving low-conductivity liquids, the application of a high-frequency traveling-
wave magnetic field also induces a substantial thermal effect within the liquid. When the
high-frequency power supply provides power to the liquid, a portion of electrical energy is
converted into kinetic energy to propel the liquid, while another portion is transformed
into Joule heat, gradually raising the temperature of the liquid. Figure 9 displays the tem-
perature rise curves for the four different media measured using thermocouples, covering
a period of 0–500 s at the optimal working point of the high-frequency traveling-wave
magnetic field system (as specified in Table 2). The experiment was terminated when the
temperature rise exceeded 80 ◦C. The results indicate that a higher conductivity of the
driving liquid corresponds to a greater power output from the power source, resulting
in more pronounced Joule heating and a faster temperature increase. As the liquid’s tem-
perature rises, its conductivity increases, causing changes in the load impedance of the
high-frequency power source and consequently enhancing its output power. This corre-
lation is also evident in Figure 9, where the heating rate of the various media accelerates
with temperature. At lower temperatures, the electromagnetic driving force primarily
influences the liquid’s flow. However, as the driving time extends, the accumulated Joule
heat gradually intensifies the thermal convection’s impact on the liquid’s flow, leading
to irregular turbulent vortices. This is evident from the velocity vectors in Figure 7’s
flow field, where, after the same duration of power supply activation, the H2SO4 solu-
tion reaches the highest temperature, demonstrating the most noticeable irregular motion
caused by thermal convection. In many industrial processes, such as the acid leaching
process in non-ferrous metallurgy, chemical synthesis, and the high-temperature stirring
of ionic liquids in catalytic processes, there is a need to simultaneously stir and heat low-
conductivity liquids. In such scenarios, high-frequency traveling-wave magnetic field
driving is particularly suitable.

In the context of future work, it is acknowledged that including data on the impact
of varying concentrations would enhance the analysis. Regrettably, due to feasibility
constraints, this study did not investigate concentration variations. However, it is an
excellent suggestion for future research. From a qualitative perspective, it is anticipated
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that there would be a positive correlation between the driving force and concentration
up to a certain threshold, beyond which diminishing returns might occur. Collecting
such data would provide valuable insights into this relationship. Magnetic fields are
extensively utilized in diverse industrial sectors. They are employed in magnetic levitation
systems to facilitate the operation of high-speed trains, employed in mining operations
for magnetic separation processes, and employed in the field of medicine for magnetic
resonance imaging (MRI), which enables non-invasive imaging of the human body [52–56].
Soft magnetic materials have gained significant attention due to their unique properties and
potential applications in various fields. Their excellent magnetic characteristics, including
high permeability and low coercivity, make them suitable for transformers, inductors,
and magnetic storage devices [57–60]. The integration of soft magnetic materials into
composites and their use in magnetic fluid hyperthermia have opened up new opportunities
for research and development. This article explores the advancements in soft magnetic
materials and their impact on composites and magnetic fluid hyperthermia and discusses
their promising future prospects [60–62].

6. Conclusions

This paper presents a detailed experimental study of the high-frequency traveling-
wave magnetic field drive device proposed by R. Ernst et al. The experiments utilized four
different solutions—H2SO4, NaOH, NaCl, and ionic liquid ([Bmim]BF4)—each representing
distinct industrial applications. This study explored the performance of the high-frequency
power source in driving these different solutions, comparing the driving effects and thermal
effects produced at the system’s optimal working point. The experimental results show
the following: The high-frequency traveling-wave magnetic field effectively drives all four
low-conductivity liquids, achieving maximum driving speeds of 13, 9, 6, and 3 cm/s for
the H2SO4, NaOH, NaCl, and ionic liquid ([Bmim]BF4) solutions, respectively. The driving
force of the magnetic field acts uniformly throughout the container, without creating any
dead zones. By altering the phase sequence of the current in the two-phase coils and
consequently changing the direction of the traveling-wave magnetic field, the liquid’s
flow direction can be significantly changed without affecting the driving speed. The high-
frequency traveling-wave magnetic field exhibits a notable thermal effect when driving low-
conductivity liquids. At lower temperatures, the electromagnetic driving force dominates
the liquid’s flow. However, as the driving time increases, the accumulated Joule heat
gradually intensifies the influence of thermal convection on the liquid’s flow.

Higher conductivity of the driving liquid results in a greater power output from the
source and a phase difference in the two-phase coils closer to 90◦, enhancing both the
driving effect and thermal impact. This correlation is related to the impedance character-
istics of the dual-phase inductive system. Adjusting the spacing between the two-phase
coils is necessary to achieve the system’s optimal working point when driving liquids
of different conductivities. Future research on driving liquids in containers of various
sizes could involve adjustments to the circuit’s capacitor values. This investigation uti-
lizes high-frequency traveling magnetic field installations to conduct experiments on four
commonly used low-conductivity liquids in the industry. The results of this study indi-
cate that the implementation of high-frequency traveling magnetic field drive technology
holds significant promise for various industrial applications. However, further research
and exploration are required to assess its suitability in specific application scenarios. For
example, in the metallurgical industry, where stirred slurry systems consist of solid–liquid
two-phase media containing highly conductive metal blocks, future experiments should
focus on employing high-frequency traveling magnetic field installations to drive such sys-
tems, specifically investigating the effects on low-conductivity liquids which contain metal
particles or metallic liquids. Additionally, in the chemical industry, precise temperature
control is crucial for many reactions. While the high-frequency traveling-wave magnetic
field exhibits notable thermal effects when driving low-conductivity liquids, optimizing
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the installation is essential to maintain effective driving while controlling the Joule heat
generated by the liquid being processed.
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