Recent Advances in Molten Salt-Based Nanofluids as Thermal Energy Storage in Concentrated Solar Power: A Comprehensive Review
Abstract
:1. Introduction
1.1. Concentrated Solar Power (CSP) with Thermal Energy Storage (TES)
1.2. Importance of Nanofluids
1.3. Importance of Molten Salt (MS) Nanofluid for CSP
1.4. Types of MS Nanofluid Used in Previous Studies
2. Synthesis Methods and Techniques
2.1. Two-Step Method
2.2. One-Step Method
3. Experimental Techniques for Evaluation of Thermophysical Properties and Characterization of MS-Based Nanofluids
3.1. Thermal Characterization
3.1.1. DSC
3.1.2. Thermogravimetric Analysis (TGA)
3.1.3. T-History Method
3.1.4. Simultaneous Thermogravimetric Analysis (STA)
3.1.5. Transient Hot Wire Method
3.1.6. Laser Flash Method
3.1.7. Customized Concentric Cylinder Method
3.2. Material Characterization
3.2.1. Scanning Electron Microscopy (SEM)
3.2.2. Transmission Electron Microscopy (TEM)
3.2.3. Energy-Dispersive Spectroscopy (EDS)
3.2.4. Fourier-Transform Infrared Spectroscopy (FTIR)
3.2.5. X-ray Diffraction (XRD)
3.2.6. Dynamic Light Scattering (DLS) and Zeta Potential Analysis
4. Nanoparticle–Salt Interactions and Their Impact on Heat Transfer and Storage Capacity
4.1. Thermal Conductivity
4.2. Specific Heat Capacity (SHC)
5. Heat Transfer Enhancement Mechanisms in MS Nanofluids
5.1. The Heightened SHC of Nano-Sized Particles
5.2. The Interaction Energy between Solids and Fluids
5.3. The Formation of a Semisolid Layer through the Layering of Liquid Molecules at the Surface
5.4. Ion-Exchange Mechanism
5.5. Nanostructure Formation
6. Conclusions and Future Suggestions
Author Contributions
Funding
Conflicts of Interest
References
- Karellas, S.; Roumpedakis, T.C. Solar thermal power plants. In Solar Hydrogen Production: Processes, Systems and Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 179–235. [Google Scholar] [CrossRef]
- Chieruzzi, M.; Cerritelli, G.F.; Miliozzi, A.; Kenny, J.M. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Res. Lett. 2013, 8, 448. [Google Scholar] [CrossRef]
- Araki, N.; Matsuura, M.; Makino, A.; Hirata, T.; Kato, Y. Measurement of thermophysical properties of molten salts: Mixtures of alkaline carbonate salts. Int. J. Thermophys. 1988, 9, 1071–1080. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Kumar, V.; Said, Z.; Paliwal, H. A review on the application of hybrid nanofluids for parabolic trough collector: Recent progress and outlook. J. Clean. Prod. 2021, 292, 126031. [Google Scholar] [CrossRef]
- Younes, H.; Mao, M.; Murshed, S.S.; Lou, D.; Hong, H.; Peterson, G. Nanofluids: Key parameters to enhance thermal conductivity and its applications. Appl. Therm. Eng. 2022, 207, 118202. [Google Scholar] [CrossRef]
- Eastman, J.A.; Choi, S.U.S.; Li, S.; Yu, W.; Thompson, L.J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 2001, 78, 718–720. [Google Scholar] [CrossRef]
- Lee, S.; Choi, S.U.-S.; Li, S.; Eastman, J.A. Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. J. Heat Transf. 1999, 121, 280–289. [Google Scholar] [CrossRef]
- Murshed, S.M.S.; Leong, K.C.; Yang, C. Enhanced thermal conductivity of TiO2—Water based nanofluids. Int. J. Therm. Sci. 2005, 44, 367–373. [Google Scholar] [CrossRef]
- Shaikh, S.; Lafdi, K.; Ponnappan, R. Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An experimental study. J. Appl. Phys. 2007, 101, 064302. [Google Scholar] [CrossRef]
- Das, S.K.; Putra, N.; Thiesen, P.; Roetzel, W. Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids. J. Heat Transf. 2003, 125, 567–574. [Google Scholar] [CrossRef]
- Vajjha, R.S.; Das, D.K. Specific Heat Measurement of Three Nanofluids and Development of New Correlations. J. Heat Transf. 2009, 131, 071601. [Google Scholar] [CrossRef]
- Zhou, S.-Q.; Ni, R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl. Phys. Lett. 2008, 92, 093123. [Google Scholar] [CrossRef]
- Jeong, S.; Jo, B. Distinct behaviors of KNO3 and NaNO3 in specific heat enhancement of molten salt nanofluid. J. Energy Storage 2023, 57, 106209. [Google Scholar] [CrossRef]
- Parida, D.R.; Dani, N.; Basu, S. Data-driven analysis of molten-salt nanofluids for specific heat enhancement using unsupervised machine learning methodologies. Sol. Energy 2021, 227, 447–456. [Google Scholar] [CrossRef]
- Lee, D.; Jo, B. Thermal energy storage characteristics of binary molten salt nanofluids: Specific heat and latent heat. Int. J. Energy Res. 2021, 45, 3231–3241. [Google Scholar] [CrossRef]
- Li, Z.; Cui, L.; Li, B.; Du, X. Mechanism exploration of the enhancement of thermal energy storage in molten salt nanofluid. Phys. Chem. Chem. Phys. 2021, 23, 13181–13189. [Google Scholar] [CrossRef]
- Kim, H.J.; Jo, B. Anomalous Increase in Specific Heat of Binary Molten Salt-Based Graphite Nanofluids for Thermal Energy Storage. Appl. Sci. 2018, 8, 1305. [Google Scholar] [CrossRef]
- Ho, M.X.; Pan, C. Experimental investigation of heat transfer performance of molten HITEC salt flow with alumina nanoparticles. Int. J. Heat Mass Transf. 2017, 107, 1094–1103. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, X.; Ding, J.; Wang, W.; Lu, J. The effect of nano-MgO on thermal properties of ternary chloride fluid. Energy Procedia 2019, 158, 773–778. [Google Scholar] [CrossRef]
- Abir, F.M.; Barua, S.; Barua, S.; Saha, S. Numerical analysis of Marangoni effect on natural convection in two-layer fluid structure inside a two-dimensional rectangular cavity. In AIP Conference Proceedings; AIP Publishing: Melville, Long Island, NY, USA, 2019. [Google Scholar] [CrossRef]
- Kearney, D.; Herrmann, U.; Nava, P.; Kelly, B.; Mahoney, R.; Pacheco, J.; Cable, R.; Potrovitza, N.; Blake, D.; Price, H. Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J. Sol. Energy Eng. 2003, 125, 170–176. [Google Scholar] [CrossRef]
- Peiró, G.; Gasia, J.; Miró, L.; Prieto, C.; Cabeza, L.F. Influence of the heat transfer fluid in a CSP plant molten salts charging process. Renew. Energy 2017, 113, 148–158. [Google Scholar] [CrossRef]
- Alnaimat, F.; Rashid, Y. Thermal energy storage in solar power plants: A review of the materials, associated limitations, and proposed solutions. Energies 2019, 12, 4164. [Google Scholar] [CrossRef]
- Jeong, S.; Jo, B. Understanding mechanism of enhanced specific heat of single molten salt-based nanofluids: Comparison with acid-modified salt. J. Mol. Liq. 2021, 336, 116561. [Google Scholar] [CrossRef]
- Xu, Z.; Kleinstreuer, C. Concentration photovoltaic–thermal energy co-generation system using nanofluids for cooling and heating. Energy Convers. Manag. 2014, 87, 504–512. [Google Scholar] [CrossRef]
- El Far, B.; Rizvi, S.M.M.; Nayfeh, Y.; Shin, D. Study of viscosity and heat capacity characteristics of molten salt nanofluids for thermal energy storage. Sol. Energy Mater. Sol. Cells 2020, 210, 110503. [Google Scholar] [CrossRef]
- Qiao, G.; Lasfargues, M.; Alexiadis, A.; Ding, Y. Simulation and experimental study of the specific heat capacity of molten salt based nanofluids. Appl. Therm. Eng. 2017, 111, 1517–1522. [Google Scholar] [CrossRef]
- Hu, Y.; He, Y.; Zhang, Z.; Wen, D. Effect of Al2O3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications. Energy Convers. Manag. 2017, 142, 366–373. [Google Scholar] [CrossRef]
- Sang, L.; Ai, W.; Liu, T.; Wu, Y.; Ma, C. Insights into the specific heat capacity enhancement of ternary carbonate nanofluids with SiO2 nanoparticles: The effect of change in the composition ratio. RSC Adv. 2019, 9, 5288–5294. [Google Scholar] [CrossRef]
- Shin, D.; Banerjee, D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int. J. Heat Mass Transf. 2011, 54, 1064–1070. [Google Scholar] [CrossRef]
- Abir, F.M.; Shin, D. Specific Heat Capacity of Solar Salt-Based Nanofluids: Molecular Dynamics Simulation and Experiment. Materials 2024, 17, 506. [Google Scholar] [CrossRef]
- Gupta, M.; Singh, D.; Singh, S.P.; Mathur, A.; Wadhwa, S.; Jaiswal, A.K.; Singh, D.K.; Yadav, R.R. Ultrasonic and thermophysical studies of ethylene glycol nanofluids containing titania nanoparticles and their heat transfer enhancements next-generation heat transfer nanofluids for industrial applications. Johns. Matthey Technol. Rev. 2021, 65, 418–430. [Google Scholar] [CrossRef]
- Ma, B.; Shin, D.; Banerjee, D. One-step synthesis of molten salt nanofluid for thermal energy storage application—A comprehensive analysis on thermophysical property, corrosion behavior, and economic benefit. J. Energy Storage 2021, 35, 102278. [Google Scholar] [CrossRef]
- Chen, M.; Liu, J.P.; Sun, S. One-Step Synthesis of FePt Nanoparticles with Tunable Size. J. Am. Chem. Soc. 2004, 126, 8394–8395. [Google Scholar] [CrossRef]
- Said, Z.; Sundar, L.S.; Tiwari, A.K.; Ali, H.M.; Sheikholeslami, M.; Bellos, E.; Babar, H. Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Phys. Rep. 2022, 946, 1–94. [Google Scholar] [CrossRef]
- Qamar, A.; Anwar, Z.; Ali, H.; Imran, S.; Shaukat, R.; Abbas, M.M. Experimental investigation of dispersion stability and thermophysical properties of ZnO/DIW nanofluids for heat transfer applications. Alex. Eng. J. 2022, 61, 4011–4026. [Google Scholar] [CrossRef]
- Tiznobaik, H.; Shin, D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids. Int. J. Heat Mass Transf. 2013, 57, 542–548. [Google Scholar] [CrossRef]
- Alam Maruf, M.; Rizvi, S.M.M.; Noor-A-Alam, M.; Shin, D.; Haider, W.; Shabib, I. Corrosion resistance and thermal stability of sputtered Fe44Al34Ti7N15 and Al61Ti11N28 thin films for prospective application in oil and gas industry. Prog. Nat. Sci. 2021, 31, 688–697. [Google Scholar] [CrossRef]
- Alam Maruf, M.; Noor-A-Alam, M.; Haider, W.; Shabib, I. Enhancing controlled and uniform degradation of Fe by incorporating Mg and Zn aimed for bio-degradable material applications. Mater. Chem. Phys. 2022, 285, 126171. [Google Scholar] [CrossRef]
- Yinping, Z.; Yi, J. A simple method, the -history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol. 1999, 10, 201–205. [Google Scholar] [CrossRef]
- Sang, L.; Liu, T. The enhanced specific heat capacity of ternary carbonates nanofluids with different nanoparticles. Sol. Energy Mater. Sol. Cells 2017, 169, 297–303. [Google Scholar] [CrossRef]
- Yu, Q.; Lu, Y.; Zhang, X.; Yang, Y.; Zhang, C.; Wu, Y. Comprehensive thermal properties of molten salt nanocomposite materials base on mixed nitrate salts with SiO2/TiO2 nanoparticles for thermal energy storage. Sol. Energy Mater. Sol. Cells 2021, 230, 111215. [Google Scholar] [CrossRef]
- Ueki, Y.; Fujita, N.; Kawai, M.; Shibahara, M. Thermal conductivity of molten salt-based nanofluid. AIP Adv. 2017, 7, 055117. [Google Scholar] [CrossRef]
- Yaxuan, X.; Huixiang, W.; Zhenyu, W.; Yuting, W.; Qian, X.; Gang, W.; Chuan, L.; Yulong, D.; Chongfang, M. Insights into the Enhancement Mechanisms of Molten Salt Nanofluids. Int. J. Photoenergy 2022, 2022, 4912922. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, S.; Chan, K.; Hernandez, R.; Recinos, E.; Hernandez, E.; Salgado, R.; Khitun, A.; Garay, J.; Balandin, A. Thermal and magnetic properties of nanostructured densified ferrimagnetic composites with graphene—Graphite fillers. Mater. Des. 2017, 118, 75–80. [Google Scholar] [CrossRef]
- DiGuilio, R.M.; Teja, A.S. The thermal conductivity of the molten NaNO3-KNO3 eutectic between 525 and 590 K. Int. J. Thermophys. 1992, 13, 575–592. [Google Scholar] [CrossRef]
- Zhang, X.; Fujii, M. Simultaneous measurements of the thermal conductivity and thermal diffusivity of molten salts with a transient short-hot-wire method. Int. J. Thermophys. 2000, 21, 71–84. [Google Scholar] [CrossRef]
- Seo, J. Investigation of Thermophysical Properties of Enhanced Molten Salt Nanofluids for Thermal Energy Storage (TES) in Concentrated Solar Power (CSP) Systems. Ph.D. Thesis, The University of Texas at Arlington, Arlington, TX, USA, 2017. [Google Scholar]
- Wu, D.; Zhu, H.; Wang, L.; Liu, L. Critical Issues in Nanofluids Preparation, Characterization and Thermal Conductivity. Curr. Nanosci. 2009, 5, 103–112. [Google Scholar] [CrossRef]
- Rizvi, S.M.M.; Shin, D. Mechanism of heat capacity enhancement in molten salt nanofluids. Int. J. Heat Mass Transf. 2020, 161, 120260. [Google Scholar] [CrossRef]
- Mondragón, R.; Juliá, J.E.; Cabedo, L.; Navarrete, N. On the relationship between the specific heat enhancement of salt-based nanofluids and the ionic exchange capacity of nanoparticles. Sci. Rep. 2018, 8, 7532. [Google Scholar] [CrossRef]
- Wen, D.; Ding, Y. Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. J. Nanopart. Res. 2005, 7, 265–274. [Google Scholar] [CrossRef]
- Grosu, Y.; Nithiyanantham, U.; González-Fernández, L.; Faik, A. Preparation and characterization of nanofluids based on molten salts with enhanced thermophysical properties for thermal energy storage at concentrate solar power. In AIP Conference Proceedings; AIP Publishing: Melville, Long Island, NY, USA, 2019. [Google Scholar] [CrossRef]
- Zhao, Q.-G.; Hu, C.-X.; Liu, S.-J.; Guo, H.; Wu, Y.-T. The thermal conductivity of molten NaNO3, KNO3, and their mixtures. Energy Procedia 2017, 143, 774–779. [Google Scholar] [CrossRef]
- Gomez, J.C.; Calvet, N.; Starace, A.K.; Glatzmaier, G.C. Ca(NO3)2—NaNO3—KNO3 molten salt mixtures for direct thermal energy storage systems in parabolic trough plants. J. Sol. Energy Eng. 2013, 135, 021016. [Google Scholar] [CrossRef]
- Karim, M.A.; Islam, M.; Arthur, O.; Yarlagadda, P.K. Performance of graphite-dispersed Li2CO3-K2CO3 molten salt nanofluid for a direct absorption solar collector system. Molecules 2020, 25, 375. [Google Scholar] [CrossRef]
- Villada, C.; Ding, W.; Bonk, A.; Bauer, T. Engineering molten MgCl2–KCl–NaCl salt for high-temperature thermal energy storage: Review on salt properties and corrosion control strategies. Sol. Energy Mater. Sol. Cells 2021, 232, 111344. [Google Scholar] [CrossRef]
- Luo, J.; Deng, C.K.; Tariq, N.U.H.; Li, N.; Han, R.F.; Liu, H.H.; Wang, J.Q.; Cui, X.Y.; Xiong, T.Y. Corrosion behavior of SS316L in ternary Li2CO3–Na2CO3–K2CO3 eutectic mixture salt for concentrated solar power plants. Sol. Energy Mater. Sol. Cells 2020, 217, 110679. [Google Scholar] [CrossRef]
- Grosu, Y.; Anagnostopoulos, A.; Navarro, M.E.; Ding, Y.; Faik, A. Inhibiting hot corrosion of molten Li2CO3–Na2CO3–K2CO3 salt through graphitization of construction materials for concentrated solar power. Sol. Energy Mater. Sol. Cells 2020, 215, 110650. [Google Scholar] [CrossRef]
- Rong, Z.; Ding, J.; Wang, W.; Pan, G.; Liu, S. Ab-initio molecular dynamics calculation on microstructures and thermophysical properties of NaCl–CaCl2–MgCl2 for concentrating solar power. Sol. Energy Mater. Sol. Cells 2020, 216, 110696. [Google Scholar] [CrossRef]
- Nayfeh, Y.; Rizvi, S.M.M.; El Far, B.; Shin, D. In situ synthesis of alumina nanoparticles in a binary carbonate salt eutectic for enhancing heat capacity. Nanomaterials 2020, 10, 2131. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Cabedo, P.; Mondragon, R.; Hernandez, L.; Martinez-Cuenca, R.; Cabedo, L.; Julia, J.E. Increment of specific heat capacity of solar salt with SiO2 nanoparticles. Nanoscale Res. Lett. 2014, 9, 582. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Lu, Y.; Wu, Y.; Ma, C. Effect of SiO2 nanoparticles on specific heat capacity of low-melting-point eutectic quaternary nitrate salt. Sol. Energy Mater. Sol. Cells 2018, 179, 66–71. [Google Scholar] [CrossRef]
- Chieruzzi, M.; Cerritelli, G.F.; Miliozzi, A.; Kenny, J.M.; Torre, L. Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature. Sol. Energy Mater. Sol. Cells 2017, 167, 60–69. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.-T.; Zhang, L.-D.; Wang, X.; Ma, C.-F. Experimental study on thermophysical properties of molten salt nanofluids prepared by high-temperature melting. Sol. Energy Mater. Sol. Cells 2018, 191, 209–217. [Google Scholar] [CrossRef]
- Dudda, B.; Shin, D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications. Int. J. Therm. Sci. 2013, 69, 37–42. [Google Scholar] [CrossRef]
- Riazi, H.; Murphy, T.; Webber, G.B.; Atkin, R.; Tehrani, S.S.M.; Taylor, R.A. Specific heat control of nanofluids: A critical review. Int. J. Therm. Sci. 2016, 107, 25–38. [Google Scholar] [CrossRef]
- Tian, H.; Du, L.; Huang, C.; Wei, X.; Lu, J.; Wang, W.; Ding, J. Enhanced specific heat capacity of binary chloride salt by dissolving magnesium for high-temperature thermal energy storage and transfer. J. Mater. Chem. A 2017, 5, 14811–14818. [Google Scholar] [CrossRef]
- Jo, B.; Banerjee, D. Effect of solvent on specific heat capacity enhancement of binary molten salt-based carbon nanotube nanomaterials for thermal energy storage. Int. J. Therm. Sci. 2015, 98, 219–227. [Google Scholar] [CrossRef]
- Lasfargues, M.; Bell, A.; Ding, Y. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications. J. Nanopart. Res. 2016, 18, 150. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Du, X.; Awad, A.; Wen, D. Thermal energy storage enhancement of a binary molten salt via in-situ produced nanoparticles. Int. J. Heat Mass Transf. 2017, 104, 658–664. [Google Scholar] [CrossRef]
- Liu, M.; Severino, J.; Bruno, F.; Majewski, P. Experimental investigation of specific heat capacity improvement of a binary nitrate salt by addition of nanoparticles/microparticles. J. Energy Storage 2019, 22, 137–143. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Z.; Gao, H.; He, Y. Forced convective heat transfer of solar salt-based Al2O3 nanofluids using lattice Boltzmann method. Therm. Sci. Eng. Prog. 2018, 8, 2–9. [Google Scholar] [CrossRef]
- Riazi, H.; Mesgari, S.; Ahmed, N.A.; Taylor, R.A. The effect of nanoparticle morphology on the specific heat of nanosalts. Int. J. Heat Mass Transf. 2016, 94, 254–261. [Google Scholar] [CrossRef]
- Lasfargues, M.; Geng, Q.; Cao, H.; Ding, Y. Mechanical dispersion of nanoparticles and its effect on the specific heat capacity of impure binary nitrate salt mixtures. Nanomaterials 2015, 5, 1136–1146. [Google Scholar] [CrossRef]
- Sang, L.; Ai, W.; Wu, Y.; Ma, C. SiO2-ternary carbonate nanofluids prepared by mechanical mixing at high temperature: Enhanced specific heat capacity and thermal conductivity. Sol. Energy Mater. Sol. Cells 2019, 203, 110193. [Google Scholar] [CrossRef]
- Yuan, F.; Li, M.-J.; He, Y.-L.; Tao, W.-Q. A novel model for predicting the effective specific heat capacity of molten salt doped with nanomaterial for solar energy application. Appl. Therm. Eng. 2021, 195, 117129. [Google Scholar] [CrossRef]
- Awad, A.; Navarro, H.; Ding, Y.; Wen, D. Thermal-physical properties of nanoparticle-seeded nitrate molten salts. Renew. Energy 2018, 120, 275–288. [Google Scholar] [CrossRef]
- Ho, M.X.; Pan, C. Optimal concentration of alumina nanoparticles in molten hitec salt to maximize its specific heat capacity. Int. J. Heat Mass Transf. 2014, 70, 174–184. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Li, J.; Wang, H.; Zhao, Y. Improving thermal energy storage and transfer performance in solar energy storage: Nanocomposite synthesized by dispersing nano boron nitride in solar salt. Sol. Energy Mater. Sol. Cells 2021, 232, 111378. [Google Scholar] [CrossRef]
- Ben Romdhane, S.; Amamou, A.; Ben Khalifa, R.; Saïd, N.M.; Younsi, Z.; Jemni, A. A review on thermal energy storage using phase change materials in passive building applications. J. Build. Eng. 2020, 32, 101563. [Google Scholar] [CrossRef]
- Shin, D.; Tiznobaik, H.; Banerjee, D. Specific heat mechanism of molten salt nanofluids. Appl. Phys. Lett. 2014, 104, 121914. [Google Scholar] [CrossRef]
- Khanafer, K.; Vafai, K. A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf. 2011, 54, 4410–4428. [Google Scholar] [CrossRef]
- Timofeeva, E.V.; Gavrilov, A.N.; McCloskey, J.M.; Tolmachev, Y.V.; Sprunt, S.; Lopatina, L.M.; Selinger, J.V. Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory. Phys. Rev. E 2007, 76, 061203. [Google Scholar] [CrossRef] [PubMed]
- Tiznobaik, H.; Shin, D. Experimental validation of enhanced heat capacity of ionic liquid-based nanomaterial. Appl. Phys. Lett. 2013, 102, 173906. [Google Scholar] [CrossRef]
- Abir, F.M.; Shin, D. Molecular dynamics study on the impact of the development of dendritic nanostructures on the specific heat capacity of molten salt nanofluids. J. Energy Storage 2023, 71, 107850. [Google Scholar] [CrossRef]
Base Salt System | Nanoparticle (NP) | NP Size nm | NP% | Max. Cp% | Ref. |
---|---|---|---|---|---|
NaNO3-KNO3 (60:40 wt.) | SiO2 | 15.2 | 1.0 | 15.00 | [26] |
KNO3 | SiO2 | 20–25 | 4.0 | 15.70 | [27] |
NaNO3-KNO3 (60:40 wt.) | Al2O3 | 20 | 2.0 | 8.30 | [28] |
Li2CO3-K2CO3 (62:38 mole) | Graphite | - | 1.0 | 14.3 | [15] |
NaNO3-KNO3 (60:40 wt.) | SiO2-Al2O3 | 2–200 | 1.0 | 22.50 | [2] |
NaNO3-KNO3-NaNO2 (7:53:40 mole) | Al2O3 | 40 | 0.063 | 19.90 | [18] |
K2CO3-Li2CO3-Na2CO3 (4:4:2 wt.) | SiO2 | 20 | 1.0 | 113.70 | [29] |
BaCl2-NaCl-CaCl2-LiCl (68.49:24.784:79.206:25.52) | SiO2 | 26 | 1.0 | 14.50 | [30] |
MS System | Nanoparticles | Best Concentration % wt. | Thermal Conductivity/Diffusivity Enhancement (%) | Ref. |
---|---|---|---|---|
NaNO3-KNO3 | Silica | 1.0 | 60.9 | [55] |
NaNO3-KNO3 | Multi-Walled Carbon Nanotubes | 0.3 | 293.0 | [56] |
Li2CO3-K2CO3 | Single-Walled Carbon Nanotubes | 1.5 | 57.0 | [57] |
MgCl2-KCl-NaCl | Alumina | 0.7 | 48.0 | [58] |
Li2CO3-K2CO3-Na2CO3 | Carbon Nanotubes | 1.0 | 149.2 | [59] |
Li2CO3-K2CO3-Na2CO3 | Magnesium Oxide | 10.0 | 155.9 | [60] |
NaNO3-KNO3 | Silica | 1.0 | 50.0 (Diffusivity) | [55] |
NaCl-CaCl2-MgCl2 | Expanded Graphite | 1.0 | 78.0 | [61] |
MS System | Nanoparticle (NP) | Synthesis Method | NP Size nm | NP% | Max. Cp% | Ref. |
---|---|---|---|---|---|---|
NaNO3-KNO3 (60:40 wt.) | SiO2 | LS [31] | 12 | 1.0 | 25.03 | [63] |
Ca(NO3)2.4H2O-KNO3-NaNO3-LiNO3 (2:5:1:2 wt.) | SiO2 | Mechanical dispersion | 20 | 1.0 | 17.00 | [64] |
NaNO3-KNO3 (60:40 wt.) | SiO2 | LS [31] | ~15.2 | 1.0 | 15.00 | [26] |
NaNO3-KNO3 (60:40 wt.) | Al2O3 | LS [31] | 13 | 1.0 | 5.90 | [2] |
NaNO3-KNO3 (60:40 wt.) | SiO2-Al2O3 | LS [31] | 2–200 | 1.0 | 22.50 | [2] |
NaNO3-KNO3 (60:40 wt.) | SiO2-Al2O3 | Direct method | 2–200 | 1.0 | 18.60 | [65] |
Ca(NO3)2-KNO3-NaNO3-LiNO3 (2:6:1:2 wt.) | SiO2 | Direct method | 20 | 0.5 | 24.50 | [66] |
NaNO3-KNO3 (60:40 wt.) | SiO2 | LS [31] | 60 | 1.0 | 28.00 | [67] |
KNO3 | SiO2 | LS [31] | 20–25 | 4.0 | 15.70 | [27] |
Li2CO3-K2CO3 (62:38 mol) | SiO2 | LS [31] | 2–20 | 1.5 | 124.00 | [68] |
NaCl-CaCl2 (52:48 mol) | Mg | Direct method | - | 2.0 | 108.49 | [69] |
NaNO3-KNO3 (60:40 wt.) | Al2O3 | LS [31] | 20 | 2.0 | 8.30 | [28] |
Li2CO3-K2CO3 (62:38 mol) | CNT | LS [31] | 10–30 | 1.0 | 29.30 | [70] |
NaNO3-KNO3 (60:40 wt.) | TiO2 | In-situ method | 16.35 | 3.0 | 7.50 | [71] |
NaNO3-KNO3 (60:40 wt.) | CuO | In-situ method | 10-20 | 0.5 | 11.48 | [72] |
NaNO3-KNO3 (60:40 wt.) | SiO2 | LS [31] | 250+ | 3.0 | 9.70 | [73] |
NaNO3-KNO3 (60:40 wt.) | Al2O3 | LS [31] | 5~15 | 1.0 | 50.00 | [33] |
NaNO3-KNO3 (60:40 wt.) | Al2O3 | In-situ method | - | 1.0 | 30.00 | [33] |
NaNO3-KNO3 (60:40 wt.) | Al2O3 | Freeze drying | 10–20 | 2.0 | 12.33 | [74] |
NaNO3-KNO3 (60:40 wt.) | SiO2 | Direct method | 20 | 1.0 | 17.60 | [75] |
NaNO3-KNO3 (60:40 wt.) | TiO2 | Mechanical dispersion | 34 | 0.5 | 4.95 | [76] |
NaNO3-KNO3 (60:40 wt.) | Cuo | Mechanical dispersion | 29 | 0.1 | 10.48 | [76] |
KNO3 | SiO2 | LS [31] | 5–15 | 1.0 | 28.06 | [24] |
KNO3 | SiO2 | LS [31] | 5–15 | 0.5 | 12.23 | [24] |
K2CO3-Li2CO3-Na2CO3 (4:4:2 wt.) | SiO2 | LS [31] | 20 | 1.0 | 113.70 | [29] |
K2CO3-Li2CO3-Na2CO3 (4:4:2 wt.) | SiO2 | Mechanical mixing | 20 | 1.0 | 38.50 | [77] |
Li2CO3-K2CO3 (61.0:39.0 mol) | CNT | Ball milling method | - | 1.75 | 16.02 | [78] |
KNO3 | Fe2O3 | LS [31] | 20–40 | 1.0 | 7.56 | [79] |
NaNO3-KNO3-NaNO2 (7:53:40 mol) | Al2O3 | N2 gas stirred process | 40 | 0.063 | 19.90 | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abir, F.M.; Altwarah, Q.; Rana, M.T.; Shin, D. Recent Advances in Molten Salt-Based Nanofluids as Thermal Energy Storage in Concentrated Solar Power: A Comprehensive Review. Materials 2024, 17, 955. https://doi.org/10.3390/ma17040955
Abir FM, Altwarah Q, Rana MT, Shin D. Recent Advances in Molten Salt-Based Nanofluids as Thermal Energy Storage in Concentrated Solar Power: A Comprehensive Review. Materials. 2024; 17(4):955. https://doi.org/10.3390/ma17040955
Chicago/Turabian StyleAbir, Fahim Mahtab, Qutaiba Altwarah, Md Tasnim Rana, and Donghyun Shin. 2024. "Recent Advances in Molten Salt-Based Nanofluids as Thermal Energy Storage in Concentrated Solar Power: A Comprehensive Review" Materials 17, no. 4: 955. https://doi.org/10.3390/ma17040955
APA StyleAbir, F. M., Altwarah, Q., Rana, M. T., & Shin, D. (2024). Recent Advances in Molten Salt-Based Nanofluids as Thermal Energy Storage in Concentrated Solar Power: A Comprehensive Review. Materials, 17(4), 955. https://doi.org/10.3390/ma17040955