Inhibition Effect of Triphenylmethane Dyes for the Corrosion of Carbon Steel in CO2-Saturated NaCl Corrosion Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Weight Loss Measurements
2.3. Electrochemical Measurements
2.4. Surface Analysis
2.5. Quantum Chemical Calculations
2.6. Molecular Dynamics (MD) Simulation
3. Results and Discussion
3.1. Weight Loss Measurements
3.2. Electrochemical Measurements
3.2.1. EIS Measurements
3.2.2. PDP Measurements
3.3. Adsorption Thermodynamic and Kinetic Analysis
3.4. Surface Characterization
3.4.1. Surface Morphology
3.4.2. XPS Analysis
3.4.3. CLSM Analysis
3.5. Quantum Chemical Calculations
3.6. MD Simulation
3.7. Inhibition Mechanism of Triphenylmethane Dyes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.H.; Hou, B.S.; Li, Y.Y.; Lei, Y.; Wang, X.; Liu, H.F.; Zhang, G.A. Two amino acid derivatives as high efficient green inhibitors for the corrosion of carbon steel in CO2-saturated formation water. Corros. Sci. 2021, 189, 109596. [Google Scholar] [CrossRef]
- Chen, W.; Mo, L.; He, Y.S.; Chen, L.L. Field evaluation and application of corrosion inhibitor used insour gas field. Chem. Eng. Oil Gas 2022, 51, 84–87. [Google Scholar] [CrossRef]
- Shamsa, A.; Barker, R.; Hua, Y.; Barmatov, E.; Hughes, T.L.; Neville, A. Impact of corrosion products on performance of imidazoline corrosion inhibitor on X65 carbon steel in CO2 environments. Corros. Sci. 2021, 185, 109423. [Google Scholar] [CrossRef]
- Al-Rashed, O.; Abdel Nazeer, A. Effectiveness of some novel ionic liquids on mild steel corrosion protection in acidic environment: Experimental and theoretical inspections. Materials 2022, 15, 2326. [Google Scholar] [CrossRef] [PubMed]
- Retnanto, A.; Yrac, R.; Shaikh, A.; Alagha, R.; Alsulaiti, F.; Chagouri, T. Experimental evaluation of corrosion inhibitors for completion fluids in the petroleum production systems. J. Pet. Explor. Prod. Technol. 2023. [Google Scholar] [CrossRef]
- Yuan, X.; Xiao, J.; Zhang, B.B.; Wang, X.; Zhu, Q.; Cai, D.Q.; Wang, M. Study on wellbore corrosion control technoloty in sour gas wells. Chem. Eng. Oil Gas 2017, 46, 76–82. [Google Scholar] [CrossRef]
- Attia, M.M.; Soliman, K.A.; Eid, S.; Mabrouk, E.M. Experimental and theoretical study on some azo chromotropic acid dyes compounds as inhibitor for carbon steel corrosion in sulfuric acid. J. Iran. Chem. Soc. 2021, 19, 655–664. [Google Scholar] [CrossRef]
- Khalifa, M.E.; El Azab, I.H.; Gobouri, A.A.; Mersal, G.A.M.; Alharthi, S.; Saracoglu, M.; Kandemirli, F.; Ryl, J.; Amin, M.A. Adsorption behavior and corrosion inhibitive characteristics of newly synthesized cyano-benzylidene xanthenes on copper/sodium hydroxide interface: Electrochemical, X-ray photoelectron spectroscopy and theoretical studies. J. Colloid Interface Sci. 2020, 580, 108–125. [Google Scholar] [CrossRef] [PubMed]
- Bedair, M.A.; Elaryian, H.M.; Bedair, A.H.; Aboushahba, R.M.; El-Aziz, S.; Fouda, A. Novel coumarin-buta-1,3-diene conjugated donor–acceptor systems as corrosion inhibitors for mild steel in 1.0 M HCl: Synthesis, electrochemical, computational and SRB biological resistivity. Inorg. Chem. Commun. 2023, 148, 110304. [Google Scholar] [CrossRef]
- Vashishth, P.; Bairagi, H.; Narang, R.; Shukla, S.K.; Mangla, B. Thermodynamic and electrochemical investigation of inhibition efficiency of green corrosion inhibitor and its comparison with synthetic dyes on MS in acidic medium. J. Mol. Liq. 2022, 365, 120042. [Google Scholar] [CrossRef]
- Kohl, M.; Alafid, F.; Boštíková, K.; Bouška, M.; Krejčová, A.; Svoboda, J.; Slang, S.; Michalíčková, L.; Kalendová, A.; Hrdina, R.; et al. New Azo dyes-based Mg complex pigments for optimizing the anti-corrosion efficiency of Zinc-pigmented epoxy ester organic coatings. Coatings 2023, 13, 1276. [Google Scholar] [CrossRef]
- Ganjoo, R.; Verma, C.; Kumar, A.; Quraishi, M.A. Colloidal and interface aqueous chemistry of dyes: Past, present and future scenarios in corrosion mitigation. Adv. Colloid Interface 2023, 311, 102832. [Google Scholar] [CrossRef] [PubMed]
- Ghelichkhah, Z.; Dehkharghani, F.K.; Sharifi-Asl, S.; Obot, I.B.; Macdonald, D.D.; Farhadi, K.; Avestan, M.S.; Petrossians, A. The inhibition of type 304LSS general corrosion in hydrochloric acid by the New Fuchsin compound. Corros. Sci. 2021, 178, 109072. [Google Scholar] [CrossRef]
- Li, X.; Deng, S.; Fu, H. Inhibition effect of methyl violet on the corrosion of cold rolled steel in 1.0 M HCl solution. Corros. Sci. 2010, 52, 3413–3420. [Google Scholar] [CrossRef]
- Jafari, H.; Sayin, K. Electrochemical and theoretical studies of adsorption and corrosion inhibition of aniline violet compound on carbon steel in acidic solution. J. Taiwan Ins. Chem. Eng. 2015, 56, 181–190. [Google Scholar] [CrossRef]
- Oguzie, E.E.; Akalezi, C.O.; Enenebeaku, C.K.; Aneke, J.N. Corrosion inhibition and adsorption behavior of malachite green dye on Aluminum corrosion. Chem. Eng. Commun. 2010, 198, 46–60. [Google Scholar] [CrossRef]
- Tsangaraki-Kaplanoglou, I.; Kanta, A.; Theohari, S.; Ninni, V. Acid-dyes as corrosion inhibitors for mechanically pretreated aluminum. Anti-Corros. Method Mater. 2010, 57, 6–12. [Google Scholar] [CrossRef]
- Zheng, Z.; Hu, J.; Eliaz, N.; Zhou, L.; Yuan, X.; Zhong, X. Mercaptopropionic acid-modified oleic imidazoline as a highly efficient corrosion inhibitor for carbon steel in CO2-saturated formation water. Corros. Sci. 2022, 194, 109930. [Google Scholar] [CrossRef]
- Malinowski, S.; Wróbel, M.; Woszuk, A. Quantum chemical analysis of the corrosion inhibition potential by aliphatic amines. Materials 2021, 14, 6197. [Google Scholar] [CrossRef]
- AlShamaileh, E.; Altwaiq, A.M.; Al-Mobydeen, A.; Hamadneh, I.; Al-Saqarat, B.S.; Hamaideh, A.; Moosa, I.S. The corrosion inhibition of montmorillonite nanoclay for steel in acidic solution. Materials 2023, 16, 6291. [Google Scholar] [CrossRef]
- Hamani, H.; Daoud, D.; Benabid, S.; Douadi, T. Electrochemical, density functional theory (DFT) and molecular dynamic (MD) simulations studies of synthesized three news Schiff bases as corrosion inhibitors on mild steel in the acidic environment. J. Indian Chem. Soc. 2022, 99, 100492. [Google Scholar] [CrossRef]
- Singh, R.; Prasad, D.; Safi, Z.; Wazzan, N.; Guo, L. De-scaling, experimental, DFT, and MD-simulation studies of unwanted growing plant as natural corrosion inhibitor for SS-410 in acid medium. Colloid Surface A 2022, 649, 129333. [Google Scholar] [CrossRef]
- Berrissoul, A.; Ouarhach, A.; Benhiba, F.; Romane, A.; Guenbour, A.; Outada, H.; Dafali, A.; Zarrouk, A. Exploitation of a new green inhibitor against mild steel corrosion in HCl: Experimental, DFT and MD simulation approach. J. Mol. Liq. 2022, 349, 118102. [Google Scholar] [CrossRef]
- Abeng, F.E.; Anadebe, V.C. Combined electrochemical, DFT/MD-simulation and hybrid machine learning based on ANN-ANFIS models for prediction of doxorubicin drug as corrosion inhibitor for mild steel in 0.5 M H2SO4 solution. Comput. Theor. Chem. 2023, 1229, 114334. [Google Scholar] [CrossRef]
- Jiang, J.J.; Tang, Y.; Huang, L.; Peng, L.; Xu, Y.; Wei, G.; Li, Y. Nano-emulsification method as a strategy for oil soluble corrosion inhibitor transform to water soluble. J. Mol. Liq. 2023, 386, 122420. [Google Scholar] [CrossRef]
- Azzouni, D.; Haldhar, R.; Salim, R.; Ech-chihbi, E.; Mrani, S.A.; Rais, Z.; Azam, M.; Kim, S.C.; Taleb, M. Adsorption treatment residues as novel ecological corrosion inhibitors applied to mild steel in a molar hydrochloric acid medium: Experimental studies and surface characterization. Mater. Today Commun. 2023, 35, 106181. [Google Scholar] [CrossRef]
- Du, C.; Wang, X.; Chen, Y.; Lu, X.; Wang, H. Synergistic effect between two quaternary ammonium salts and thiourea as corrosion inhibitors for X70 steels in CO2 saturated 3.5% NaCl solution. Int. J. Electrochem. Sci. 2024, 19, 100443. [Google Scholar] [CrossRef]
- Moumeni, O.; Mehri, M.; Kerkour, R.; Boublia, A.; Mihoub, F.; Rebai, K.; Khan, A.A.; Erto, A.; Darwish, A.S.; Lemaoui, T.; et al. Experimental and detailed DFT/MD simulation of α-aminophosphonates as promising corrosion inhibitor for XC48 carbon steel in HCl environment. J. Taiwan Inst. Chem. Eng. 2023, 147, 104918. [Google Scholar] [CrossRef]
- Boutouil, A.; Laamari, M.R.; Elazhary, I.; Bahsis, L.; Anane, H.; Stiriba, S.-E. Towards a deeper understanding of the inhibition mechanism of a new 1,2,3-triazole derivative for mild steel corrosion in the hydrochloric acid solution using coupled experimental and theoretical methods. Mater. Chem. Phys. 2020, 241, 122420. [Google Scholar] [CrossRef]
- Badea, G.E.; Fodor, A.; Petrehele, A.I.G.; Maior, I.; Toderaș, M.; Morgovan, C.M. Evaluation of phosphopolyoxometalates with mixed Addenda (Mo, W, V) as corrosion inhibitors for steels. Materials 2023, 16, 7600. [Google Scholar] [CrossRef]
- Habibullah, M.I.; Veawab, A. Cysteine as an alternative eco-friendly corrosion inhibitor for absorption-based carbon capture plants. Materials 2023, 16, 3496. [Google Scholar] [CrossRef] [PubMed]
- Oguzie, E.E.; Njoku, V.O.; Enenebeaku, C.K.; Akalezi, C.O.; Obi, C. Effect of hexamethylpararosaniline chloride (crystal violet) on mild steel corrosion in acidic media. Corros. Sci. 2008, 50, 3480–3486. [Google Scholar] [CrossRef]
- Oguzie, E.E.; Akalezi, C.; Enenebeaku, C. Inhibitive effect of methyl green dye on the corrosion of low carbon steel in acidic media. Pigment Resin Technol. 2009, 38, 359–365. [Google Scholar] [CrossRef]
- Ashassi-Sorkhabi, H.; Seifzadeh, D. Analysis of raw and trend removed EN data in time domain to evaluate corrosion inhibition effects of New Fuchsin dye on steel corrosion and comparison of results with EIS. J. Appl. Electrochem. 2008, 38, 1545–1552. [Google Scholar] [CrossRef]
- Sivakumar, V.; Velumani, K.; Rameshkumar, S. Colocid dye—A potential corrosion inhibitor for the corrosion of mild steel in acid media. Mater. Res. 2018, 21, 167. [Google Scholar] [CrossRef]
- Youssif, M.M.; El-Nahass, M.N.; Fayed, T.A.; El-Daly, H.A.; El-Gamil, M.M.; Eldesoky, A.M. Tunable anticorrosive effects of newly synthesized Benzothiazole Azo dyes by potassium iodide synergism for carbon steel in 1 M HCl: Combined experimental and theoretical studies. ACS Omega 2023, 8, 28314–28332. [Google Scholar] [CrossRef] [PubMed]
- Minagalavar, R.L.; Rajappa, S.K.; Rathod, M.R.; Sajjan, A.M. Investigation of Laurus Tamala leaves extract as an environmentally acceptable corrosion inhibitor for soft steel in 1M HCl: Electrochemical, DFT, and surface characterization techniques. Indian J. Chem. Technol. 2023, 30, 492–505. [Google Scholar] [CrossRef]
- Masuku, G.M.; Nxumalo, W.; Kabanda, M.M.; Murulana, L.C.; Bahadur, I. Quinoxaline derivatives as corrosion inhibitors of zinc in 1.0 M hydrochloric and sulphuric acid solutions: Adsorption, electrochemical, spectroscopic, and computational studies. J. Mol. Liq. 2023, 386, 122458. [Google Scholar] [CrossRef]
- Corrales-Luna, M.; Le Manh, T.; Romero-Romo, M.; Palomar-Pardavé, M.; Arce-Estrada, E.M. 1-Ethyl 3-methylimidazolium thiocyanate ionic liquid as corrosion inhibitor of API 5L X52 steel in H2SO4 and HCl media. Corros. Sci. 2019, 153, 85–99. [Google Scholar] [CrossRef]
- Anadebe, V.C.; Chukwuike, V.I.; Selvaraj, V.; Pandikumar, A.; Barik, R.C. Sulfur-doped graphitic carbon nitride (S-g-C3N4) as an efficient corrosion inhibitor for X65 pipeline steel in CO2-saturated 3.5% NaCl solution: Electrochemical, XPS and Nanoindentation Studies. Process Saf. Environ. 2022, 164, 715–728. [Google Scholar] [CrossRef]
- Palumbo, G.; Kollbek, K.; Wirecka, R.; Bernasik, A.; Górny, M. Effect of CO2 partial pressure on the corrosion inhibition of N80 carbon steel by Gum Arabic in a CO2-water saline environment for shale oil and gas industry. Materials 2020, 13, 4245. [Google Scholar] [CrossRef]
- Emori, W.; Jiang, S.L.; Okonkwo, P.C.; Duan, S.; Zheng, Y.G. Time- and temperature-dependence of the anticorrosion effect of sodium sulfide on Q235 steel for post-combustion CO2 capture system. Results Chem. 2022, 4, 100300. [Google Scholar] [CrossRef]
- Shaikhah, D.; Ritacca, A.G.; Ritacco, I.; Matamorose-Veloza, A.; Taleb, W.; Mohamed-Said, M.; Cowe, B.; Neville, A.; Camellone, M.F.; Barker, R. Engineering of corrosion product-polymer hybrid layers for enhanced CO2 corrosion protection of carbon steel part two: Computational investigation and surface characterisation. Polymer 2022, 250, 124776. [Google Scholar] [CrossRef]
- Anadebe, V.C.; Chukwuike, V.I.; Ramanathan, S.; Barik, R.C. Cerium-based metal organic framework (Ce-MOF) as corrosion inhibitor for API 5L X65 steel in CO2-saturated brine solution: XPS, DFT/MD-simulation, and machine learning model prediction. Process Saf. Environ. Prot. 2022, 168, 499–512. [Google Scholar] [CrossRef]
- Martinez, A.; Narayanan, D.; Case, R.; Castaneda, H.; Radwan, A.B.; Bhadra, J.; Al-Qahtani, N.H.; Abdullah, A.M.; Al-Thani, N.; El-Haddad, M.A.M. Pit initiation mechanism of modified martensitic 13Cr stainless steel exposed to CO2 saturated acidic environments at elevated temperatures induced by Ti (C, N) inclusions. Electrochim. Acta 2024, 475, 143655. [Google Scholar] [CrossRef]
- da Cunha, J.N.; Evangelista, B.D.V.; Xavier, A.V.; da Silva, T.U.; de Oliveira, S.M.; de Araújo, J.R.; Archanjo, B.S.; de Paula Machado, S.; Rezende, M.J.C.; das Chagas Almeida, T.; et al. Study of furfural derivatives as a possible green corrosion inhibitor for mild steel in CO2-saturated formation water. Corros. Sci. 2023, 212, 110907. [Google Scholar] [CrossRef]
- Ho, M.Y.; Geddes, J.; Hughes, T.L.; Barmatov, E. Effect of copper content of AISI 1018 mild carbon steel on inhibition efficiency of imidazoline-based corrosion inhibitor in CO2-saturated brine. Corros. Sci. 2023, 224, 111478. [Google Scholar] [CrossRef]
- De Kerf, T.; Hasheminejad, N.; Blom, J.; Vanlanduit, S. Qualitative comparison of 2D and 3D atmospheric corrosion detection methods. Materials 2021, 14, 3621. [Google Scholar] [CrossRef]
- Handoko, W.; Pahlevani, F.; Sahajwalla, V. Effect of austenitisation temperature on corrosion resistance properties of dual-phase high-carbon steel. J. Mater. Sci. 2019, 131, 13775–13786. [Google Scholar] [CrossRef]
- Okon Eddy, N.; Odiongenyi, A.O.; Ebenso, E.E.; Garg, R. Plant wastes as alternative sources of sustainable and green corrosion inhibitors in different environments. Corros. Eng. Sci. Technol. 2023, 58, 521–533. [Google Scholar] [CrossRef]
- Abdoune, S.; Aliouane, N.; Hellal, A.; Al-Noaimi, M.; Sait, N.; Chafai, N.; Toukal, L.; Ait Ahmed, N. Two α-aminophosphonics acids as corrosion inhibitors for carbon steel in 0.5M HCl: Electrochemical and DFT/MD simulation. J. Mol. Struct. 2024, 1295, 136673. [Google Scholar] [CrossRef]
Inhibitors | Concentration (ppm) | Corrosion Rate (mm/y) | Inhibition Efficiency (%) |
---|---|---|---|
Blank | 0 | 0.323 ± 0.005 | — |
CV | 100 | 0.050 ± 0.002 | 82.8 ± 0.3 |
MG | 100 | 0.102 ± 0.004 | 64.1 ± 0.7 |
FB | 100 | 0.143 ± 0.002 | 49.8 ± 0.5 |
Temperature (°C) | Concentration (ppm) | icorr (A/cm2) | Ecorr (V vs. SCE) | Ƞp (%) |
---|---|---|---|---|
25 | 0 | (5.62 ± 0.15) × 10−5 | −0.714 ± 0.003 | |
25 | (2.36 ± 0.08) × 10−5 | −0.709 ± 0.002 | 58.01 ± 0.03 | |
50 | (7.33 ± 0.21) × 10−6 | −0.708 ± 0.002 | 86.96 ± 0.01 | |
75 | (4.06 ± 0.03) × 10−6 | −0.735 ± 0.001 | 92.78 ± 0.01 | |
100 | (2.90 ± 0.21) × 10−6 | −0.774 ± 0.002 | 94.84 ± 0.01 | |
150 | (2.88 ± 0.18) × 10−6 | −0.758 ± 0.002 | 94.89 ± 0.01 | |
40 | 0 | (1.33 ± 0.31) × 10−4 | −0.712 ± 0.003 | |
25 | (5.82 ± 0.11) × 10−5 | −0.713 ± 0.001 | 56.13 ± 0.03 | |
50 | (7.45 ± 0.13) × 10−5 | −0.706 ± 0.004 | 71.31 ± 0.02 | |
75 | (3.51 ± 0.25) × 10−5 | −0.780 ± 0.002 | 73.54 ± 0.01 | |
100 | (1.48 ± 0.35) × 10−5 | −0.694 ± 0.002 | 88.87 ± 0.01 | |
150 | (7.15 ± 0.26) × 10−6 | −0.756 ± 0.001 | 94.61 ± 0.01 | |
60 | 0 | (2.71 ± 0.24) × 10−4 | −0.711 ± 0.003 | |
25 | (1.67 ± 0.05) × 10−4 | −0.714 ± 0.002 | 38.29 ± 0.03 | |
50 | (7.94 ± 0.18) × 10−5 | −0.714 ± 0.002 | 70.72 ± 0.02 | |
75 | (7.88 ± 0.06) × 10−5 | −0.715 ± 0.001 | 70.93 ± 0.02 | |
100 | (6.64 ± 0.19) × 10−5 | −0.707 ± 0.002 | 75.51 ± 0.01 | |
150 | (1.91 ± 0.14) × 10−5 | −0.703 ± 0.003 | 92.94 ± 0.01 |
Dye Molecules | Medium | Material | Concentration | Temperature | η % | Method | Ref. |
---|---|---|---|---|---|---|---|
Crystal violet | CO2-saturated 5% NaCl solution | L360N | 150 | 25 | 94.9 | PDP | This work |
Crystal violet | CO2-saturated 5% NaCl solution | L360N | 100 | 40 | 82.8 | WL | This work |
Malachite green | CO2-saturated 5% NaCl solution | L360N | 100 | 40 | 64.1 | WL | This work |
Fuchsine basic | CO2-saturated 5% NaCl solution | L360N | 100 | 40 | 49.8 | WL | This work |
Malachite green | 1.0 mol/L HCl | AA1060 | 360 | 30 | 77.8 | WL | [16] |
Crystal violet | 0.5 mol/L H2SO4 | mild steel | 4 | 30 | 56.7 | WL | [32] |
Methyl green | 0.5 mol/L H2SO4 | low carbon steel | 400 | 60 | 73 | WL | [33] |
Fuchsine basic | 1.0 mol/L HCl | steel | 200 | 25 | 99.0 | EIS | [34] |
Colocid dye | 1.0 mol/L HCl | mild steel | 600 | 25 | 89.3 | WL | [35] |
Inhibitors | Slope | Intercept (mg/L) | Kabs (L/mg) | (KJ/mol) | Linear Correlation Coefficient, R2 |
---|---|---|---|---|---|
CV | 0.896 | 25.887 | 0.0386 | −27.496 | 0.99 |
Surface | Sa (µm) | Sz (µm) | Str | Spc (mm−1) | Sdr |
---|---|---|---|---|---|
without CV | 0.929 | 8.815 | 0.319 | 7039.788 | 0.7405 |
with CV | 0.277 | 6.476 | 0.642 | 5710.048 | 0.3936 |
ET (kcal/mol) | ESurf+Sol (kcal/mol) | EInh+Sol (kcal/mol) | ESol (kcal/mol) | Eads (kcal/mol) | |
---|---|---|---|---|---|
MB | −3159.43 | −2860.45 | −2694.54 | −2583.02 | −187.447 |
CV | −3198.34 | −2899.12 | −2734.55 | −2650.94 | −215.611 |
FB | −3235.43 | −2895.63 | −2807.53 | −2631.53 | −163.795 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, L.; Wen, S.; Yan, J.; Yu, H.; Wen, Z.; Wang, Z. Inhibition Effect of Triphenylmethane Dyes for the Corrosion of Carbon Steel in CO2-Saturated NaCl Corrosion Medium. Materials 2024, 17, 1094. https://doi.org/10.3390/ma17051094
Peng L, Wen S, Yan J, Yu H, Wen Z, Wang Z. Inhibition Effect of Triphenylmethane Dyes for the Corrosion of Carbon Steel in CO2-Saturated NaCl Corrosion Medium. Materials. 2024; 17(5):1094. https://doi.org/10.3390/ma17051094
Chicago/Turabian StylePeng, Lincai, Shaomu Wen, Jing Yan, Huali Yu, Zhan Wen, and Zhi Wang. 2024. "Inhibition Effect of Triphenylmethane Dyes for the Corrosion of Carbon Steel in CO2-Saturated NaCl Corrosion Medium" Materials 17, no. 5: 1094. https://doi.org/10.3390/ma17051094
APA StylePeng, L., Wen, S., Yan, J., Yu, H., Wen, Z., & Wang, Z. (2024). Inhibition Effect of Triphenylmethane Dyes for the Corrosion of Carbon Steel in CO2-Saturated NaCl Corrosion Medium. Materials, 17(5), 1094. https://doi.org/10.3390/ma17051094