Effects of Hydrogenation on the Corrosion Behavior of Zircaloy-4
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials and Preparation
2.2. Material Characterization
3. Results and Discussion
3.1. Microstructure of Zircaloy-4 before and after Hydrogenation
3.2. Effect of Hydrogenation on the Corrosion Kinetics of Zircaloy-4
3.3. Surface and Fracture Morphology of the Oxide Film
3.4. TEM Analysis of the Microstructure of the Cross-Section of the Oxide Film
3.5. Raman Spectroscopy Analysis of the Oxide Film
4. Conclusions
- Hydrogenation shortens the corrosion transition time, changes the corrosion kinetics, and increases the corrosion rates of Zircaloy-4. The corrosion resistance of Zircaloy-4 is reduced by 11.5% after the 190-day corrosion when the hydrogen content is increased to 360 ppm.
- After the 190-day corrosion, the high-hydrogen sample exhibits an increased number and larger size of cracks in the outer region of the oxide film compared to the non-hydrogenated sample. These cracks serve as pathways for O2− diffusion and significantly accelerate the corrosion process of Zircaloy-4.
- After the 70-day corrosion, the second phases in the oxide films on the non-hydrogenated sample are oxidized. However, in the case of the high-hydrogen sample, the second phases remain stable due to their hydrogen absorption capability. It is possible that an interaction between zirconium hydride and the second phase contributed to accelerated corrosion.
- After the 70-day corrosion, the high-hydrogen sample exhibits increased stress in the oxide film of approximately 420 MPa, which is larger than that of the non-hydrogenated sample (380 MPa). The larger stress promotes the generation of larger cracks and accelerates the sample corrosion.
- Pre-hydrogenation has little effect on the t-ZrO2 content in the oxide film of the Zircaloy-4, and there is no direct correspondence between the t-ZrO2 content and the corrosion resistance of the alloy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, T.R.; Konings, R.J.M.; Motta, A.T.; Couet, A. Corrosion of Zirconium Alloys. In Comprehensive Nuclear Materials, 2nd ed.; Konings, R.J.M., Stoller, R.E., Eds.; Elsevier: Oxford, UK, 2020; pp. 64–95. ISBN 978-0-08-102866-7. [Google Scholar]
- Kudiiarov, V.; Sakvin, I.; Syrtanov, M.; Slesarenko, I.; Lider, A. Hydride Rim Formation in E110 Zirconium Alloy during Gas-Phase Hydrogenation. Metals 2020, 10, 247. [Google Scholar] [CrossRef]
- Lee, H.; Kim, K.; Kim, J.-S.; Kim, Y.-S. Effects of Hydride Precipitation on the Mechanical Property of Cold Worked Zirconium Alloys in Fully Recrystallized Condition. Nucl. Eng. Technol. 2020, 52, 352–359. [Google Scholar] [CrossRef]
- Muta, H.; Nishikane, R.; Ando, Y.; Matsunaga, J.; Sakamoto, K.; Harjo, S.; Kawasaki, T.; Ohishi, Y.; Kurosaki, K.; Yamanaka, S. Effect of Hydrogenation Conditions on the Microstructure and Mechanical Properties of Zirconium Hydride. J. Nucl. Mater. 2018, 500, 145–152. [Google Scholar] [CrossRef]
- Oskarsson, M.; Ahlberg, E.; Södervall, U.; Andersson, U.; Pettersson, K. Pre-Transition Oxidation Behaviour of Pre-Hydrided Zircaloy-2. J. Nucl. Mater. 2001, 289, 315–328. [Google Scholar] [CrossRef]
- Bongartz, B.; Hassel, T. Investigation of the Temporal Rearrangement of Zirconium Hydride Precipitates in Cladding Material for the Interim and Final Storage Period. Kerntechnik 2020, 85, 433–439. [Google Scholar] [CrossRef]
- Ensor, B.; Lucente, A.M.; Frederick, M.J.; Sutliff, J.; Motta, A.T. The Role of Hydrogen in Zirconium Alloy Corrosion. J. Nucl. Mater. 2017, 496, 301–312. [Google Scholar] [CrossRef]
- Kim, Y.; Jeong, Y.; Son, S. A Study on the Effects of Dissolved Hydrogen on Zirconium Alloys Corrosion. J. Nucl. Mater. 2014, 444, 349–355. [Google Scholar] [CrossRef]
- Arashi, H.; Ishigame, M. Raman Spectroscopic Studies of the Polymorphism in ZrO2 at High Pressures. Phys. Status Solidi (A) 1982, 71, 313–321. [Google Scholar] [CrossRef]
- Wu, J.; Xie, Y.; Wang, Y.; Hu, L.; Yao, M. First-Principles Study on Effect of Nb and Sn Contents on Pilling Bedworth Ratio for Oxidation of Zirconium Alloy. Shanghai Met. 2023, 45, 73–78. [Google Scholar] [CrossRef]
- Mao, Y.; Duan, W.; Yao, M.; Zhou, B.; Zhang, J. Effect of Hydrogen in Zirconium Alloys on Their Corrosion Resistance in Superheated Steam at 400 °C. Shanghai Met. 2018, 40, 1–6. [Google Scholar]
- Yao, M.; Duan, W.; Wu, X.; Huang, J.; Zhou, B. Effect of Heat Treatment on Hydrogen Absorption Behavior of Zirconium Alloys during Corrosion in Lithiated Water at 360 °C. Trans. Mater. Heat Treat. 2016, 37, 34–40. [Google Scholar] [CrossRef]
- Chu, L.; Zhang, S.; Yuan, G.; Wu, G. Effect of Trace Nickel Addition on Microstructure, Corrosion Resistance and Hydrogen Absorption of Zr-4 Alloy. Rare Met. Mater. Eng. 2022, 51, 4488–4495. [Google Scholar] [CrossRef]
- Kim, S.-J.; Ho Kim, K.; Hyuk Baek, J.; Kwon Choi, B.; Hwan Jeong, Y.; Ho Jung, Y. The Effect of Hydride on the Corrosion of Zircaloy-4 in Aqueous LiOH Solution. J. Nucl. Mater. 1998, 256, 114–123. [Google Scholar] [CrossRef]
- Xu, S.; Yao, M.; Mao, Y.; Liang, X.; Peng, J.; Zhou, B. Effect of Pre-Charging Hydrogen on Corrosion Resistance of Zircaloy-4 in LiOH Aqueous Solution at 360 °C. Rare Met. Mater. Eng. 2021, 50, 670–678. [Google Scholar]
- Clarke, D.R.; Adar, F. Measurement of the Crystallographically Transformed Zone Produced by Fracture in Ceramics Containing Tetragonal Zirconia. J. Am. Ceram. Soc. 1982, 65, 284–288. [Google Scholar] [CrossRef]
- Gong, W.; Trtik, P.; Colldeweih, A.W.; Duarte, L.I.; Grosse, M.; Lehmann, E.; Bertsch, J. Hydrogen Diffusion and Precipitation in Duplex Zirconium Nuclear Fuel Cladding Quantified by High-Resolution Neutron Imaging. J. Nucl. Mater. 2019, 526, 151757. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kim, H.-A.; Kang, S.-Y.; Kim, Y.-S. Effects of Hydride Rim on the Ductility of Zircaloy-4 Cladding. J. Nucl. Mater. 2019, 523, 383–390. [Google Scholar] [CrossRef]
- Plyasov, A.A.; Novikov, V.V.; Devyatko, Y.N. A Review of Hydride Reorientation in Zirconium Alloys for Water-Cooled Reactors. Phys. At. Nucl. 2020, 83, 1407–1424. [Google Scholar] [CrossRef]
- Ghaffarian, H.; Jang, D. Deformation Mechanism of Embedded Hydride within the Polycrystalline Zirconium Matrix. J. Nucl. Mater. 2022, 565, 153736. [Google Scholar] [CrossRef]
- Simon, P.-C.A.; Aagesen, L.K.; Jokisaari, A.M.; Chen, L.-Q.; Daymond, M.R.; Motta, A.T.; Tonks, M.R. Investigation of δ Zirconium Hydride Morphology in a Single Crystal Using Quantitative Phase Field Simulations Supported by Experiments. J. Nucl. Mater. 2021, 557, 153303. [Google Scholar] [CrossRef]
- Tondro, A.; Abdolvand, H. Quantifying Hydrogen Concentration in the Vicinity of Zirconium Hydrides and Deformation Twins. J. Mech. Phys. Solids 2021, 148, 104287. [Google Scholar] [CrossRef]
- Kautz, E.; Gwalani, B.; Yu, Z.; Varga, T.; Geelhood, K.; Devaraj, A.; Senor, D. Investigating Zirconium Alloy Corrosion with Advanced Experimental Techniques: A Review. J. Nucl. Mater. 2023, 585, 154586. [Google Scholar] [CrossRef]
- Park, J.-Y.; Choi, B.-K.; Yoo, S.J.; Jeong, Y.H. Corrosion Behavior and Oxide Properties of Zr–1.1wt%Nb–0.05wt%Cu Alloy. J. Nucl. Mater. 2006, 359, 59–68. [Google Scholar] [CrossRef]
- Bai, R.; Gao, Y.; Liang, X.; Chen, D.; Wang, H.; Hou, Y.; Chen, X.; Li, M.; Li, Y.; Liu, X.; et al. Study of Oxide Film Formed on Domestic ZIRLO Alloy in Stimulate Corrosion Environment. At. Energy Sci. Technol. 2020, 54, 2461–2468. [Google Scholar] [CrossRef]
- Wang, H.; Chen, H.; Guo, L.; Tang, Q.; Han, H. Microstructure of Zr-Nb Alloy Cladding Oxide Flim. Corros. Prot. 2022, 43, 67–73+116. [Google Scholar]
- Yilmazbayhan, A.; Breval, E.; Motta, A.T.; Comstock, R.J. Transmission Electron Microscopy Examination of Oxide Layers Formed on Zr Alloys. J. Nucl. Mater. 2006, 349, 265–281. [Google Scholar] [CrossRef]
- Garner, A.; Baxter, F.; Frankel, P.; Topping, M.; Harte, A.; Slater, T.; Tejland, P.; Romero, J.; Darby, E.; Cole-Baker, A.; et al. Investigating the Effect of Zirconium Oxide Microstructure on Corrosion Performance: A Comparison between Neutron, Proton and Non-Irradiated Oxides. In Proceedings of the 18th International Symposium on Zirconium in the Nuclear Industry, Hilton Head, SC, USA, 5–19 May 2016; ASTM International: West Conshohocken, PA, USA, 2018; Volume STP 1597. [Google Scholar]
- Sun, R.; Xu, S.; Yao, M.; Zhang, J.; Dai, X.; Huang, J.; Zhang, J.; Zhou, B. Effect of Dissolved Oxygen on Corrosion Behavior of Zr–0.85Sn–0.16Nb–0.37Fe–0.18Cr Alloy in 500 °C and 10.3 MPa Super-Heated Steam. Trans. Nonferrous Met. Soc. China 2020, 30, 701–709. [Google Scholar] [CrossRef]
- Kuwae, R.; Sato, K.; Higashinakagawa, E.; Kawashima, J.; Nakamura, S. Mechanism of Zircaloy Nodular Corrosion. J. Nucl. Mater. 1983, 119, 229–239. [Google Scholar] [CrossRef]
- Zhang, C.; Fang, Z.; Lin, X.; Peng, L.; Liang, X.; Li, Y.; Chen, W.; Peng, J.; Li, Q. Effect of Cr Addition on Microstructure and Corrosion Behavior of Zr-0.3Nb Alloy in 400 °C/10.3 MPa Superheated Steam. Rare Met. Mater. Eng. 2023, 52, 1915–1924. [Google Scholar]
- Weekes, H.E.; Ortner, S.; Qaisar, A.; Lozano-Perez, S.; Jurkschat, K. 3D Focused Ion Beam Sectioning of Zirconium Oxides in Zircaloy-4 for the Characterisation of Cracking. J. Nucl. Mater. 2020, 539, 152155. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, X.; Zhang, C.; Xu, L.; Li, Y.; Liang, X.; Li, Q.; Zhou, B. Effect of Fe on Microstructure and Corrosion Behavior in 400 °C/10.3 MPa Superheated Steam of Zr-xFe(x = 0.05, 0.2, 1.0) Alloys. Rare Met. Mater. Eng. 2021, 50, 4465–4475. [Google Scholar]
- Tupin, M. 7—Understanding the Corrosion Processes of Fuel Cladding in Pressurized Water Reactors. In Nuclear Corrosion; Ritter, S., Ed.; Woodhead Publishing: Sawston, UK, 2020; pp. 251–299. ISBN 978-0-12-823719-9. [Google Scholar]
- Wei, T.; Dai, X.; Long, C.; Sun, C.; Long, S.; Zheng, J.; Wang, P.; Jia, Y.; Zhang, J. Comparison on the Microstructure, Aqueous Corrosion Behavior and Hydrogen Uptake of a New Zr-Sn-Nb Alloy Prepared by Different Hot Rolling Temperature. Corros. Sci. 2021, 192, 109808. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Liang, X.; Peng, J.; Li, Q.; Yao, M.; Zhou, B. Research Progress on Corrosion Behavior of Secondary Phase Precipitate of Zirconium Alloy Fuel Cladding in Pressurized Water Reactor. Rare Met. Mater. Eng. 2023, 52, 753–762. [Google Scholar]
- Pêcheur, D. Oxidation of β-Nb and Zr(Fe, V)2 Precipitates in Oxide Films Formed on Advanced Zr-Based Alloys. J. Nucl. Mater. 2000, 278, 195–201. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, D. First-principles of hydrogen diffusion mechanism in Zr(Cr,Fe)2 second phase crystals. J. Hubei Univ. (Nat. Sci.) 2020, 42, 192–196. [Google Scholar]
- Zino, R.; Chosson, R.; Ollivier, M.; Serris, E. Breakaway Characterization of Zircaloy-4 Oxidized in Steam and in Oxygen at High Temperatures Using HT- XRD Analysis. Corros. Sci. 2020, 176, 109028. [Google Scholar] [CrossRef]
- Paulucci, L.H.; de Almeida, T.; Farias, E.E.; Corio, P.; da Silva, L.; de Souza, M.L. Investigation of Zirconium Oxide Growth in Nuclear Fuel Element Claddings by Micro-Raman, Ellipsometry, and Laser-Induced Breakdown Spectroscopy. Vib. Spectrosc. 2020, 111, 103134. [Google Scholar] [CrossRef]
- Sialini, P.; Sajdl, P.; Dobrovolny, K. Raman Study of Oxide Layers on Zirconium Alloys Using 18O Tracers. Corros. Eng. Sci. Technol. 2020, 55, 460–470. [Google Scholar] [CrossRef]
- Tupin, M.; Bisor, C.; Bossis, P.; Chêne, J.; Bechade, J.L.; Jomard, F. Mechanism of Corrosion of Zirconium Hydride and Impact of Precipitated Hydrides on the Zircaloy-4 Corrosion Behaviour. Corros. Sci. 2015, 98, 478–493. [Google Scholar] [CrossRef]
Specimen | Phase Content (%) | Stress (MPa) | |
---|---|---|---|
m-ZrO2 | t-ZrO2 | m-ZrO2 | |
Without hydrogenation | 72.7 | 27.3 | 380 |
High hydrogen | 72.5 | 27.5 | 420 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, H.; Zhou, M.; Zhao, Y.; Han, Y.; Liu, S.; Geng, L.; Xu, S.; Xin, Y.; Yao, M. Effects of Hydrogenation on the Corrosion Behavior of Zircaloy-4. Materials 2024, 17, 1101. https://doi.org/10.3390/ma17051101
Yue H, Zhou M, Zhao Y, Han Y, Liu S, Geng L, Xu S, Xin Y, Yao M. Effects of Hydrogenation on the Corrosion Behavior of Zircaloy-4. Materials. 2024; 17(5):1101. https://doi.org/10.3390/ma17051101
Chicago/Turabian StyleYue, Huifang, Mingyang Zhou, Yanli Zhao, Yinjie Han, Shichao Liu, Laiyao Geng, Shitong Xu, Yong Xin, and Meiyi Yao. 2024. "Effects of Hydrogenation on the Corrosion Behavior of Zircaloy-4" Materials 17, no. 5: 1101. https://doi.org/10.3390/ma17051101
APA StyleYue, H., Zhou, M., Zhao, Y., Han, Y., Liu, S., Geng, L., Xu, S., Xin, Y., & Yao, M. (2024). Effects of Hydrogenation on the Corrosion Behavior of Zircaloy-4. Materials, 17(5), 1101. https://doi.org/10.3390/ma17051101