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Abstract: The phase transformation temperature plays an important role in the design, production and
heat treatment process of steels. In the present work, an improved version of the gradient-boosting
method LightGBM has been utilized to study the influencing factors of the four phase transformation
temperatures, namely Ac1, Ac3, the martensite transformation start (MS) temperature and the bainitic
transformation start (BS) temperature. The effects of the alloying element were discussed in detail
by comparing their influencing mechanisms on different phase transformation temperatures. The
training accuracy was significantly improved by further introducing appropriate features related to
atomic parameters. The melting temperature and coefficient of linear thermal expansion of the pure
metals corresponding to the alloying elements, atomic Waber–Cromer pseudopotential radii and
valence electron number were the top four among the eighteen atomic parameters used to improve
the trained model performance. The training and prediction processes were analyzed using a partial
dependence plot (PDP) and Shapley additive explanation (SHAP) methods to reveal the relationships
between the features and phase transformation temperature.

Keywords: phase transformation temperature; steels; machine learning; atomic parameter

1. Introduction

The microstructure and mechanical properties of steels depend on chemical composi-
tion, plastic deformation and heat treatment process [1–6]. Phase transformation start and
finish temperatures in steels, marking the initial formation of the diverse microstructure, are
crucial in designing steels with different targeted microstructures [7,8], such as martensite
and bainite, as well as other advanced high-strength steels with complex microstructures,
for example, medium manganese steels requiring inter-critical annealing [9–12]. The
martensite transformation start (MS) temperature has attracted significant interest over the
years because lath martensite is a base microstructure constituent for most high-strength
steels [13]. Numerous methodologies, such as thermodynamics-based methods, linear
regression, artificial neural network (ANN) modeling and machine learning, have been
applied to predict the martensite transformation start (MS) temperature [14–16]. In the
meantime, due to the virtues of bainitic steels, such as high strength, ductility, toughness
and creep resistance at reasonable costs, the austenite-to-bainite transformation has also
gained lots of interest [17]. Ac1 and Ac3 temperatures are the main parameters used to
design the heat treatment process of steels. For example, medium Mn steel (3–12 wt. Mn%),
as one of the various candidate steels for third-generation AHSS, typically consists of
an ultrafine-grained dual-phase (austenite–ferrite) microstructure obtained through the
inter-critical annealing (annealing between Ac1 and Ac3 temperature) of the quenched
martensite matrix [18]. However, studies on the prediction of the BS temperature [19] and
Ac1 and Ac3 temperatures [20] by means of machine learning are limited compared with
those on the prediction of the MS temperature. Systematic and comparative studies on the
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influencing factors of the main phase transformation temperature in steels have not been
reported. Meanwhile, most research has focused on the accuracy of trained models, but the
focus on the training process and explanation of the trained models has been limited. This
work aims to conduct in-depth research on these two concerns.

The main drawback of the empirical formulation is that it utilizes a linear equation to
describe the relationship between the alloying element content and the phase transforma-
tion start temperature [21–23]. The general structure of the equation is as follows [24]:

F(X) =
[
w1, w2, w3 · · ·wN

]
×

[
k1, k2, k3 · · · kN

]T
+ k0 (1)

where k1k2k3 · · · kN represent the content of alloying elements (wt%). Similarly, w1w2w3 · · ·wN
denote the weight coefficients, and k0 is the bias coefficient. Normally, empirical formulas
are only applicable to limited steels. For machine learning, early on, the chemical composi-
tion was chosen as the input feature to train models [25]. Recently, new features related to a
simplified but still complicated Gibbs energy change description have been included in the
feature space to improve the performance of trained modes, and significant improvements
have been achieved. Moreover, recently, to predict the martensite transformation start
temperature in Fe–C–X alloys, researchers constructed a complicated formula to represent
the main part of the non-driving force of martensite transformation [26]. However, in our
previous work [27], it was found that the addition of new features related to six atomic
parameters significantly improved the performance of the trained model to predict the
martensite transformation temperature. Therefore, in this work, instead of constructing
complicated formulas to describe the driving force and/or resistance force of the specific
phase transformation, more atomic parameters were considered to construct new features.

To improve the performance of the trained prediction model of the phase transforma-
tion temperature, a lot of efforts have been made, such as parameter tuning, principal com-
ponent analysis, careful training dataset preparation, diverse dataset cleaning methodology,
different machine learning method comparisons [28] and so on. Wang et al. [29] integrated
deep data mining of thermodynamic calculations with a deep learning framework to de-
velop a versatile and scalable model for the prediction of the martensite transformation
start temperature. Thermodynamic calculations enhance the information in a feature set
but necessitate specialized computational software and databases. Lu et al. [30] utilized
thermodynamic knowledge in combination with a multi-layer feedforward neural network
to reduce the dimension of the feature space through kernel principal component analysis.
Furthermore, a genetic algorithm was employed to find the appropriate hyperparameters
to predict the martensite transformation start temperature of steels. Peet et al. [31] utilized
a combination of a thermodynamic model and a Bayesian neural network to predict the
martensite transformation start temperature. Tian et al. [32] assessed four machine learning
models, namely random forest regression, support vector regression, linear regression and
XGB regression. Both random forest and XGB, which are based on tree models, demonstrate
excellent performance, suggesting that integrated algorithms coupled with tree models are
effective in addressing nonlinear problems. Most existing machine learning models struggle
with interpretability. Tree-based models, including random forest and gradient-boosting
tree models, exhibited natural and strong interpretability. These integrated models not
only retain the excellent interpretability of tree models but also offer superior performance,
addressing the limitations associated with interpretability in traditional models. LightGBM
is an improved and high-performance gradient-boosting framework with higher efficiency
and accuracy [33]. For example, recently, LightGBM outperformed other classic machine
learning methods, such as XGBoost, random forest, SVR and Lasso, in the prediction of
the corrosion rate of 3C steel [34], and other boosting methods, such as adaptive boosting
(AdaBoost), gradient-boosting machine (GBM), extreme gradient boosting (XGBoost) and
categorical gradient boosting (CatBoost), in the prediction of the sequence of plastic hinge
formation in steel frame structures [35].
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Therefore, in this work, to deepen the understanding of the influence mechanisms
of alloying elements on phase transformation temperatures, a systematical study of the
four transformation temperatures was conducted. LightGBM was chosen as the machine
learning algorithm integrating atomic parameter descriptors. Furthermore, to improve the
understanding of the prediction models, the partial dependence plot (PDP) and Shapley
additive explanations (SHAP) analysis methods were utilized to explain the trained models
and the prediction results.

2. Methodology
2.1. LightGBM Algorithm

In the present work, an improved version of the gradient-boosting method LightGBM
was chosen as the machine learning algorithm [36]. LightGBM yields better training speed
and prediction accuracy by using improved measures such as histogram-based algorithms,
which bucket the continuous values of features into discrete bins, and a leaf-wise tree
growth strategy wherein the leaf with maximum loss is selected to grow and, therefore, the
number of leaves at each level is not always the same [37,38].

2.2. Evaluation Metrics

Mean absolute error (MAE) and the coefficients of determination (R2) were utilized
to evaluate the accuracy of the trained model. Mean absolute error (MAE), representing
the mean absolute error between the predicted value and the real value, can be expressed
as follows:

MAE =
1
N

N

∑
i=1

|yi − Yi| (2)

where N represents the number of the samples, and yi and Yi represent the real and
predicted values of the ith sample, respectively. The smaller the MAE is, the better the
performance [39].

The coefficient of determination (R2) indicates the amount of dependent variable Y
that can be accounted for by the independent variable x in the regression model, expressed
as follows:

R2 = 1 −

N
∑

i=1
(Yi − yi)

2

N
∑

i=1
(Yi − y)2

(3)

where N refers to the number of samples. yi, Yi and y represent the real value of the ith
sample, the predicted value of the ith sample and the average of real values, respectively.
The larger R2 is, the better the performance [40].

2.3. Model Interpretability Metrics

Interpretability is crucial in understanding the trained models by means of machine
learning methods [41]. In this work, PDP and SHAP were used to explore the relationships
between the features and phase transformation temperatures. Partial dependence plots
(PDP) describe the marginal influence of one or two features on the prediction outcome of
a trained machine learning model:

f̂ (xs) = Exc

[
f̂ (xs, xc)

]
=

∫
f (xs, xc)dP(xc) (4)

where xs is the set of the features for which the partial dependence function should be
plotted and xc represents the other remained features utilized in the machine learning
model. Features xs and the set xc together make up the total feature space. By marginalizing
over the features in set xc, a function that depends on the features in xs is then obtained [42].
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Shapley additive explanations (SHAP) comprise an interpretative method of machine
learning based on game theory. The formula is as follows:

g
(

Z
′)

= φ0 +
M

∑
i=1

φiZi
′

(5)

where Z
′ ∈ {0, 1}M, M is the number of input features, and φi ∈ R. The Zi

′
variables

typically represent a feature being observed
(

Zi
′
= 1

)
or unknown

(
Zi

′
= 0

)
, and the φi

′
s

are the feature attribution values [43–45].

2.4. Machine Learning Strategy

K-fold cross-validation was utilized in the present work as presented in Figure 1. The
dataset was subdivided into K subsets which were independent of each other. Each subset
was selected as a test set in turn, and the remaining K − 1 subsets were selected as a training
set. The performance of the selected machine learning method was evaluated by obtaining
the averaged prediction accuracies of the K tests [46]. The workflow of the present work is
shown in Figure 2.
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3. Results
3.1. Data Collection and Screened

The original dataset of the present work was downloaded from a subset of the phase
transformation database named the Materials Algorithms Project (MAP), provided by Uni-
versity of Cambridge. Although the Materials Algorithm Project (MAP) is an open scientific
research project, it originated from a high-quality joint project of the University of Cam-
bridge and the National Physical Laboratory and was sponsored for four years by the Engi-
neering and Physical Sciences Research Council (EPSRC) of the United Kingdom [47–49].
To ensure data quality, entries with the same chemical composition but with different
MS values were removed. In both Ac1 and Ac3 datasets, terms with the same chemical
composition and heating rate but with different Ac1 and Ac3 values were removed. In the
BS dataset, terms with the same chemical composition and cooling rate but with different
BS values were removed. The sizes of the four datasets after data cleaning are shown in
Table 1, and the numbers of deleted samples in each dataset are given in Table 2. The overall
information of MS, Ac1 and Ac3, and BS datasets are shown in Tables 3–5, respectively.

Table 1. Dataset size after data cleaning.

Dataset The Sample Size

MS 800
Ac1 735
Ac3 735
BS 655

Table 2. Number of deleted samples.

Dataset Number

MS 150
Ac1 54
Ac3 53
BS 49

Table 3. Overall information of MS dataset.

Elements Minimum Maximum Mean Standard Deviation

Carbon (wt.%) 0.0016 1.8 0.36 0.247
Silicon (wt.%) 0 3.8 0.394 0.441
Manganese (wt.%) 0 10.24 0.867 0.801
Sulfur (wt.%) 0 0.054 0.003 0.007
Phosphorus (wt.%) 0 0.044 0.003 0.008
Cuprum (wt.%) 0 1.49 0.035 0.108
Nickel (wt.%) 0 31.3 2.026 5.023
Chromium (wt.%) 0 17.98 1.146 2.295
Molybdenum (wt.%) 0 8 0.305 0.587
Niobium (wt.%) 0 0.23 0.001 0.012
Vanadium (wt.%) 0 3.29 0.068 0.215
Titanium (wt.%) 0 1.613 0.003 0.058
Aluminum (wt.%) 0 3.006 0.019 0.151
Boron (wt.%) 0 0.006 0.00003 0.00003
Tungsten (wt.%) 0 18.59 0.192 1.334
Cobalt (wt.%) 0 30 0.233 1.821
Nitrogen (wt.%) 0 0.614 0.006 0.041
MS (K) 215.15 769 588.26 90.15
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Table 4. Overall information of the Ac1 and Ac3 datasets.

Elements Minimum Maximum Mean Standard Deviation

Carbon (wt.%) 0 0.96 0.3 0.1661
Silicon (wt.%) 0 2.13 0.3859 0.4122
Manganese (wt.%) 0 3.06 0.8211 0.3833
Sulfur (wt.%) 0 0.09 0.0068 0.0106
Phosphorus (wt.%) 0 0.12 0.0079 0.012
Cuprum (wt.%) 0 2.01 0.0456 0.1275
Nickel (wt.%) 0 9.12 1.0069 1.4806
Chromium (wt.%) 0 17.98 1.2245 2.3783
Molybdenum (wt.%) 0 4.80 0.3215 0.3733
Niobium (wt.%) 0 0.17 0.0032 0.0128
Vanadium (wt.%) 0 2.45 0.0513 0.1324
Titanium (wt.%) 0 0.18 0.0014 0.014
Aluminum (wt.%) 0 1.26 0.0063 0.0604
Boron (wt.%) 0 0.05 0.0004 0.0029
Tungsten (wt.%) 0 8.59 0.0635 0.4791
Arsenic (wt.%) 0 0.019 0 0.0006
Stannum (wt.%) 0 0.008 0 0.0002
Zirconium (wt.%) 0 0.09 0.0001 0.0032
Cobalt (wt.%) 0 4.07 0.0615 0.4175
Nitrogen (wt.%) 0 0.06 0.0033 0.0118
Oxygen (wt.%) 0 0.005 0 0.0001
Heating Rate 0.027 50 1.0937 4.2398
Ac1 (K) 530 921 724.12 52.2347
Ac3 (K) 651 1060 819.83 55.1432

Table 5. Overall information of BS dataset.

Elements Minimum Maximum Mean Standard Deviation

Carbon (wt.%) 0.0114 1.28 0.231 0.193
Silicon (wt.%) 0 2.13 0.404 0.409
Manganese (wt.%) 0 3.00 1.308 0.666
Sulfur (wt.%) 0 2.13 0.057 0.249
Phosphorus (wt.%) 0 0.92 0.017 0.087
Cuprum (wt.%) 0 0.34 0.036 0.082
Nickel (wt.%) 0 5.25 0.425 0.849
Chromium (wt.%) 0 4.8 0.377 0.625
Molybdenum (wt.%) 0 1.99 0.121 0.213
Niobium (wt.%) 0 0.061 0.002 0.01
Vanadium (wt.%) 0 2.1 0.028 0.108
Titanium (wt.%) 0 0.14 0.004 0.017
Aluminum (wt.%) 0 0.99 0.01 0.041
Boron (wt.%) 0 0.003 0.0003 0.0007
Tungsten (wt.%) 0 18.59 0.038 0.743
Nitrogen (wt.%) 0 0.074 0.001 0.007
Cooling rate 0 790 127.33 161.48
BS (K) 149 780 527.44 87.2692

Atomic parameters could be divided into two categories. One was associated with
the properties of the free atoms, such as radius, electronegativity and the ionization energy
of the atoms, etc. The other was related to the pure metals corresponding to the alloying
elements [50]. The atomic parameters utilized in the present work are shown in Table 6.
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Table 6. Atomic parameter candidates utilized for constructing new features.

Abbreviation Description

AR Atomic radius
ACR Atomic covalent radius
AMR Atomic metallic radius
AWCPR Atomic Waber–Crome pseudopotential radius
PE Pauling electronegativity
PCS Pettifor chemical scale
VEN Valence electron numbers
MV Molar volume, cm3

AN Atomic number
MP Melting point
DOS Density of solid, kg/m3

TC Thermal conductivity
COLTE Coefficient of linear thermal expansion
EOF Enthalpy of fusion
CR Crystal Radius
MHC Molar heat capacity
DFCE Distance from core electron
DAVE Distance from valence electron

3.2. Performance of Empirical Formula

The collected empirical formulas sued to predict Ac1 and Ac3 temperatures, the bainite
transformation start temperature (BS temperature) and the martensite transformation start
temperature (MS temperature) are shown in Tables 7–10 [20–22,24,25,50–58], respectively.
The performance of the empirical formulas was evaluated on the dataset provided by
the Materials Algorithms Project (MAP) and compared with four preliminary machine
learning models (called base models) trained using the same datasets. Four base models
using only the chemical compositions, the cooling or heating rates, and the corresponding
phase transformation temperature were trained based on the MAP dataset. During training,
n_estimators was set as 600, random_state was set as 8 and all other hyperparameters in
LightGBM were used with default values. The performances of the four trained models
and the empirical formulas were compared on the remaining part of MAP dataset, which
was not utilized in the training of the models. Feature sets of the machine learning models
are shown in Table 11. It is clear that the empirical formulas exhibit larger errors compared
with the models trained by means of machine learning (as shown in Figure 3), which
indicates that the empirical formulas exhibit inherent limitations and deficiencies, thereby
restricting their applicability [59,60].

Table 7. Empirical formulas for MS calculation.

No. Ref. Formulas

1 [21] MS (◦C) = 496 × (1 − 0.62C)×(1 − 0.092Mn) × (1 − 0.033Si) × (1 − 0.045Ni) × (1 − 0.07 Cr) × (1 − 0.029Mo) × (1 −
0.018W) × (1 − 0.012Co)

2 [21] MS (◦C) = 531 − 391.2C − 42.3Mn − 16.2Cr − 21.8Ni
3 [21] MS (◦C) = 565 − 600 × (1 − Exp(−0.96C)) − 31Mn − 12Si − 10Cr − 8Ni − 12Mo
4 [21] MS (◦C) = 520 − 320C − 50Mn − 30Cr − 20 × (Ni + Mo) − 5(Cu + Si)

5 [52] MS (K) = 545 − 601.2 × (1 − (−0.868C)½) − 34.4Mn − 13.7Si − 9.2Cr − 17.3Ni − 15.4Mo + 10.8V + 4.7Co − 1.4Al − 16.3Cu
− 361Nb − 2.44Ti − 3448B

6 [52] MS (◦C) = 692 − 37Mn − 14Si + 20Al − 11Cr − 502(C + 0.86N)½
7 [21] MS (◦C) = 538 − 350C − 37.7Mn − 37.7Cr − 18.9Ni − 27Mo
8 [21] MS (◦C) = 499 − 324C − 32.4Mn − 27Cr − 16.2Ni − 10.8 (Si + Mo + W)
9 [53] MS (K) = 764.2 − 302.6C − 30.6Mn − 16.6Ni − 8.9Cr + 2.4Mo + 11.3Cu + 8.58Co + 7.4W − 14.5Si

10 [21] MS (◦C) = 499 − 292C − 34.2Mn − 10.8Si − 22Cr − 16.2Ni − 10.8Mo
11 [21] MS (◦C) = 539 − 423C − 30.4Mn − 7.5Si − 12.1Cr − 17.7Ni − 7.5Mo + 10Co
12 [21] MS (◦C) = 41.7 × (14.6 − Cr) + 61.1 × (8.9 − Ni) + 33.3 × (1.33 − Mn) + 27.8 × (0.47 − Si) + 1666.7 × (0.068 − C-N) − 17.8
13 [54] MS (◦C) = 541 − 401C − 36Mn − 10.5Si − 14Cr − 18Ni − 17Mo
14 [21] MS (◦C) = 499 − 308C − 32.4Mn − 27Cr − 16.2Ni − 10.8Si − 10.8Mo
15 [21] MS (◦C) = 561 − 474C − 33Mn − 17Cr − 17Ni − 21Mo
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Table 8. Empirical formulas for Ac1 calculation.

No. Ref. Equations

1 [57] Ac1 (◦C) = 755.68 + 14.39Si − 26.86Mn + 16.32Cr − 18.5Ni + 88.91V
2 [54] Ac1 (◦C) = 742 − 29C − 14Mn + 13Si + 16Cr − 17Ni − 16Mo + 45V + 36Cu
3 [25] Ac1 (◦C) = 739 − 22C − 7Mn + 2Si + 14Cr − 13Ni − 13Mo − 20V
4 [55] Ac1 (◦C) = 723 − 10.7Mn − 6.9Ni + 29Si + 16.9Cr + 290As + 6.38W
5 [20] Ac1 (◦C) = 723 − 10.7Mn − 13.9Ni + 29Si + 16.9Cr + 290As + 6.38W

Table 9. Empirical formulas for Ac3 calculation.

No. Ref. Equations

1 [20] Ac3 (◦C) = 910 − 203C½ − 15.2Ni + 44.7Si + 104W + 31.5Mo + 13.1W

2 [55] Ac3 (◦C) = 910 − 203C − 15.2Ni + 44.7Si + 104W + 31.5Mo + 13.1W − (30Mn + 11Cr + 20Cu − 700P − 400Al
− 120As − 400Ti)

3 [58] Ac3 (◦C) = 902 − 255C − 11Mn + 19Si − 20Ni − 5Cr + 13Mo + 55V
4 [57] Ac3 (◦C) = 928 − 236.37C + 30.44Si − 32.68Mn − 27.51Ni + 141.65V
5 [54] Ac3 (◦C) = 925 − 219C½ − 7Mn + 39Si − 16Ni + 13Mo + 97V

Table 10. Empirical formulas for BS calculation.

No. Ref. Equations

1 [22] BS (◦C) = 711 − 362C + 262C2 − 28Mn + 44Si

2 [56] BS (◦C) = 720 − 585.63C + 126.6C2 − 66.34Ni + 6.06Ni2 − 0.232Ni3 − 31.66Cr + 2.17Cr2 − 91.68Mn +
7.82Mn2 − 0.3378Mn3 − 43.37Mo + 9.16Co − 0.1255Co2 + 0.000284Co3 − 36.02Cu − 46.15Ru

3 [56] BS (◦C) = 844 − 597C − 63Mn − 16Ni − 78Cr
4 [56] BS (◦C) = 830 − 270C − 90Mn − 37Ni − 70Cr − 86Mo
5 [56] BS (◦C) = 630 − 45Mn − 40V − 35Si − 30Cr − 258Mo − 20Ni − 15W

Table 11. Feature sets of machine learning models.

Phase Transformation Temperature Feature Set

Ac1 C, Si, Mn, S, P, Cu, Ni, Cr, Mo, Nb, V, Ti, Al, B,
W, As, Sn, Zr, Co, N, Heating Rate

Ac3 C, Si, Mn, S, P, Cu, Ni, Cr, Mo, Nb, V, Ti, Al, B,
W, As, Sn, Zr, Co, N, Heating Rate

MS C, Si, Mn, S, P, Cu, Ni, Cr, Mo, Nb, V, Ti, Al, B,
W, Co, N

BS C, Si, Mn, S, P, Cu, Ni, Cr, Mo, Nb, V, Ti, Al, B,
W, N, Cooling Rate

3.3. Performance of the Machine Learning Models Trained with Atomic Parameters

In our previous work [27], it was found that the introduction of new features related
to atomic parameters could significantly improve the performance of trained models in
predicting the martensite transformation start temperature. In this work, more complete
atomic parameters (18 types) were introduced to construct new features. Each atomic
parameter was separately introduced into the feature space to train a new model and then
comparisons among the 19 models were conducted as shown in Figures 4 and 5 under
different evaluation indexes. Only the atomic parameters were attached in each sample and
the size of the dataset was not changed. Meanwhile, the models with atomic parameters
were trained with the same hyperparameters as the base models. The newly trained
model was named by the abbreviation of the introduced atomic parameter as shown in
Table 6. The model without any atomic parameter was named the base model. It was found
that all the models used to predict the martensite start transformation temperature with
atomic parameters outperform the base model. For the other three phase transformation
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temperatures, most of the models with atomic parameters outperform the base model.
Specifically, the melting temperature and linear thermal expansion coefficient of the pure
metal related to the alloy element, the valence electron number and pseudopotential radius
come first in the ranking of the most effective atomic parameters in training Ac1, MS, Ac3
and BS prediction models, respectively. In Figure 6, it is shown that except for the BS
prediction model, the newly introduced feature related to the atomic parameters ranks first
regarding the importance of the features in the other three models.
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In Figure 7, it is shown that Pearson’s linear correlation coefficient between any two
features in the new feature space with the addition of best atomic parameters was below
0.7 for four models, suggesting a limited correlation between the features and no extra
feature screening was needed. Figure 8 exhibits the final trained models with the best
atomic parameters. It is clear that all the points are close to the diagonal lines, which
indicates that these four models were trained with high accuracy. Tables 12 and 13 show
the evaluation results of the trained models with and without adding features related to
atomic parameters, respectively. It is clear that the fitting error was significantly decreased.
The MAE is decreased by 1.604 ◦C, 0.932 ◦C, 4.785 ◦C and 2.659 ◦C for Ac1, Ac3, MS and
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BS, respectively. The R2 is increased by 0.010, 0.019, 0.042 and 0.015 for Ac1, Ac3, MS
and BS, respectively. The evaluation indexes are systematically improved. Especially, the
performance of the trained MS prediction model was significantly increased.
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Table 12. Model performance before adding atomic parameters.

MAE R2 TrainScore TestScore

Ac1 11.092 0.950 0.995 0.950
Ac3 10.149 0.920 0.993 0.920
MS 12.058 0.942 0.987 0.942
BS 18.622 0.928 0.978 0.928
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Table 13. Model performance after adding atomic parameters.

MAE R2 TrainScore TestScore

Ac1 9.488 0.960 0.996 0.960
Ac3 9.217 0.939 0.995 0.939
MS 7.273 0.984 0.993 0.984
BS 15.963 0.943 0.981 0.943

4. Discussion
4.1. The Influencing Factors of MS Temperature

The nucleation and growth rate of the new phase were closely tied to the chemical
composition of the steels during the solid phase transformation [61–63]. Table 14 shows
the clarification of normal alloying element in the steels. Generally, the austenite-forming
elements should stabilize the austenite during the cooling stage and prompt its transfor-
mation during the heating stage. Vice versa, the ferrite-forming elements should stabilize
the ferrite during the heating stage and prompt its transformation during the cooling
stage. Meanwhile, the effects of carbon on the phase transformation could be influenced
differently by carbide-forming elements and non-carbide-forming elements.

Table 14. Clarification of the normal alloying elements in the steels.

Austenite-forming elements C, N, Cu, Mn, Ni, Co
Ferrite-forming elements Cr, V, Si, Al, Ti, Mg, W
Carbide-forming elements Ti, Zr, V, Ta, Nb, W, Mo, Cr, Mn
Non-carbide-forming elements Ni, Co, Si, Al, Cu
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It is generally accepted that all alloying elements except Al and Co lower the MS
temperature. Different from martensite transformation [27], the influencing mechanisms
of the alloying elements on MS temperature were explained in detail in our previous
publication [27]. In summary, the higher the C, Ni, Cr, Mn and Si contents, the lower the
SHAP values (negative), i.e., the lower the MS temperature; the higher the Al, Co and V
contents, the higher the SHAP values (positive), i.e., the higher the MS temperature; N,
Nb and Cu show a similar effect on MS temperature as Al, Co and V do but with some
exceptions. W and Mo demonstrate more complicated effects on MS temperature.

Among all the alloying elements, C exhibited the most pronounced effects on austenite
decomposition temperature with decreasing ability at higher contents. Mn and Ni were
negatively related to the MS temperature, consistent with the thermodynamic mechanism.
The influence of alloying elements on the MS temperature was primarily governed by
their impact on the T0 temperature at which the ferrite and austenite with the same
chemical composition showed equal free energy and their ability in strengthening the
prior austenite phase. C demonstrated a significant effect in strengthening the austenite
phase and demonstrated a substantial reduction in the MS temperature. Likewise, the
presence of Mn, Ni, Cu and some other austenite-forming elements was associated with
a decrease in the T0 and a marginal effect in strengthening the austenite, leading to a
significant decrease in the MS temperature. On the other hand, ferrite-forming elements
such as Al, Co, Si, Mo, W, V and Ti were found to elevate the T0 but still enhanced the
strength of prior austenite to different extents, as indicated by various studies [64–69].
Therefore, mostly, the addition of alloying element inhibits the formation of martensite and,
correspondingly, decreases the MS temperature.

Figure 9 shows the importance of the features in the model with the best performance
after adding a new feature, the coefficient of linear thermal expansion of the pure metals
corresponding to specific alloying elements. In Figure 6, it is shown that this feature ranked
first in importance in fitting the machine learning model, and Figure 9 further demonstrates
that this feature significantly contributed to the prediction outcome, second only to C,
which highlighted the importance of new feature construction. In Figure 7, it is shown
that COLTE showed the largest positive correlation coefficient with Ni and the second and
third largest positive correlation coefficients with Co and Al, respectively. In the meantime,
both C and Mn exhibit negative and close correlation coefficients with COLTE. Further, as
shown in Figure 9, the higher the COLTE values, the lower the MS temperature. These
results revealed that the alloying elements demonstrate complicated effects on the MS
temperature because they contribute to both sides, the driving force and the resistance
force, i.e., non-chemical driving forces.
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The non-chemical driving forces (∆Ga→M) in the martensitic phase transformation
include the dilatation strain energy (∆Gdil), dislocation stored energy (∆Gstor), the shearing
energy of austenite (∆Gsh) and interfacial energy (∆Ginter), which can be specified as in
Equation (6) [68],

∆Ga→M = ∆Gsh + ∆Gdil+∆Gstor + ∆Ginter (6)

The above four energy terms can be simplified as ∆Gsh = 0.53σs, ∆Gdil =
3
2 E

(
∆L
L

)2
Vm,

∆Gstor = Gb2ρVm and ∆Ginter = 70.9. Here, σs is the yield strength and E is Young’s
modulus of austenite, treated as a constant. ∆L

L is related to the difference between the
thermal expansion coefficients of ferrite and austenite. Vm is molar volume of iron atoms. G
is the shear modulus, b is the Burgers vector and ρ is the dislocation density in the formed
martensite. It was found that the dilatation strain energy (∆Gdil) induced by thermal
expansion coefficient difference between the formed martensite and austenite plays a key
role in the non-chemical driving forces. A complicated equation (Equation (7)) depending
on the chemical compositions was given in the literature [26] and it was found that with this
improved item, the accuracy of the martensite transformation start temperature prediction
model was significantly improved [70]. In this work, it was found that the coefficient of
linear thermal expansion of the pure metals corresponding to specific alloying elements
was the most important feature influencing the MS temperature, as shown in Figure 6c.
This coincidence indicated the rationality and superiority of contracting new features
based on atomic parameters in the training of the phase transformation temperature
prediction model.

∆L
L = 1.29 + 2.84XNi + 1.45XC − 3.02XCr − 10.7XMn − 61.3XSi − 8.59 × 10−4T − 10.8x2

Ni − 270XNiXC+
3.38 × 10−10XNiXCr − 2 × 10−9XNiXMn + 1.83 × 10−9XNiXSi − 1.16 × 103XNi

T − 173x2
C + 1.68 × 10−11XCXCr+

3.11 × 10−11XCXMn − 9.95 × 10−13XCXSi − 8.03 × 103XC
T + 36x2

Cr + 0XCrXMn + 0XCrXSi − 9.96 × 10−4XCr
T+

121x2
Mn + 0XMnXSi − 1.15 × 10−3XMn

T + 3.58 × 103x2
Si + 6.89 × 10−3XSi

T + 1.48 × 10−8T2

(7)

4.2. The Influencing Factors of BS Temperature

The incubation time was needed for bainite transformation as characterized by its
time–temperature–transformation curves. Therefore, cooling rate outperformed other
features in the feature importance ranking during the training, as shown in Figure 6d.
Figure 10a clearly shows that the higher the C, Mn, Cr, Ni, Si, Mo, V, P and S contents and
cooling rates, the lower the SHAP values (negative), i.e., the lower the BS temperature;
the higher the Al, Ti and N contents, the higher the SHAP values (positive), i.e., the
higher the BS temperature; Mn, Cu and B demonstrated more complicated effects on the
MS temperature. The difference in the effects of alloying elements on the MS and BS
temperatures indicated the diverse phase transformation mechanisms between martensite
and bainite transformations. Meanwhile, the atomic Waber–Crome pseudopotential radius
outperforms the atomic radius and the coefficient of linear thermal expansion in improving
the performance of the BS prediction model, which indicated that the motion of the alloying
element ion and the interaction between the alloying element ion and the surrounding
electrons played an important role in bainite transformation and then the BS transformation
could be better classified into reconstructive phase transformation.

In Figure 11, it is demonstrated that the BS temperature firstly increased with the Mn
and Si contents then decreased with increasing Mn and Si contents within the medium
content range and finally increased again with further increasing Si content. It is also
found that there was a clear plateau on most of the PDP curves, which were diverse
from martensite transformation. The higher the carbon content, the lower the bainite
transformation temperature.
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It was reported that bainite transformation kinetics of Fe–C–Si–Mn alloys were much
slower than those of ternary Fe–C–Mn and Fe–C–Si alloys, which suggested that the inter-
action of Si and Mn had an important influence on the kinetics of bainite transformation
in Fe–C–Si–Mn alloys. It was experimentally proven that Si could enhance Mn segrega-
tion to austenite grain boundaries and inhibit the Fe3C precipitation and then inhibit the
formation of bainitic ferrite nucleation [71]. For low-carbon bainite steels, it was found
that Nb addition retarded bainitic transformation, and Mo addition was effective in pro-
moting bainitic transformation [72], and the addition of B slightly decreased the bainite
transformation temperature at low cooling rates, whereas the combined addition of B +
Nb greatly decreased the transformation temperature [73]. Meanwhile, carbide-forming
elements, such as Mo, Nb, V and Cr, lead to an elevation in the activation energy required
for carbon diffusion in austenite, which then retards bainite formation [74].

Figure 12 illustrates the effects of the interaction between C and other alloying elements
on SHAP values. Generally, SHAP values decreased with C content. However, due to the
interaction with other alloying elements, scattering in SHAP values occurred at each carbon
content. Mn, Mo, V, Al, Cr and B exhibited an obvious influence on the effects of carbon on
BS temperature. At lower carbon contents, SHAP values of carbon increased with Mn, Al
and B contents, and SHAP values of carbon decreased with increasing Mo and V contents at
the higher carbon contents. Meanwhile, increasing S and P somehow decreased the SHAP
values of carbon. These results indicated that Mn, Al and B decrease the lowering effects of
C on the BS temperature, and Mo and V as well as S and P enhanced the lowering effects of
C on the BS temperature. C–Cr interaction demonstrated a complicated influence on the
BS temperature. At lower carbon content, C–Cr interaction decreased the BS temperature;
at higher carbon content, C–Cr interaction increased the BS temperature. At high carbon
content, C–Mn interaction tended to decrease the BS temperature. C–Si interaction slightly
increased the BS temperature.
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4.3. The Influencing Factors of Ac1 Temperature

Figure 13a demonstrates the importance of the features on the final prediction output in
the trained models. The importance of the alloying elements was arranged in the following
order, Ni, Cr, Mn, Si, C, Cu, Mo, V, P, Nb, Al, N, B, W, Co, Ti and Zr. Generally, Ac1
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temperature decreased with increasing contents of austenite-forming elements, especially
Ni and Mn, and increased with increasing contents of ferrite-forming elements, especially
Cr and Si.
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Figure 14 further exhibits the dependence of Ac1 temperature on alloying element
contents based on the PDP analysis. Unusually, it was found that at lower contents, the
austenite-forming element Ni increased the Ac1 temperature, i.e., retarded austenite forma-
tion, and Si increased Ac1 temperature, i.e., prompted austenite formation. For example,
there were two stages regarding the change in Ac1 temperatures of the investigated steels
with the varying Si content. In the range of 0–1.0 wt% Si, the influence of Si content on the
Ac1 temperatures was weak. And in some alloys, the influence of Ni content on the Ac1
temperatures was also weak. In the scope of this study, the effects of Ni and Si on Ac1 are
summarized above. In another early work [75], 80 entries were used for training and 40
entries (randomly selected) were used for testing a trained network, including steels such as
structural steels, stainless steels, rail steels, spring steels, high-temperature creep-resisting
steels and tool steels. It was observed that Ac1 increased with Si content and decreased
with increasing Ni content.

Mn and C always prompted austenite formation, and Cr inhibited austenite formation.
However, the effect of C on Ac1 temperature remained constant after its content exceeded
a certain amount. Generally, Ac1 temperature rises with increasing MP temperature (i.e.,
with a decrease in C content in the steel). Therefore, ferrite transformation in austenite
should be inhibited. Figure 15 shows the influence of other alloying elements on the effects
of Ni on Ac1 temperature. It was also found that at a lower concentration range, the
interaction of Si, Cu and Cr with Ni could increase the SHAP values, i.e., Ac1 temperature.
In other words, the ferrite-forming elements could weaken the effects of austenite-forming
elements on Ac1 temperature.
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4.4. The Influencing Factors of Ac3 Temperature

In Figure 16, the importance of features in influencing Ac3 temperature is shown. It
was clear that austenite-forming alloying elements and ferrite-forming elements were sepa-
rated well by their SHAP values’ characteristics. But the span of SHAP values was smaller
than those in the other three models, which indicated that the total effects of alloying
elements were weaker. For all austenite-forming alloying elements, the Ac3 temperature
decreased with increasing alloying content because these alloying elements expanded the
area of the austenite phase and decreased the equilibrium Ac3 temperature. Meanwhile,
Ac3 temperature increased with increasing ferrite-forming alloying element contents be-
cause these alloying elements expanded the area of the ferrite phase and increased the
equilibrium Ac3 temperature. Therefore, the effects of alloying elements on Ac3 tempera-
ture mainly depended on their influence on the equilibrium phase boundary. However,
Figure 17 shows that the effects of Mn on Ac3 temperature only increase with its content
within a narrow range (about 0.6–0.8 wt%), which was consistent with the literature [20],
where the authors found that an increase in Mn content had little effect on the Ac3 tem-
peratures of their investigated steels. The C, Si and Mo elements demonstrated enhanced
effects with increases in their contents. The effect of Mo on Ac3 temperatures was similar
to that of Si but with lower magnitude. Si demonstrates the same influence on Ac1 and Ac3
temperatures as Al does.
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Figure 17. PDP analysis on the effects of alloying element content on Ac3 temperature.

In Figure 18, it is shown that the interaction of C and alloying elements on Ac3 temper-
ature was limited compared with their effects on other phase transformation temperatures.
However, the interaction between C–Si and C–B decreased the effects of C in lowering
Ac3 temperature, and the interaction between C–Ni and C–Cr enhanced the effects of C
in lowering Ac3 temperature. To understand the effects of Mn on Ac3 temperature, the
interaction of Mn and other alloying elements was further presented in Figure 19. It was
found that the scattering degree of SHAP values of Mn was significantly larger than that of
C SHAP values, which indicated that the effect of Mn on Ac3 temperature was obviously
influenced by other alloying elements. C decreased the effects of Mn in lowering the Ac3
temperature at lower and higher Mn contents, but Ni enhanced the effect of Mn in lowering
the Ac3 temperature at a medium content, so did the C. Meanwhile, Mo as well as V and
Cr decreased the effect of Mn in lowering the Ac3 temperature, and Si and Al slightly
enhanced the effect of Mn.
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4.5. The Generalization Ability of the Trained Models

The MAP dataset utilized in the present work had a large concentration range for
all the main alloying elements. Therefore, it was expected the trained models showed
good generalization ability on the unseen dataset. These best prediction models for each
transformation temperature were chosen to evaluate their generalization ability on four
groups of experimental phase transformation temperatures [6,56,61,76] not in the MAP
project. Tables 15–18 show comparisons between the experimental phase transformation
temperatures and the predicted ones. It was generally found that the trained model with the
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best atomic parameter features gave better prediction, compared with the models without
atomic parameter features. In Figure 20, the prediction process of the trained models is
presented, where various features had distinct contributions to the final prediction. Table 16
demonstrates that the predicted MS temperatures were very close to the experimental ones.
In the literature, Bohemen et al. [51] achieved the best results in the training of the MS
temperature with MAE = 5.60, RMSE = 7.11, R2 = 0.98 and EV = 0.98 with a thermodynamics-
based model including the effect of the prior austenite grain size. In our previous work [27],
we achieved close prediction by considering the effects of alloying elements on the lattice
constant of the prior austenite. In the present work, it was found that the coefficient of
linear thermal expansion of the pure metals corresponding to specific alloying elements
was the most important feature among 18 types of atomic features. Both features were
related to the dilatation strain energy induced by austenite–martensite transformation,
which contributed to most of the non-chemical driving force of the austenite–martensite
phase transformation.

Table 15. Verification of MS temperature prediction model.

Steels Experiment Prediction (without
Atomic Parameters)

Prediction (with
Atomic Parameters)

En325 390 ◦C 395 ◦C (+5.0 ◦C) 391 ◦C (+1.0 ◦C)
En11 280 ◦C 276 ◦C (−4.0 ◦C) 279 ◦C (−1.0 ◦C)
En17 315 ◦C 320 ◦C (+5.0 ◦C) 317 ◦C (+2.0 ◦C)
En23 310 ◦C 313 ◦C (+3.0 ◦C) 310 ◦C (+0.0 ◦C)
En320 415 ◦C 429 ◦C (+14 ◦C) 425 ◦C (+10 ◦C)

Table 16. Verification of BS temperature prediction model.

Steels Experiment Prediction (without
Atomic Parameters)

Prediction (with
Atomic Parameters)

No.64 495 ◦C 488 ◦C (−7.0 ◦C) 493 ◦C (−2.0 ◦C)
No.38 430 ◦C 408 ◦C (−22 ◦C) 412 ◦C (−18 ◦C)
No.36 520 ◦C 531 ◦C (+11 ◦C) 525 ◦C (+5.0 ◦C)

Table 17. Verification of Ac1 temperature prediction model.

Steels Experiment Prediction (without
Atomic Parameters)

Prediction (with
Atomic Parameters)

1# 810 ◦C 816 ◦C (+6.0 ◦C) 809 ◦C (−1.0 ◦C)
2# 785 ◦C 799 ◦C (+14 ◦C) 792 ◦C (+7.0 ◦C)
3# 825 ◦C 831 ◦C (+6.0 ◦C) 826 ◦C (+1.0 ◦C)
4# 820 ◦C 829 ◦C (+9.0 ◦C) 821 ◦C (+1.0 ◦C)
5# 808 ◦C 825 ◦C (+17 ◦C) 820 ◦C (+12 ◦C)

Table 18. Verification of Ac3 temperature prediction model.

Steels Experiment Prediction (without
Atomic Parameters)

Prediction (with
Atomic Parameters)

0.03C-0.076N 920 ◦C 938 ◦C (+18 ◦C) 930 ◦C (+10 ◦C)
0.05C-0.024N 950 ◦C 928 ◦C (−22 ◦C) 936 ◦C (−14 ◦C)
0.05C-0.037N 950 ◦C 926 ◦C (−24 ◦C) 935 ◦C (−15 ◦C)

0.05C-2W 950 ◦C 924 ◦C (−26 ◦C) 935 ◦C (−15 ◦C)
0.07C-2W 930 ◦C 927 ◦C (−3.0 ◦C) 929 ◦C (−1.0 ◦C)
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For bainite transformation start temperature prediction, it was found that the best
model was created with MAE = 17.34, RMSE = 24.67 and R2 = 0.913, considering element
characteristics in the form as shown in Table 19 [77]. In this work, it was found that atomic
Waber–Crome pseudopotential radius comes first in the ranking of feature importance in-
fluencing the BS temperature. Considering atomic parameter-based features, the difference
between the experimental and predicted BS temperatures was significantly narrowed with
an averaged absolute error of 8.33, as shown in Table 16. However, the accuracy of BS
temperature prediction was lower than that of the MS prediction model.

Table 19. Features related to the atomic parameters.

Feature Feature Description Formula

Sum_Atom_R Summation of atomic radius ∑17
i=1 airi

Atom_diff(Fe) Atomic radius difference (Take Fe
as reference)

√
∑17

i=1 ai(1 − ri
rFe

)
2

Sum_VEN Total valence electron number ∑17
i=1 aiVECi

VEN_Fe Valence electron number
difference (Take Fe as reference)

√
∑17

i=1 ai(1 − VECi
VECFe

)
2

VEN_C Valence electron number
difference (Take C as reference)

√
∑17

i=1 ai(1 − VECi
VECC

)
2

Sum_EN Pauling electronegativity ∑17
i=1 aiχi

EN_ Fe Electronegativity difference (Take
Fe as reference)

√
∑17

i=1 ai(1 − χi
χFe

)
2

EN_C Electronegativity difference (Take
C as reference)

√
∑17

i=1 ai(1 − χi
χC

)
2

Note: ai is the mole fraction of the alloying element, ri is the atomic radius of the alloying element or ion, VECi is
the number of valence electrons of the alloying element or ion, χi is the electronegativity of the alloying element
or ion.
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By using neural network to train the Ac1/Ac3 temperature prediction models, it is
found that the absolute error value of predicted Ac1 temperature does not exceed 22 ◦C,
and the relative error is less than 3.01%; the absolute error value of the predicted Ac3
temperature does not exceed 28 ◦C, and the relative error is less than 3.02% [75]. The
results presented in Tables 17 and 18 show that the prediction performance of the Ac1/Ac3
temperature prediction models trained in the present work by means of LightGBM was
better, partially due to the quality of the MAP dataset and partially due to the improved
LightGBM algorithm. For example, in earlier work, the averaged prediction errors of
BS and MS temperatures were both larger than 20 ◦C using the trained artificial neural
network model based on a dataset even with a narrowing of the chemical composition
range, i.e., the total mass fractions of manganese, chromium, nickel and molybdenum
did not exceed 5% [51], which indicated the importance of the data cleaning and feature
engineering strategy and the advantage of newly developed machine learning algorithm.
In the present work, considering the features based on atomic parameters, the prediction
accuracy was significantly improved. Meanwhile, the performance of the Ac1 temperature
prediction model was better than that of the Ac3 temperature prediction model, which was
consistent with the literature [57].

5. Conclusions

Prediction models for MS, BS, Ac1 and Ac3 temperatures were trained using the
popular machine learning algorithm LightGBM, considering new features constructed
based on 18 atomic parameters. Most of the new features enhanced the performance of the
trained model, and the underlying mechanisms were discussed in the perspective of phase
transformation theories through PDP and SHAP analysis. The main conclusions could be
drawn as follows:

(1) The prediction models for MS, BS, Ac1 and Ac3 temperatures were trained with
high accuracy and achieved satisficed predictions on the unseen experimental data
and exhibited higher accuracy and better generalization compared to the empirical
formula. The prediction model for MS temperature showed the highest accuracy,
followed by the Ac1 temperature prediction model.

(2) C, Ni and Cr are the top three elements influencing MS temperature, followed by Mn
and Mo. MS temperature increased with increasing Al and Co contents. Other alloy-
ing elements exhibit positive or negative influences on MS temperature at different
composition ranges.

(3) Except Al, Ti and N, the BS temperature generally decreased with increasing alloying
element contents. Mn, Si and B elevated the BS temperature in certain content ranges.

(4) The averaged magnitude of the effects of alloying elements on phase transformation
temperatures was highest for martensite transformation. Cooling rate and heating
rate played important roles in bainite transformation during cooling and austenite
transformation during heating, respectively.

(5) The interaction between alloying elements exhibits complicated effects on phase
transformation temperatures. A linear relationship between the alloying element
concentration and phase transformation temperature is hardly observed due to its
contribution to both aspects, i.e., chemical driving forces and non-chemical driving
forces as well as the interaction between alloying elements.
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