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Abstract: External prestressing is widely employed in structural strengthening engineering due to its
numerous advantages. However, external prestressed steel bars are prone to corrosion when exposed
to the service environment. This paper is dedicated to examining the use of fiber-reinforced polymer
(FRP) bars as external prestressing materials to strengthen one-way concrete slabs. Five one-way
concrete slabs were strengthened with externally prestressed FRP bars with different prestress lev-
els and different amounts of FRP bars, while one non-strengthened slab was used for comparison.
The effects of strengthening on the flexural behavior, specifically the cracking load, ultimate load,
stiffness and failure mode, were analyzed systematically. Moreover, the ductility and cost–benefit
optimizing properties of the reinforcing design were discussed. The results show that external
prestressed FRP bars significantly improve the cracking load, ultimate load and stiffness of one-
way concrete slabs. The absence of a bond between the concrete and FRP bars overcomes the
brittleness of the FRP bars, while the strengthened slabs exhibit satisfactory ductility and a higher
post-yield stiffness and bearing capacity. Additionally, the cost/benefit ratio is optimized by in-
creasing the prestress level, while a higher number of prestressed FRP bars is beneficial to ductility.
Finally, a method for calculating the stress in prestressed FRP bars at ultimate loads was proposed.
Irrespective of the prestressing material, this method is applicable to both strengthened beams and
one-way slabs.

Keywords: external prestressing; FRP bar; one-way slab; strengthened slab; flexural behavior

1. Introduction

In recent years, many existing concrete structures throughout the world have deterio-
rated continuously to such a degree that strengthening is necessary to maintain a normal
working service. External prestressing is an effective solution for improving the carrying
capacity, reducing deformations and closing cracks [1,2]. Nevertheless, external prestressed
steel bars are exposed to the service environment and thus suffer from corrosion. To over-
come this shortcoming, fiber-reinforced polymer (FRP) bars, composed of carbon, basalt
or glass fibers, have been developed and proffered as an alternative to conventional steel
bars [3,4].

FRP bars have high tensile strength, lightweight and excellent corrosion resistance.
However, FRP bars are characterized by significant brittleness, and their elastic modulus is
lower than that of steel bars. These problems mean that concrete reinforcement with FRP
bars tends to incur larger deflections, wider cracks and brittle failure under an external
load [5]. Fortunately, using FRP bars in an external prestressing system can avoid the
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aforementioned deficiencies. Pre-tension stress in FRP bars confines cracks and deflection
by offsetting a portion of the service load. Moreover, the absence of bond results in
elongation. This is induced by bending deformations that are uniformly spread along the
entire FRP bar, thereby decreasing the maximum strain. Therefore, the FRP bar remains
unbroken even if the prestressed concrete has reached its limit [6]. In fact, the force
transferred between the external prestressed bar and concrete depends on the anchors
and deviators. As a result, a conventional cross-section analysis is no longer applicable.
The strain of the external prestressed bar is determined by the relative displacement and the
rotation of the anchors and deviators under an external load. In turn, the response of the
strengthened member is affected by the stress in the external prestressed bar. Therefore, the
flexural properties and analyses of strengthened members are complex [7]. Furthermore,
the application of FRP bars as an alternative external prestressing material introduces more
indefinite factors due to their special properties [8].

The calculation of stress in external prestressed bars plays an important role in flex-
ural behavior predictions, in which a member analysis must be adopted. To simplify
these calculations, Naaman [9] introduced a bond reduction coefficient to revise the un-
bonded effects during cross-section analyses, which is known as a pseudo-section analysis.
On this basis, various flexural experiments and finite element simulations were conducted
to investigate concrete beams prestressed with unbonded steel tendons [10–13]. Sev-
eral equations concerning the bond reduction coefficient were presented. These equations
consider the span/depth ratio (the ratio of span to prestressed tendon depth), deviator
location, load distribution and the ratio of non-prestressing to prestressing reinforcement,
each to varying degrees.

Tan [14] employed carbon FRP (CFRP) bars to strengthen a concrete T-beam with
external prestressing. Beams that were externally prestressed using CFRP bars exhibited
similar flexural properties to those prestressed with steel bars. Namaan [15] analyzed
previous experiments on concrete beams externally prestressed with steel or FRP bars and
presented a calculation method for stress increases in external prestressed bars. Moreover,
a simplified equation, in which the elastic modulus of external prestressed bars was the
only considered factor, was also proposed. Ghallab [16] conducted numerous flexural
experiments on concrete beams externally prestressed with glass FRP (GFRP) parafil ropes,
and a statistical analysis of previous studies was carried out to enhance the data coverage.
The results demonstrated that the stress of the external prestressed bar is influenced by
similar factors and follows similar laws, regardless of whether the material is steel or
FRP. However, the effect was slightly weaker in the case of FRP due to its lower elastic
modulus. Based on a deflection analysis, Ghallab [17] proposed a method to calculate
the flexural capacity of strengthened continuous beams. Lou [18] presented a simplified
equation to calculate the redistribution of strengthened continuous beams at the ultimate
load. The research results also showed that the ductility of external prestressed concrete
beams with GFRP bars was even better, even though their bearing capacity was lower
than beams with CFRP or steel tendons [19]. Wang [20] discussed the effects of anchorages
and the deviator bending angle on the prestress loss and strength reduction of basalt FRP
(BFRP) bars. An optimized deviator design was applied to beams externally prestressed
with BFRP bars, which exhibited satisfactory carrying capacity, crack patterns and ductility.
Sun [21] applied external prestressing technology to alter a conventional FRP-bar-reinforced
concrete beam, wherein certain commonly used FRP bars were pre-tensioned and utilized
as external prestressed bars. As a result, the flexural carrying capacity, crack pattern and
ductility improved significantly.

Previous studies have indicated that FRP bars are an attractive material for external
prestressed systems. The flexural properties of concrete beams externally prestressed with
FRP bars have been sufficiently investigated, and various calculation methods have been
presented. However, one-way concrete slabs, as another common bending member, have
scarcely been used as a strengthening member in previous studies. In practice, the charac-
teristics of one-way slabs, such as the higher span/depth ratio, the lower reinforcement
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ratio and the unique distribution of prestressed bars, result in different flexural behavior
compared with beams. In this study, a series of bending experiments on one-way concrete
slabs strengthened with externally prestressed FRP bars were conducted. This study aims
to explore how the number of prestressed FRP bars and the prestress level influence the
flexural behavior of one-way slabs and to examine how their properties differ from beams.
Moreover, the ductility of the strengthened slabs was discussed. Finally, a simplified cal-
culation method for examining the stress in prestressed FRP bars at ultimate load was
proposed based on plastic hinge deformation.

2. Experimental Program

This paper focuses on the application of FRP bars as an external prestressing material
in strengthened one-way concrete slabs. Six one-way concrete slabs with the same rein-
forcements were studied. Five slabs were strengthened with externally prestressed FRP
bars with different prestress levels and different amounts of prestressed FRP bars, while
the remaining slab was not strengthened and served as the “control specimen”. To simulate
reinforced slabs, the axial compressive strength of concrete was chosen as 30 MPa, and the
longitudinal reinforcements consisted of four D8 plain steel bars close to the minimum
reinforcement ratio. In the vertical direction, D8 plain steel bars were used as distribut-
ing reinforcements. The steel bars’ yield strength and elastic modulus were measured as
319.3 MPa and 209.5 GPa, respectively. GFRP bars with a nominal diameter of 8 mm were
selected as the external prestressed bars. The observed tensile strength and elastic modulus
were 464.2 MPa and 43.2 GPa, respectively. A cross-section of the specimens is shown in
Figure 1, along with the specific dimensions.
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Figure 1. Dimensions and cross-section of a one-way slab (unit: mm). Note: n is the GFRP bar 
amount. 
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tively. The length/width ratio was greater than three, satisfying the conditions for one-
way bending. At a length of 1200 mm, in mid-span, an area with larger bending moments, 
the slabs were strengthened with external prestressed GFRP bars, which were fixed onto 
the bottom of the slab using anchors and an L-shaped plate, as shown in Figures 2 and 3. 
The interface of the L-shape plate and concrete is the anchorage zone to transfer prestress, 
and it had a length of 75 mm. Anchors were applied during the tensile tests of the GFRP 
bars, and all the GFRP bars were successfully broken due to tension. 

Prestress was applied through a hydraulic jack, with the force being monitored and 
regulated by a load sensor, as in Figure 2. During pre-tensioning, the prestress was mon-
itored and adjusted by using data from strain gauges. The prestress tension tests were 
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Figure 1. Dimensions and cross-section of a one-way slab (unit: mm). Note: n is the GFRP bar amount.

The slabs were simply supported under their short sides. According to the size of the
reaction frame, the length and net span of the slabs were 2000 mm and 1800 mm, respectively.
The length/width ratio was greater than three, satisfying the conditions for one-way bending.
At a length of 1200 mm, in mid-span, an area with larger bending moments, the slabs were
strengthened with external prestressed GFRP bars, which were fixed onto the bottom of the
slab using anchors and an L-shaped plate, as shown in Figures 2 and 3. The interface of the
L-shape plate and concrete is the anchorage zone to transfer prestress, and it had a length of
75 mm. Anchors were applied during the tensile tests of the GFRP bars, and all the GFRP bars
were successfully broken due to tension.

Prestress was applied through a hydraulic jack, with the force being monitored and
regulated by a load sensor, as in Figure 2. During pre-tensioning, the prestress was
monitored and adjusted by using data from strain gauges. The prestress tension tests were
divided into two steps. In the first step, the FRP bars were over-tensioned with stress values
of up to 1.1 f ed (f ed is the default prestress level). After 24 h, the FRP bars were relaxed,
and then a tension of 1.05 f ed was applied again. Prior to loading the slab, the tensile
stress in the FRP bars was adjusted to the designated prestress level. Throughout this
process, strain values were continuously monitored and recorded every hour using strain
gauges. The effective prestress in the FRP bars was calculated based on the elastic modulus
and the average value of the measured strain. The details of the specimens, including the
arrangement of strain gauges and linear variable differential transformers (LVDTs), are
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shown in Figure 3 and Table 1. The load was applied in steps of 1 kN via a hydraulic jack
with a capacity of 50 kN, as shown in Figure 4. Each incremental load was sustained for at
least five minutes to ensure complete crack and deformation development. Meanwhile, the
strain in the concrete, steel and FRP bars was reset before loading and then measured by
the data collector under external loads. All the slabs were loaded to failure via four-point
bending. The flexural behavior and effects of external prestressed FRP bars were discussed
and analyzed according to the experimental results.
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Table 1. Details of specimens under investigation.

Specimen 1
Reinforcement

h0
2

(mm)

FRP Bar Prestress
Level, f ed

(MPa)

Concrete Property 3

Area
(mm2)

Spacing
(mm)

Diameter
(mm) Amount Area

(mm2) f c’ (MPa) f t (MPa) Ec (GPa)

RC 201 125 81 -- 0 0 —— 32.8 2.47 34.56
PC2 201 125 81 8 2 100 80 32.4 2.91 37.32

PC3L 201 125 81 8 3 151 60 34.8 2.98 36.58
PC3 201 125 81 8 3 151 80 34.8 2.99 33.58

PC3H 201 125 81 8 3 151 100 31.0 2.99 35.02
PC4 201 125 81 8 4 201 80 37.4 3.64 33.36

1 The number represents the FRP bar amount; “L” and “H” represent prestress levels of 60 MPa and 100 MPa,
respectively. 2 h0 is the effective height of the cross-section. 3 f c’, f t and Ec are the axial compressive strength,
tensile strength and elasticity modulus, respectively.
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3. Results

The main experimental results are provided in Table 2, where f pe and ∆f p are effective
prestress and stress increment in FRP bars at failure, respectively; εu is the compressive
strain of concrete in the top fiber at failure; Pcr, Py and Pu are the loads at concrete cracking,
reinforcement yielding and ultimate failure, respectively; ∆y and ∆u are the mid-span
deflections corresponding to Py and Pu, respectively; and PL/300 denotes the load of the
mid-span deflection equal to L/300. The variation in stress in the FRP bar was recorded
after prestressing. The ratio of measured stress to the default prestress level with time
is shown in Figure 5. At the moment of release, each specimen experienced a prestress
loss of approximately 5%, with the majority of the loss occurring within the first 12 h after
prestressing. Specimen PC3H exhibited a greater loss in prestress compared with the other
specimens due to its higher initial prestress level. However, the prestress loss of specimen
PC3L was only lower than that of PC3H. The most likely reason for this is that the anchor
system contained defects caused during production or installation. Anchorage failure
led to the strengthening function being lost in the external FRP bars in specimen PC3L.
During the first 24 h, some of the slippage between the GFRP bars, anchorages and concrete
was eliminated, and some small gaps were closed. As a result, the prestress loss significantly
decreased after tensioning again. The effective prestress remained higher than 95% in all
specimens except for PC3L.

Table 2. Experimental results for one-way slabs.

Specimen f pe
(MPa)

∆f p
(MPa) εu (10−3) Pcr (kN) Py (kN) ∆y (mm) PL/300

(kN) Pu (kN) ∆u (mm) Dc

RC -- -- 1.10 8.35 15.94 6.61 15.30 16.99 25.21 3.50
PC2 77.6 108.3 1.28 10.35 17.35 5.12 17.45 23.55 19.88 3.43

PC3L 55.2 27.0 0.95 11.87 17.04 3.84 19.20 22.20 8.68 1.45
PC3 77.2 126.2 1.40 15.21 27.73 9.01 21.38 30.58 19.95 2.98

PC3H 95.3 90.9 1.38 12.64 22.24 8.81 20.87 28.79 20.66 3.18
PC4 78.6 118.7 1.43 18.45 26.77 8.05 24.77 34.23 20.25 2.94



Materials 2024, 17, 1130 6 of 16

Materials 2024, 17, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 4. Specimen details and measurement point distribution. 

3. Results 
The main experimental results are provided in Table 2, where fpe and Δfp are effective 

prestress and stress increment in FRP bars at failure, respectively; εu is the compressive 
strain of concrete in the top fiber at failure; Pcr, Py and Pu are the loads at concrete cracking, 
reinforcement yielding and ultimate failure, respectively; Δy and Δu are the mid-span de-
flections corresponding to Py and Pu, respectively; and PL/300 denotes the load of the mid-
span deflection equal to L/300. The variation in stress in the FRP bar was recorded after 
prestressing. The ratio of measured stress to the default prestress level with time is shown 
in Figure 5. At the moment of release, each specimen experienced a prestress loss of ap-
proximately 5%, with the majority of the loss occurring within the first 12 h after prestress-
ing. Specimen PC3H exhibited a greater loss in prestress compared with the other speci-
mens due to its higher initial prestress level. However, the prestress loss of specimen PC3L 
was only lower than that of PC3H. The most likely reason for this is that the anchor system 
contained defects caused during production or installation. Anchorage failure led to the 
strengthening function being lost in the external FRP bars in specimen PC3L. During the 
first 24 h, some of the slippage between the GFRP bars, anchorages and concrete was elim-
inated, and some small gaps were closed. As a result, the prestress loss significantly de-
creased after tensioning again. The effective prestress remained higher than 95% in all 
specimens except for PC3L.  

0 5 10 15 20 25 30 35 40
0.30

0.45

0.60

0.75

0.90

1.05

1.20

M
ea

su
re

d 
str

es
s/D

ef
au

lt 
str

es
s 

Time /h

 PC2
 PC3L
 PC3
 PC3H
 PC4

y=0.95

y=1
Time=24

 
Figure 5. Relative effective prestress versus time. 

The failure forms and crack patterns of the strengthened slabs are shown in Figure 6, 
in which major cracks and the corresponding cracks on the other side are framed in red. 
Due to the insufficient bearing capacity, the control slab experienced rapid and severe 
damage after the reinforcements yielded. As a result, the entire specimen was not retained 
after failure. Specimen PC2 exhibited more severe damage due to its lower FRP bar con-
tent. Specifically, the anchorage zone of slab PC3L cracked prematurely, and this crack led 

Figure 5. Relative effective prestress versus time.

The failure forms and crack patterns of the strengthened slabs are shown in Figure 6,
in which major cracks and the corresponding cracks on the other side are framed in red.
Due to the insufficient bearing capacity, the control slab experienced rapid and severe
damage after the reinforcements yielded. As a result, the entire specimen was not retained
after failure. Specimen PC2 exhibited more severe damage due to its lower FRP bar content.
Specifically, the anchorage zone of slab PC3L cracked prematurely, and this crack led to
anchorage failure. Therefore, PC3L was unable to be used to analyze the bending behavior
of the strengthened one-way slab. In contrast, the cracks in specimen PC4 were narrower
but more numerous. The remaining specimens had similar crack patterns. During the
experimental process, only one or two primary cracks gradually extended, nearly spanning
the thickness of the slab, with a minimal amount of concrete being crushed. The final
failure mode was similar to that of rare-reinforced beams in appearance. However, a much
higher load-carrying capacity still remained after the steel bars yielded, in stark contrast to
rare-reinforced beams. The effects of the improvements to these specimens were various
due to the different amounts of prestressed FRP bars and the different prestress levels and
are discussed in the following.
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4. Discussion
4.1. Effect of Prestressed FRP Bar Amount

The cracking loads of specimens PC2, PC3 and PC4 were improved by 24%, 81.9%
and 121%, respectively, with respect to RC. For the yielding loads, corresponding increases
of 8.8%, 74.0% and 67.9% were observed, and for the ultimate load, these increases were
38.6%, 79.9% and 101.5%. In general, greater strengthening effects were achieved by
incorporating prestressed FRP bars, with these bars assuming distinct roles from the initial
loading stage to the ultimate capacity state. Owing to the absence of bonds, the FRP bars
effectively constrained concrete cracking through the exertion of reverse bending moments,
thereby mitigating tensile stress in the concrete zone. Before cracking, the applied load
and corresponding deformations were small, and the prestressing force offset most of
the applied load. Under the ultimate load, the tension zone of the slab had no carrying
capacity, and almost all the incremental load was borne by the external prestressed FRP
bars. Therefore, the external prestressed FRP bars performed an important role in these
two stages. The improvements in the cracking load and ultimate load were almost linearly
related to the amount of prestressed FRP bars.

As mentioned above, the mechanical mechanisms of the two critical events, concrete
cracking and steel bar yielding, changed, while the responses of the specimens under an
applied load can be divided into three stages. The load–deflection curves for slabs with
different amounts of FRP bars are shown in Figure 7. Before concrete cracking, the slabs
demonstrated comparable stiffnesses due to the relatively limited quantity and elastic
modulus of the FRP bars. The enhancement in stiffness due to the FRP bars became more
apparent after concrete cracking. During the crack-yield and post-yield stages, the average
slopes of the curves were calculated to determine the stiffness and carrying capacity of
load increment, as shown in Figure 7 (kc and ky are the average slopes of crack-yield and
post-yield, respectively). In the crack-yield stage, the FRP bars assisted the steel bars to
bear the external load, which improved the stiffness of the strengthened slabs. However,
the kc values of PC2 and RC were equal because the amount of external prestressed FRP
in PC2 is lower. The kc values of PC3 and PC4 were 18% and 28% higher than those of
PC2 due to the increase in the amount of FRP bars. When the mid-span deflection reached
the serviceability limit, L/300, the corresponding loads of the strengthened slabs PC2, PC3
and PC4 improved by 14.1%, 41.4% and 61.9%, respectively. After the steel bar yielding,
the ky of RC was almost zero, while the ky values of PC2, PC3 and PC4 increased from
0.42 to 0.61. This is because the FRP bars in strengthened slabs resisted higher loads and
contributed to the post-yield stiffness. Thus, employing more prestressed FRP bars resulted
in an increased stiffness, an improved serviceability limit capacity and enhanced safety
reserves for the strengthened slabs.
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bars decreases, the strains in the steel and FRP bars of the strengthened slab increase. For 
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load–deflection curve. This highlights the close correlation between the strengthening ef-
fects of FRP bars and slab deformation. The load–strain curves of steel bars exhibited a 
rapidly ascending stage after yielding. The reason for this is that steel bar yielding only 
occurred in the cracks across segments, while the plastic hinge deformed only around the 
main cracks. As a result, the strain of the steel bar barely increased in other segments, and 
the additional load was borne by the FRP bars. This confirms that the strengthening effects 
of the FRP bar are pronounced from an alternate perspective. Furthermore, the FRP bar 
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The compressive strains of concrete at failure in the top fibers are shown in Table 2,
while the average values of the measured strain in FRP and steel bars are shown in Figure 8.
With fewer prestressed FRP bars, each steel and FRP bar is required to bear a greater
amount of stress in the strengthened slab. Therefore, as the quantity of prestressed FRP
bars decreases, the strains in the steel and FRP bars of the strengthened slab increase.
For prestressed FRP bars, the general trend in the load–strain curve is similar to that in
the load–deflection curve. This highlights the close correlation between the strengthening
effects of FRP bars and slab deformation. The load–strain curves of steel bars exhibited a
rapidly ascending stage after yielding. The reason for this is that steel bar yielding only
occurred in the cracks across segments, while the plastic hinge deformed only around the
main cracks. As a result, the strain of the steel bar barely increased in other segments, and
the additional load was borne by the FRP bars. This confirms that the strengthening effects
of the FRP bar are pronounced from an alternate perspective. Furthermore, the FRP bar
prevents the strengthened slab from collapsing entirely.
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4.2. Effect of Prestress Level

The strengthened slabs PC3L, PC3 and PC3H, containing the same FRP bar amount
but with different prestress levels, reached 42.1%, 81.7% and 51.4% higher cracking loads,
respectively, than RC because the tensile stress of concrete in the tension zone was coun-
teracted by the reverse bending from the external prestressed FRP bars. In general, the
anti-cracking ability improved significantly, especially in slabs with higher prestress levels.
Nevertheless, for specimen PC3L, the flexural cracks generated under the load point were
followed by cracking near the anchorage. Furthermore, the cracks near the anchorage
widened more severely with an increase in the applied load. As a result, the interaction of
the FRP bars and concrete deteriorated significantly, and the stress increment in the FRP
bar at failure was just 27 MPa. This could potentially be attributed to the lack of precision
in anchor installation or the inadequate compactness of the concrete in the anchorage
zone. In the phase of prestressing application, substantial prestress loss may also indicate
underlying problems with the anchors. The specimen PC3H, with a higher prestress level,
exhibited a 69.5% improvement in the ultimate bearing capacity over RC. However, this
capacity was still slightly lower than that of PC3 due to the lower stress in the FRP bar at
the ultimate load.

The load–deflection curves of specimens with different prestress levels are shown in
Figure 9, along with their average slopes at different stages. Generally, the stiffness of these
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slabs is expected to be similar due to the identical amounts of FRP bars used. Nevertheless, the
kc of PC3H is much greater than that of other specimens. One potential explanation for this is
that the elevated prestress level minimized the damage to the concrete in the tension zone,
while the uncracked concrete exhibited a more pronounced hardening effect. After yielding,
the anchorage failed quickly for slab PC3L, which resulted in the absence of a post-yield stage.
In addition, slight loosening occurred in the anchorage of PC3H, and a small fluctuation in
the load–deflection curve was observed. As a result, the ky was only half of that of slab PC3.
This also provides an explanation for why the stress increment in the FRP bar was lower than
that of PC3 at the ultimate load.
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The load–strain curves for FRP and steel bars with different prestress levels are shown
in Figure 10. The curves exhibit similar trends to those in Figure 8. However, the strain in
the FRP and steel bars has no obvious variation with different prestress levels. Hence, the
stress in external prestressed FRP bars is not influenced by the prestress level, and it was
not taken into account during ∆f p calculations.
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In fact, the prestress in the FRP bars partially offsets the external load and reduces the
deflection by generating a negative moment. Furthermore, the external prestressed FRP
bars bear the external load in combination with the slab, resulting in an enhanced carrying
capacity and stiffness. Therefore, high prestress levels will improve the cost/benefit ratio
in anti-crack designs. However, further research is warranted to investigate the long-term
prestress loss and the reliability of the anchorage system in external prestressed FRP bars
under high prestress levels.

4.3. Ductility

The energy ductility factor serves as a comprehensive measure of both the load-
carrying capacity reserve and the energy dissipation capability and is used to quantitatively
represent the ductility of each specimen. The energy ductility factor equation is expressed
as follows:

Dc = Asu/Fs∆s, (1)

where Dc is the energy ductility factor; Fs is the applied load in the service state; ∆s is the
deflection corresponding to Fs; and Asu is the area under the load–deflection curve from
the service state to the ultimate limit state.

PL/300 was chosen as the service load, while the yielding load was less than PL/300
and was chosen as a service load for specimens PC2 and PC3L. In this case, energy ductility
factors were calculated and are shown in Table 2. In particular, the failure of specimen PC3L
was caused by anchorage invalidation, which resulted in a small post-yield stage and much
lower ductility. Compared with the control specimen, RC, the strengthened slabs exhibited
ductile failure on the whole, and their energy ductility factors were reduced by no more
than 15%, despite the fact that FRP bars are often considered brittle materials. The reasons
for this are that the prestressed FRP bars were only connected to the strengthened slab via
each end of the anchorage, and the deformation was evenly distributed throughout the FRP
bar. In other words, the strain of the FRP bar is affected by the deformation state of the entire
member. The external prestressed FRP bars do not exhibit tension failure at the ultimate limit
state. Therefore, the absence of a bond between the concrete and the FRP bar overcomes the
brittleness of the FRP bar, although the bearing capacity and stiffness are reduced.

Overall, the energy ductility factor is negatively correlated with the stress in the FRP
bar at ultimate loads. For slabs PC2, PC3 and PC4, the energy ductility factor was reduced
by 14% when the FRP bars increased from two to four. One reason for this is that the
Pu-to-Py ratio of PC2 is close to 1.4. This indicates that PC2 has a higher bearing capacity
reserve. Another possible cause is that the higher amount of FRP bars improved the load
in the service state, while the ultimate deflections were similar. Analogously, a higher
prestress level reduces deformability and ductility. However, the slab PC3H had a higher
energy ductility factor than PC3 due to the lower stress in the FRP bar at ultimate loads.
This also indirectly confirms that the loss in ductility is unavoidable when enhancing the
bearing capacity in an externally prestressed strengthening system. The application of FRP
bars in this system preserves an acceptable ductility for the strengthened members, while
the strength and durability of FRP bars are exploited.

External prestressed FRP bars provide an adequate post-yielding carrying capacity
and deflection for the strengthened slab, though their energy ductility factor is lower
than non-strengthened slabs. Moreover, the integrity and safety of the reinforced slab are
significantly enhanced, thereby preventing the total collapse of the slab. In addition, FRP
bars, as a linear elastic material, effectively enhance resilience. It is worth noting that the
ultimate carrying capacity of PC4 is 12% higher than PC3, though their energy ductility
factors are similar. Therefore, increasing the amount of FRP bars is a crucial method for
improving bearing capacity, especially when the energy ductility factor is constrained
by design specifications. However, the cost/benefit ratio is optimized by increasing the
prestress level and reducing the FRP bar amount on the condition that the requirements for
ductility and FRP bar strength are satisfied.
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5. Calculation of Stress in Prestressed FRP Bars
5.1. Previous Calculation Method

The principal problem in bearing capacity predictions is the calculation of the stress
in the external prestressed FRP bars. By an analysis of the test results, it was shown that
the stress increment in FRP bars depends on the deformation state of the whole member.
The traditional calculation method, based on the strain compatibility in the cross-section,
is no longer applicable. To solve this problem, Naaman [15] developed a “pseudo-section
analysis” method, in which the effects of the deformation of the entire member were
summarized in a bond reduction coefficient. The stress in external prestressed bars can be
calculated as follows:

fp = fpe + ΩEpεc(
dp

c
− 1), (2)

where f p and Ep are the stress and elastic modulus of the external prestressed bar; εu is
the compressive strain of concrete in the top fiber; dp is the effective depth of the external
prestressed bar; c is the depth of the neutral axis; and Ω is the bond reduction coefficient.

The stiffness and material properties of concrete members continuously change under
various loads because of concrete cracking or steel bar yielding. For this reason, Naa-
man [15] proposed the bond reduction coefficient calculation method for use under various
loads and material states. However, this method is very complex and difficult to apply.
Indeed, the calculation requires knowledge of the ultimate state of the member in most
cases. According to previous research, the stress increment in external prestressed bars
is influenced by several factors, such as anchorage location, span/depth ratio, deviator
location and load distribution. Some methods for calculating the bond reduction coefficient
at ultimate loads, in which several of the above factors were taken into account, have been
proposed, as shown in Table 3.

Table 3. Calculation methods of the bond reduction coefficient at ultimate loads.

Method Source Considered Factors Equations of Ωu for fpu=fpe+ΩuEpεcu(
dp
c −1)

Ng [13]
■ Deviator location
■ Load distribution

Ωu =
dp
h (0.895 − 1.364 a

L )− K.
For Sd/dp ≤ 15,K = 0.0096Sd/dp; for Sd/dp > 15,

K = 0.144.

Naaman [15]
■ Span/depth ratio
■ Load distribution

For uniform or third-point loading, Ωu = 3/(L/dp).
For one-point mid-span loading, Ωu = 1.5/(L/dp).

Aravinthan [22]

■ Prestressed bar amount
■ Span/depth ratio
■ Deviator location
■ Load distribution

For single-point loading,
Ωu = 0.21

L/dp
+ 0.04 Ap,int

Ap,tot
+ 0.04.

For loading at the third points,
Ωu = 2.31

L/dp
+ 0.21 Ap,int

Ap,tot
+ 0.06.

Mutsuyoshi [23]

■ Span/depth ratio
■ Deviator location
■ Load distribution

Ωu =
1.47+10.3(L0/L)

L/dp
− 0.29 L0

L
Sd
L

Here, f pu is the stress in prestressed bars at the ultimate load; Ωu is the bond reduction coefficient at the ultimate
load; εcu is the ultimate compressive strain of concrete in the top fibers; a is the distance from the support to the
loading point; Sd is the distance between deviators; L is the effective span; L0 is the distance between symmetrically
applied concentrated loads; and Ap,int and Ap,tot are the internal prestressed bar area and the total prestressed bar
area, respectively.

5.2. Simplified Calculation Equation

A set of 43 specimens from previous research was collected, and some of their pa-
rameter ranges are shown in Table 4. The stress in external prestressed bars at failure
was calculated by the equations in Table 3 and compared with the experimental values.
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The values calculated via Naaman’s [15] and Aravinthan’s [22] methods are close to the
experimental values, with a slight tendency towards being conservative, as shown in Fig-
ure 11. On average, the ratios between the experimental and predicted values (Exp./Pre.)
are equal to 1.097 and 1.111, respectively. In addition, their variable coefficients (V.C.s)
are equal to 0.123 and 0.118, respectively, which suggests that these equations are quite
robust. For concrete beams externally prestressed with BFRP or GFRP bars, the majority
of calculated values (using Wang’s [20] and Ghallab’s [16] methods) exhibit a slight dis-
crepancy from the corresponding experimental values, with the former being marginally
smaller. Therefore, these two calculation methods are suitable for concrete beams externally
prestressed with FRP bars. However, the results showed that the predicted values are not
in agreement with the experimental values determined in this work. This indicates that
the characteristics of the slabs, such as the higher span/depth ratio, lower reinforcement
ratio and unique failure form, must be taken into account. In addition, these equations are
tedious and must be solved by simultaneous equations with section force balance.

Table 4. Parameter ranges of collected specimens.

Source No. of
Specimens

No. of
Deviators

Section
Form

Material of
External

Bar

Ap
1

(mm2)
As

1

(mm2)
f c’ 2

(MPa)
L

(mm) L/dp
3 L0/L 3

Ng [13] 16 0; 1; 2; 3 T-beam steel 265 402 25~36 1500~6000 7.5~30 0.33

Tan [14] 3 0; 1 T-beam steel 201 402 28 4500 22.5 0.33
1 0 T-beam CFRP 152 982 38 4500 22.5 0.33

Wang [20] 3 0; 2 T-beam BFRP 226 760 32.4 5700 12.6; 15.2 0.33

Ghallab
[16] 16 2 I-beam GFRP 61 101 35~63 1800~3600 12.7~25.3 0.33

Aravinthan
[22] 4 2 T-beam steel 139~277 236 35 5200 13.9~20.8 0.33

1 Ap and As are the areas of external prestressed bars and internal non-prestressed steel bars, respectively. 2 f c’ is
the axial compressive strength. 3 dp is the effective depth of the external prestressed bar, and L and L0 are the
effective span and distance between symmetrically applied concentrated loads, respectively.
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However, for example, the FRP bars in specimen PC3 provided about 40% of the
bearing capacity at the ultimate load, while 60% of the stress in the external prestressed
FRP bar originated from the elongation of the FRP bar after loading. Consequently, it was
determined that the deviation in the computed incremental stress in FRP bars would not
notably impact the bearing capacity calculation accuracy. Therefore, it is not cost-effective
to spend a lot of computing resources [15]. Using another method based on the plastic hinge
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length can simplify the calculation process, though the calculation is not very accurate.
In this method, the elastic deformation of the member is neglected, and only the elongation
of the external prestressed bars, derived from the plastic hinge deformation, is considered.
The stress in the external prestressed bar can be calculated as follows:

fpu = fpe +
Ep

Ls
εcu

dp − c
c

Lp, (3)

where Ls and Lp are the external prestressed bar length and the plastic hinge length,
respectively.

Lee [24] proposed that the plastic hinge length of the concrete beam can be taken as
the constant moment segment, with the addition of the effective section depth, as follows:

Lp = L0 + 2 × 0.5h0 (4)

However, the concrete was crushed only above one or two cracks at failure in the
tested one-way slabs, while the residual concrete in the compressive zone did not fail
according to the experimental results (as shown in Table 2). For this reason, the calculated
results from the equations in Table 3 were much larger than the experimental values of f p
for the slabs. In this case, plastic deformation occurs primarily around the main cracks, as
shown in Figure 12. The majority of the constant moment zone remains in an elastic phase,
and the elongation of the external prestressed bars in this segment should not be neglected.
The neutral axis in the elastic segment is about half of the slab thickness. The stress in the
external prestressed bar can be calculated as follows:

fp = fpe + Ep(εcu
dp − c

c
Lp

Ls
+ εu

2dp − h
h

L0

Ls
) (5)
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To simplify the calculation, the plastic hinge length and compressive strain of concrete
in the top fiber at failure were estimated as h0 and 0.5εcu, respectively. Herein, Equation (5)
was further simplified, and a simple equation for the evaluation of stress in the FRP bar
was deduced as follows:

fpu = fpe + Epεcu(
dp

25ρp,s
+

L0

2
)/L (6)

where ρp,s is the total ratio of longitudinal reinforcements to prestressed bars.
It is worth noting that three crucial factors, including the elastic modulus of the

prestressed bar, the ratio of longitudinal reinforcements and the elastic deformation in the
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constant moment zone, were taken into account in addition to the plastic hinge deformation.
Therefore, irrespective of the prestressing material, this equation is applicable to both
strengthened beams and one-way slabs. The f pu values of the specimens in Table 4 and
those determined in experiments in this paper were predicted. A comparison of the
experimental and calculated values is shown in Figure 13. The results show that the stress
values from Equation (6) are conservative and stable. Values that were higher than the
experimental values were predicted only for 2 of the 47 specimens. In fact, higher predicted
values were also produced by the equations in Table 3 for these two specimens (shown
in Figures 11 and 13). This may be attributed to experimental deviations. Therefore, it is
feasible to evaluate the stress at failure in external prestressed bars using Equation (6) for
concrete beams or one-way slabs externally prestressed with steel or FRP bars.
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6. Conclusions

In this study, one-way concrete slabs were strengthened using external prestressed FRP
bars to examine the feasibility of using them as external prestressing materials. The effects
of the number of prestressed FRP bars and the prestress level on the flexural behavior,
including bearing capacity, stiffness, ductility and failure mode, were discussed. In addition,
a simplified calculation method for the stress in prestressed FRP bars at ultimate loads was
proposed. The results highlight that this is a highly durable and efficient strengthening
technique for one-way concrete slabs. The major conclusions are as follows:

(1) The strengthened slabs exhibited an improvement of over 100% in terms of the
cracking resistance and ultimate load despite the low ratio of external prestressed
FRP bars at only 0.4%. The experiments substantiated the efficacy, reliability and
cost-effectiveness of this strengthening technique. Further investigations are required
to examine the long-term prestressing loss and enhance the reliability of the anchorage
system, particularly under high prestress level conditions.

(2) The strengthening effects of external prestressed FRP bars are attributable to two
factors: the prestress in the FRP bars offsetting a portion of the applied load and the
FRP bars sharing the external load with the steel reinforcements. The cracking load,
ultimate load and stiffness of the strengthened slabs were improved significantly with
increases in the number of prestressed FRP bars and the prestress level. In practice,
the cost/benefit ratio can be optimized by increasing the prestress level and reducing
the amount of FRP bars under the condition that the requirements for ductility and
strength are satisfied.
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(3) The absence of a bond between the concrete and the FRP bar overcomes the brittle-
ness of the FRP bar. The strengthened slabs have satisfactory ductility and higher
post-yield stiffness and bearing capacity, and their integrality, safety and resilience
are significantly improved. Increasing the number of FRP bars is a crucial method
for enhancing the bearing capacity, especially when the energy ductility factor is
constrained by the design specifications.

(4) A method for calculating the stress in prestressed FRP bars at the ultimate load was
proposed based on the plastic hinge deformation. Irrespective of the prestressing
material, this method is applicable to both strengthened beams and one-way slabs.
However, further investigations are required in the future to explore the effects of
certain factors, including the deviator location and span/depth ratio, as the number
of specimens in this research was limited.
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