Biocomposites Based on Wheat Flour with Urea-Based Eutectic Plasticizer and Spent Coffee Grounds: Preparation, Physicochemical Characterization, and Study of Their Influence on Plant Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TPWF Films
2.3. Tensile Tests
2.4. DMTA—Dynamic Mechanical Thermal Analysis
2.5. XRD Analysis
2.6. TGA—Thermal Gravimetry Analysis
2.7. Behavior in Moisture and Water
2.8. Biodegradability in Soil
2.9. Investigation of the Toxicity and Influence of the Selected Biocomposite on the Physiological State of Growing Plants
2.10. Statistical Analysis
3. Results and Discussion
3.1. Tensile Test Results
3.2. DMTA Results
3.3. XRD Analysis Results
3.4. TGA Results
3.5. Swelling, Dissolution and Moisture Sorption Degrees
3.6. Biodegradation in Soil
3.7. Influence of the Biocomposite on Toxicity and Physiological State of Growing Plant
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siwek, P.; Domagala-Swiatkiewicz, I.; Bucki, P.; Puchalski, M. Biodegradable Agroplastics in 21st Century Horticulture. Polimery 2019, 64, 480–486. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Q.; Jia, W.; Yan, C.; Wang, J. Agricultural Plastic Mulching as a Source of Microplastics in the Terrestrial Environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, Y.; Tan, W.; Zhang, Z. Microplastics as an Emerging Environmental Pollutant in Agricultural Soils: Effects on Ecosystems and Human Health. Front. Environ. Sci. 2022, 10, 855292. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, Q.; Chen, L.; Zhu, X.; Zhao, S.; Duan, C.; Zhang, X.; Song, D.; Fang, L. A Critical Review of Microplastics in the Soil-Plant System: Distribution, Uptake, Phytotoxicity and Prevention. J. Hazard. Mater. 2022, 424, 127750. [Google Scholar] [CrossRef]
- Ribba, L.; Lopretti, M.; Montes De Oca-Vásquez, G.; Batista, D.; Goyanes, S.; Vega-Baudrit, J.R. Biodegradable Plastics in Aquatic Ecosystems: Latest Findings, Research Gaps, and Recommendations. Environ. Res. Lett. 2022, 17, 33003. [Google Scholar] [CrossRef]
- Montilla-Buitrago, C.E.; Gómez-López, R.A.; Solanilla-Duque, J.F.; Serna-Cock, L.; Villada-Castillo, H.S. Effect of Plasticizers on Properties, Retrogradation, and Processing of Extrusion-Obtained Thermoplastic Starch: A Review. Starch 2021, 73, 2100060. [Google Scholar] [CrossRef]
- Nafchi, A.M.; Moradpour, M.; Saeidi, M.; Alias, A.K. Thermoplastic starches: Properties, challenges and prospects. Starch 2013, 65, 61–72. [Google Scholar] [CrossRef]
- David, O.; Arthur, E.; Kwadwo, S.O.; Badu, E.; Sakyi, P. Proximate Composition and Some Functional Properties of Soft Wheat Flour. Int. J. Innnov. Res. Sci. Eng. Technol. 2015, 4, 753–758. [Google Scholar] [CrossRef]
- Saiah, R.; Sreekumar, P.A.; Leblanc, N.; Castandet, M.; Saiter, J.-M. Study of Wheat-Flour-Based Agropolymers: Influence of Plasticizers on Structure and Aging Behavior. Cereal Chem. 2007, 84, 276–281. [Google Scholar] [CrossRef]
- Dobircau, L.; Sreekumar, P.A.; Saiah, R.; Leblanc, N.; Terrié, C.; Gattin, R.; Saiter, J.M. Wheat Flour Thermoplastic Matrix Reinforced by Waste Cotton Fibre: Agro-Green-Composites. Compos. Part A Appl. Sci. Manufact. 2009, 40, 329–334. [Google Scholar] [CrossRef]
- Leblanc, N.; Saiah, R.; Beucher, E.; Gattin, R.; Castandet, M.; Saiter, J.-M. Structural Investigation and Thermal Stability of New Extruded Wheat Flour Based Polymeric Materials. Carbohydr. Polym. 2008, 73, 548–557. [Google Scholar] [CrossRef]
- Sreekumar, P.A.; Gopalakrishnan, P.; Leblanc, N.; Saiter, J.M. Effect of Glycerol and Short Sisal Fibers on the Viscoelastic Behavior of Wheat Flour Based Thermoplastic. Compos. Part A Appl. Sci. Manufact. 2010, 41, 991–996. [Google Scholar] [CrossRef]
- Sreekumar, P.A.; Leblanc, N.; Saiter, J.M. Effect of Glycerol on the Properties of 100% Biodegradable Thermoplastic Based on Wheat Flour. J. Polym. Environ. 2013, 21, 388–394. [Google Scholar] [CrossRef]
- Saiah, R.; Sreekumar, P.A.; Leblanc, N.; Saiter, J.-M. Structure and Thermal Stability of Thermoplastic Films Based on Wheat Flour Modified by Monoglyceride. Ind. Crops Prod. 2009, 29, 241–247. [Google Scholar] [CrossRef]
- Ma, X.F.; Yu, J.G.; Ma, Y.B. Urea and Formamide as a Mixed Plasticizer for Thermoplastic Wheat Flour. Carbohydr. Polym. 2005, 60, 111–116. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Leroy, E.; Decaen, P.; Jaquet, P.; Coativy, G.; Pantoire, B.; Requerre, A.L.; Laurdin, D. Deep Eutectic Solvents as Functional Additives for Starch Based Plastics. Green Chem. 2012, 14, 3063–3066. [Google Scholar] [CrossRef]
- Zdanowicz, M. Starch Treatment with Deep Eutectic Solvents, Ionic Liquids and Glycerol. A Comparative Study. Carbohydr. Polym. 2020, 229, 115574. [Google Scholar] [CrossRef] [PubMed]
- Simeonov, S.P.; Afonso, C.A.M. Basicity and Stability of Urea Deep Eutectic Mixtures. RSC Adv. 2016, 6, 5485–5490. [Google Scholar] [CrossRef]
- Zdanowicz, M. Deep Eutectic Solvents Based on Urea, Polyols and Sugars for Starch Treatment. Int. J. Biol. Macromol. 2021, 176, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Fischer, V.; Kunz, W. Properties of Sugar-Based Low-Melting Mixtures. Mol. Phys. 2014, 112, 1241–1245. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Wilpiszewska, K.; Spychaj, T. Deep eutectic solvents for polysaccharides processing: A review. Carbohydr. Polym. 2018, 200, 361–380. [Google Scholar] [CrossRef]
- Adamus, J.; Spychaj, T.; Zdanowicz, M.; Jędrzejewski, R. Thermoplastic starch with deep eutectic solvents and montmorillonite as a base for composite materials. Ind. Crop. Prod. 2018, 123, 278–284. [Google Scholar] [CrossRef]
- Lončarić, M.; Jakobek, L.; Molnar, M. Deep Eutectic Solvents in the Production of Biopolymer-Based Materials. Croat. Chem. Acta 2021, 94, 75–82. [Google Scholar] [CrossRef]
- Rivadeneira-Velasco, K.E.; Utreras-Silva, C.A.; Díaz-Barrios, A.; Sommer-Márquez, A.E.; Tafur, J.P.; Michell, R.M. Green Nanocomposites Based on Thermoplastic Starch: A Review. Polymers 2021, 13, 3227. [Google Scholar] [CrossRef]
- Surendren, A.; Mohanty, A.K.; Liu, Q.; Misra, M. A Review of Biodegradable Thermoplastic Starches, Their Blends and Composites: Recent Developments and Opportunities for Single-Use Plastic Packaging Alternatives. Green Chem. 2022, 24, 8606–8636. [Google Scholar] [CrossRef]
- Cataño, F.A.; Moreno-Serna, V.; Cament, A.; Loyo, C.; Yáñez, S.M.; Ortiz, J.A.; Zapata, P.A. Green Composites Based on Thermoplastic Starch Reinforced with Micro- and Nano-Cellulose by Melt Blending—A Review. Int. J. Biol. Macromol. 2023, 248, 125939. [Google Scholar] [CrossRef]
- Madhumitha, G.; Fowsiya, J.; Mohana Roopan, S.; Thakur, V.K. Recent Advances in Starch–Clay Nanocomposites. Int. J. Polym. Anal. Charact. 2018, 23, 331–345. [Google Scholar] [CrossRef]
- Sarsari, N.A.; Pourmousa, S.; Tajdini, A. Physical and Mechanical Properties of Walnut Shell Flour-Filled Thermoplastic Starch Composites. Bioresources 2016, 11, 6968–6983. [Google Scholar]
- Torres, F.G.; Mayorga, J.P.; Vilca, C.; Arroyo, J.; Castro, P.; Rodriguez, L. Preparation and Characterization of a Novel Starch–Chestnut Husk Biocomposite. SN Appl. Sci. 2019, 1, 1158. [Google Scholar] [CrossRef]
- Dogossy, G.; Czigany, T. Thermoplastic Starch Composites Reinforced by Agricultural By-Products: Properties, Biodegradability, and Application. J. Reinf. Plast. Comp. 2011, 30, 1819–1825. [Google Scholar] [CrossRef]
- Merci, A.; Marim, R.G.; Urbano, A.; Mali, S. Films Based on Cassava Starch Reinforced with Soybean Hulls or Microcrystalline Cellulose from Soybean Hulls. Food Pack. Shelf Life 2019, 20, 100321. [Google Scholar] [CrossRef]
- Bortolatto, R.; Bittencourt, P.R.S.; Yamashita, F. Biodegradable Composites of Starch/Polyvinyl Alcohol/Soybean Hull (Glycine Max L.) Produced by Thermoplastic Injection. J Appl. Polym. Sci. 2022, 139, 52288. [Google Scholar] [CrossRef]
- Hejna, A.; Barczewski, M.; Kosmela, P.; Mysiukiewicz, O.; Sulima, P.; Przyborowski, J.A.; Kowalkowska-Zedler, D. Mater-Bi/Brewers’ Spent Grain Biocomposites—Novel Approach to Plant-Based Waste Filler Treatment by Highly Efficient Thermomechanical and Chemical Methods. Materials 2022, 15, 7099. [Google Scholar] [CrossRef]
- Zdybel, E.; Tomaszewska-Ciosk, E.; Gertchen, M.; Drożdż, W. Selected Properties of Biodegradable Material Produced from Thermoplastic Starch with By-Products of Food Industry Addition. Pol. J. Chem. Technol. 2017, 19, 51–55. [Google Scholar] [CrossRef]
- Diaz, C.A.; Shah, R.K.; Evans, T.; Trabold, T.A.; Draper, K. Thermoformed Containers Based on Starch and Starch/Coffee Waste Biochar Composites. Energies 2020, 13, 6034. [Google Scholar] [CrossRef]
- De Bomfim, A.S.C.; de Oliveira, D.M.; Walling, E.; Babin, A.; Hersant, G.; Vaneeckhaute, C.; Dumont, M.-J.; Rodrigue, D. Spent Coffee Grounds Characterization and Reuse in Composting and Soil Amendment. Waste 2022, 1, 2–20. [Google Scholar] [CrossRef]
- Hejna, A. Potential Applications of By-Products from the Coffee Industry in Polymer Technology—Current State and Perspectives. Waste Manag. 2021, 121, 296–330. [Google Scholar] [CrossRef] [PubMed]
- Bomfim, A.; Oliveira, D.; Voorwald, H.; Benini, K.; Dumont, M.-J.; Rodrigue, D. Valorization of Spent Coffee Grounds as Precursors for Biopolymers and Composite Production. Polymers 2022, 14, 437. [Google Scholar] [CrossRef] [PubMed]
- Murthy, P.S.; Madhava Naidu, M. Sustainable Management of Coffee Industry By-Products and Value Addition—A Review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.A.; Oomah, B.D. Spent Coffee Grounds: A Review on Current Research and Future Prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Singh, T.A.; Pal, N.; Sharma, P.; Passari, A.K. Spent Coffee Ground: Transformation from Environmental Burden into Valuable Bioactive Metabolites. Rev. Environ. Sci. Biotechnol. 2023, 22, 887–898. [Google Scholar] [CrossRef]
- Andrade, Y.B.; Schneider, J.K.; Farrapeira, R.O.; Lucas, A.N.L.; Da Mota, I.D.P.; Bjerk, T.R.; Krause, L.C.; Caramão, E.B. Chromatographic Analysis of N-compounds from the Pyrolysis of Spent Coffee Grounds. Sep. Sci. Plus 2023, 6, 2200057. [Google Scholar] [CrossRef]
- Kourmentza, C.; Economou, C.N.; Tsafrakidou, P.; Kornaros, M. Spent Coffee Grounds Make Much More than Waste: Exploring Recent Advances and Future Exploitation Strategies for the Valorization of an Emerging Food Waste Stream. J. Clean. Prod. 2018, 172, 980–992. [Google Scholar] [CrossRef]
- Mnasri, A.; Khiari, R.; Dhaouadi, H.; Halila, S.; Mauret, E. Acidic and Alkaline Deep Eutectic Solvents Pre-Treatment to Produce High Aspect Ratio Microfibrillated Cellulose. Bioresour. Technol. 2023, 368, 128312. [Google Scholar] [CrossRef]
- Nguyen, V.H.T.; Prabhakar, M.N.; Lee, D.; Song, J. Spent Coffee Grounds: An Intriguing Biowaste Reinforcement of Thermoplastic Starch with Potential Application in Green Packaging. Polym. Comp. 2022, 43, 5488–5499. [Google Scholar] [CrossRef]
- Rosales, Z.G.; Solano, J.K.; Orjuela, D.; Ilarri, J.R.; Clavero ME, R. Synthesis and Characterization of a Cassava Starch (Manihot Esculenta) and Dried Coffee Pulp Mixture to Produce Biofilms. Chem. Eng. Trans. 2022, 92, 439–444. [Google Scholar] [CrossRef]
- Schutz, G.F.; Alves, R.M.V.; Vieira, R.P. Development of Starch-Based Films Reinforced with Coffee Husks for Packaging Applications. J. Polym. Environ. 2023, 31, 1955–1966. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Rokosa, M.; Pieczykolan, M.; Antosik, A.K.; Chudecka, J.; Mikiciuk, M. Study on Physicochemical Properties of Biocomposite Films with Spent Coffee Grounds as a Filler and Their Influence on Physiological State of Growing Plants. Int. J. Mol. Sci. 2023, 24, 7864. [Google Scholar] [CrossRef]
- Saiah, R.; Sreekumar, P.A.; Gopalakrishnan, P.; Leblanc, N.; Gattin, R.; Saiter, J.M. Fabrication and Characterization of 100% Green Composite: Thermoplastic Based on Wheat Flour Reinforced by Flax Fibers. Polym. Comp. 2009, 30, 1595–1600. [Google Scholar] [CrossRef]
- Dominici, F.; Luzi, F.; Benincasa, P.; Torre, L.; Puglia, D. Biocomposites Based on Plasticized Wheat Flours: Effect of Bran Content on Thermomechanical Behavior. Polymers 2020, 12, 2248. [Google Scholar] [CrossRef] [PubMed]
- Zdanowicz, M. Influence of Urea Content in Deep Eutectic Solvents on Thermoplastic Starch Films’ Properties. Appl. Sci. 2023, 13, 1383. [Google Scholar] [CrossRef]
- ASTM D822-02; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2002.
- PN-EN 14046; Evaluation of the Ultimate Aerobic Biodegradability of Packaging Materials under Controlled Composting Conditions. Polish Committee for Standardization: Warsaw, Poland, 2005.
- Ansorena, M.R.; Zubeldía, F.; Marcovich, N.E. Active Wheat Gluten Films Obtained by Thermoplastic Processing. LWT Food Sci. Technol. 2016, 69, 47–54. [Google Scholar] [CrossRef]
- Jiménez-Rosado, M.; Zarate-Ramírez, L.S.; Romero, A.; Bengoechea, C.; Partal, P.; Guerrero, A. Bioplastics Based on Wheat Gluten Processed by Extrusion. J. Clean. Prod. 2019, 239, 117994. [Google Scholar] [CrossRef]
- Zárate-Ramírez, L.S.; Martínez, I.; Romero, A.; Partal, P.; Guerrero, A. Wheat Gluten-based Materials Plasticised with Glycerol and Water by Thermoplastic Mixing and Thermomoulding. J. Sci. Food Agric. 2011, 91, 625–633. [Google Scholar] [CrossRef]
- Oh, Y.; Park, S.; Yoo, E.; Jo, S.; Hong, J.; Kim, H.J.; Kim, K.J.; Oh, K.K.; Lee, S.H. Dihydrogen-Bonding Deep Eutectic Solvents as Reaction Media for Lipase-Catalyzed Transesterification. Biochem. Eng. J. 2019, 142, 34–40. [Google Scholar] [CrossRef]
- Pushpadass, H.A.; Marx, D.B.; Wehling, R.L.; Hanna, M.A. Extrusion and Characterization of Starch Films. Cereal Chem. 2009, 86, 44–51. [Google Scholar] [CrossRef]
- Grylewicz, A.; Spychaj, T.; Zdanowicz, M. Thermoplastic starch/wood biocomposites processed with deep eutectic solvents. Comp. Part A 2019, 121, 517–524. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Sałasińska, K.; Lewandowski, K.; Skórczewska, K. Thermoplastic Starch/Ternary Deep Eutectic Solvent/Lignin Materials: Study of Physicochemical Properties and Fire Behavior. ACS Sus. Chem. Eng. 2022, 10, 4579–4587. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Sałasińska, K. Characterization of Thermoplastic Starch Plasticized with Ternary Urea-Polyols Deep Eutectic Solvent with Two Selected Fillers: Microcrystalline Cellulose and Montmorillonite. Polymers 2023, 15, 972. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Staciwa, P.; Spychaj, T. Low Transition Temperature Mixtures (LTTM) Containing Sugars as Potato Starch Plasticizers. Starch 2019, 71, 1900004. [Google Scholar] [CrossRef]
- Dynamic Mechanical Analysis (DMA). Available online: https://resources.perkinelmer.com/corporate/cmsresources/images/44-74546gde_introductiontodma.pdf. (accessed on 24 February 2024).
- Erdawati; Dianhar, H.; Khairunnisa, H. Effect of Pretreatment Spent Coffee Ground with Natural Deep Eutectic Solvent (NADES) on Coffee Oil Yield. J. Phys. Conf. Ser. 2022, 2309, 12002. [Google Scholar] [CrossRef]
- Yoo, D.E.; Jeong, K.M.; Han, S.Y.; Kim, E.M.; Jin, Y.; Lee, J. Deep Eutectic Solvent-Based Valorization of Spent Coffee Grounds. Food Chem. 2018, 255, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Angelini, G.; Ragni, P.; Esposito, D.; Giardi, P.; Pompili, M.L.; Moscardelli, R.; Giardi, M.T. A device to study the effect of space radiation on photosynthetic organisms. Phys. Med. 2001, 17, 267–268. [Google Scholar] [PubMed]
- Björkman, O.; Demmig, B. Photon Yield of O2 Evolution and Chlorophyll Fluorescence Characteristics at 77 K among Vascular Plants of Diverse Origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, M.H.; Łoboda, T. Fluorescencja Chlorofilu w Badaniach Stanu Fizjologicznego Roślin; Publisher SGGW: Warsaw, Poland, 2010. [Google Scholar]
- Strzałka, K.; Kostecka-Gugała, A.; Latowski, D. Carotenoids and Environmental Stress in Plants: Significance of Carotenoid-Mediated Modulation of Membrane Physical Properties. Russian J Plant Physiol. 2003, 50, 168–173. [Google Scholar] [CrossRef]
- Ozturk, M.; Turkyilmaz Unal, B.; García-Caparrós, P.; Khursheed, A.; Gul, A.; Hasanuzzaman, M. Osmoregulation and its actions during the drought stress in plants. Physiol. Plant. 2021, 172, 1321–1335. [Google Scholar] [CrossRef]
Sample | Young’s Modulus (YM) [MPa] | Tensile Strength (TS) [MPa] | Elongation at Break (EB) [%] | Thickness [mm] |
---|---|---|---|---|
TPWF/CCU | 38 ± 5.2 c | 2.2 ± 0.26 c | 78 ± 7.9 a | 0.51 ± 0.22 |
TPWF/CCU/cf | 56 ± 9.2 b | 3.0 ± 0.34 b | 30 ± 4.7 b | 0.47 ± 0.03 |
TPWF/CCU+cf | 91 ± 12.2 a | 4.2 ± 0.15 a | 34 ± 5.3 b | 0.50 ± 0.09 |
Sample | Swelling Degree [%] | Dissolution Degree [%] | Moisture Sorption (RH 50%) [%] |
---|---|---|---|
TPWF/CCU | 305 ± 10.2 | 47.4 ± 4.7 | 15.7 ± 0.07 |
TPWF/CCU/cf | 286 ± 8.7 | 48.1 ± 1.8 | 15.3 ± 0.32 |
TPWF/CCU+cf | 256 ± 6.3 | 45.5 ± 6.3 | 13.1 ± 0.31 |
Sample | Transpiration Intensity (mmol H2O·m−2·s−1) | Stomal Conductivity H2O (mol H2O·m−2·s−1) | Assimilation Intensity CO2 Net (Pn) | Substomatal CO2 Concentration (μmol CO2·mol−1) |
---|---|---|---|---|
Control | 0.393 ± 0.093 a | 0.036 ± 0.015 a | 2.508 ± 0.775 a | 414.67 ± 37.31 a |
TPWF/CCU/cf | 0.385 ± 0.096 a | 0.032 ± 0.011 a | 1.917 ± 0.829 a | 314.42 ± 42.88 b |
Sample | F0 | FM | FV | FV/FM | TFM (ms) | AM (kbms) |
---|---|---|---|---|---|---|
Control | 239.50 ± 18.75 a | 1119.08 ± 120.12 a | 895.25 ± 99.22 a | 0.782 ± 0.046 a | 866.67 ± 49.24 a | 52.89 ± 7.31 a |
TPWF/CCU/cf | 223.17 ± 26.74 a | 1095.00 ± 121.48 a | 871.83 ± 131.10 a | 0.793 ± 0.041 a | 891.67 ± 25.87 a | 56.63 ± 9.73 a |
Sample | Chlorophyll “a” (mg·g−1 FM) | Chlorophyll “b” (mg·g−1 FM) | Total Chlorophyll (mg·g−1 FM) | Carotenoids (mg·g−1 FM) | Proline (mg·g−1 FM) |
---|---|---|---|---|---|
Control | 2.88 ± 0.19 a | 1.37 ± 0.20 a | 4.25 ± 0.22 a | 2.20 ± 0.02 a | 0.58 ± 0.05 a |
TPWF/CCU/cf | 2.82 ± 0.18 a | 1.32 ± 0.09 a | 4.14 ± 0.22 a | 1.66 ± 0.15 b | 0.73 ± 0.19 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdanowicz, M.; Rokosa, M.; Pieczykolan, M.; Antosik, A.K.; Skórczewska, K. Biocomposites Based on Wheat Flour with Urea-Based Eutectic Plasticizer and Spent Coffee Grounds: Preparation, Physicochemical Characterization, and Study of Their Influence on Plant Growth. Materials 2024, 17, 1212. https://doi.org/10.3390/ma17051212
Zdanowicz M, Rokosa M, Pieczykolan M, Antosik AK, Skórczewska K. Biocomposites Based on Wheat Flour with Urea-Based Eutectic Plasticizer and Spent Coffee Grounds: Preparation, Physicochemical Characterization, and Study of Their Influence on Plant Growth. Materials. 2024; 17(5):1212. https://doi.org/10.3390/ma17051212
Chicago/Turabian StyleZdanowicz, Magdalena, Marta Rokosa, Magdalena Pieczykolan, Adrian Krzysztof Antosik, and Katarzyna Skórczewska. 2024. "Biocomposites Based on Wheat Flour with Urea-Based Eutectic Plasticizer and Spent Coffee Grounds: Preparation, Physicochemical Characterization, and Study of Their Influence on Plant Growth" Materials 17, no. 5: 1212. https://doi.org/10.3390/ma17051212
APA StyleZdanowicz, M., Rokosa, M., Pieczykolan, M., Antosik, A. K., & Skórczewska, K. (2024). Biocomposites Based on Wheat Flour with Urea-Based Eutectic Plasticizer and Spent Coffee Grounds: Preparation, Physicochemical Characterization, and Study of Their Influence on Plant Growth. Materials, 17(5), 1212. https://doi.org/10.3390/ma17051212