Effect of Cooling Rate on the Microstructure and Mechanical Property of Nickel-Based Superalloy MAR-M247
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Mechanical Testing
2.3. Microstructural Characterization
3. Results and Discussion
3.1. Effect of Cooling Rate on Microstructure
3.2. Effect of Cooling Rate on Mechanical Property
3.3. Effect of Cooling Rate on Deformation Mechanism
4. Conclusions
- The cooling rate after solid solution treatment mainly affects the precipitation behavior of the secondary γ′. Except for γ′ precipitates, other microstructure characterizations of MAR-M247 alloy, including grain size, eutectic, and MC carbide, are not sensitive to the change in the cooling rate after solid solution treatment.
- The cooling rate significantly affects the size and morphology of γ′ phases, especially the secondary γ′, while it has few effects on the total volume fraction of γ′ phase. As the cooling rate decreases, γ′ phases are coarser and more cubical.
- Decreasing the cooling rate significantly deteriorates the hardness and room-temperature strengths of MAR-M247 alloy, while it is beneficial for the improvement of elongation.
- As the cooling rate slows down, the tensile deformation mechanism is transformed from dislocation shearing to Orowan bypassing, leading to a weaker precipitation strengthening effect and lower tensile strength. The resulting interface dislocation networks significantly improve the work-hardening index and deformation uniformity, resulting in higher elongation.
- The microstructure and mechanical properties of MAR-M247 alloys are sensitive to the change in the cooling rate between 0.1 °C/s and 1.5 °C/s after solid solution treatment, which needs special attention in industrial production. The changed cooling rate between 1.5 °C/s and 400 °C/s has few effects on the microstructure and room-temperature mechanical properties of MAR-M247 alloys.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Gong, X.; Wang, C.; Wu, Y.; Yu, H.; Su, H.; Zhou, L. Correlation between phase stability and tensile properties of the Ni-based superalloy MAR-M247. Acta Metall. Sin. Engl. Lett. 2021, 34, 872–884. [Google Scholar] [CrossRef]
- Bor, H.Y.; Wei, C.N.; Jeng, R.R.; Ko, P.Y. Elucidating the effects of solution and double ageing treatment on the mechanical properties and toughness of MAR-M247 superalloy at high temperature. Mater. Chem. Phys. 2008, 109, 334–341. [Google Scholar] [CrossRef]
- Šmíd, M.; Kunz, L.; Hutař, P.; Hrbáþek, K. High cycle fatigue of nickel-based superalloy MAR-M 247 at high temperatures. Procedia Eng. 2014, 74, 329–332. [Google Scholar] [CrossRef]
- Maggiani, G.; Roy, M.J.; Colantoni, S.; Withers, P.J.; Stramare, S.; Monti, C.; Bernardini, L. High temperature low cycle fatigue characterization of equiaxed MAR-M-247. Int. J. Fatigue 2019, 123, 225–237. [Google Scholar] [CrossRef]
- Pröbstle, M.; Neumeier, S.; Feldner, P.; Rettig, R.; Helmer, H.E.; Singer, R.F.; Göken, M. Improved creep strength of nickel-base superalloys by optimized γ/γ′ partitioning behavior of solid solution strengthening elements. Mater. Sci. Eng. A 2016, 676, 411–420. [Google Scholar] [CrossRef]
- Gaag, T.; Ritter, N.; Peters, A.; Volz, N.; Gruber, D.; Neumeier, S.; Zenk, C.; Körner, C. Improving the effectiveness of the solid-solution-strengthening elements Mo, Re, Ru and W in single-crystalline nickel-based superalloys. Metals 2021, 11, 1707. [Google Scholar] [CrossRef]
- Long, H.; Mao, S.; Liu, Y.; Zhang, Z.; Han, X. Microstructural and compositional design of Ni-based single crystalline superalloys—A review. J. Alloys Compd. 2018, 743, 203–220. [Google Scholar] [CrossRef]
- Xie, X.; Dong, J.; Wang, G.; You, W.; Du, J.; Zhao, C.; Wang, Z.; Carneiro, T. The effect of Nb, Ti, Al on precipitation and strengthening behavior of 718 type superalloys. Superalloys 2005, 718, 625–706. [Google Scholar]
- Chen, Y.; Sun, S.; Zhang, T.; Zhou, X.; Li, S. Effects of post-weld heat treatment on the microstructure and mechanical properties of laser-welded NiTi/304SS joint with Ni filler. Mater. Sci. Eng. A 2020, 771, 138545. [Google Scholar] [CrossRef]
- Kontis, P.; Yusof, H.; Pedrazzini, S.; Danaie, M.; Moore, K.; Bagot, P.; Moody, M.; Grovenor, C.; Reed, R. On the effect of boron on grain boundary character in a new polycrystalline superalloy. Acta Mater. 2016, 103, 688–699. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Zhang, J.; Luo, Y.S.; Zhang, B.; Sha, G.; Li, L.F.; Tang, D.Z.; Feng, Q. Improvement of grain boundary tolerance by minor additions of Hf and B in a second generation single crystal superalloy. Acta Mater. 2019, 176, 109–122. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.; Zhang, L.; Ji, J.; Wang, Q.; Zhang, S. Effect of boron on the structural stability, mechanical properties, and electronic structures of γ′-Ni3Al in TLP joints of nickel-based single-crystal alloys. Mater. Today Commun. 2022, 31, 103375. [Google Scholar] [CrossRef]
- Li, Q.; Xie, J.; Yu, J.J.; Shu, D.; Hou, G.; Sun, X.; Zhou, Y. Solidification behavior and segregation characteristics of high W-content cast Ni-Based superalloy K416B. J. Alloys Compd. 2021, 854, 156027. [Google Scholar] [CrossRef]
- Quan, Q.; Sun, S.; Sheng, N.; Deng, J.; Hou, G.; Li, J.; Chen, J.; Zhou, Y.; Sun, X. Effect of Mo on the Microstructures and Mechanical Properties of the Polycrystalline Superalloy with High W Content. Materials 2022, 15, 7509. [Google Scholar] [CrossRef] [PubMed]
- Baldan, R.; Rocha, R.L.P.; Tomasiello, R.B.; Nunes, C.A.; Costa, A.M.S.; Barboza, M.J.R.; Coelho, G.C.; Rosenthal, R. Solutioning and aging of MAR-M247 nickel-based superalloy. J. Mater. Eng. Perform. 2013, 22, 2574–2579. [Google Scholar] [CrossRef]
- Peng, S.Q.; Ge, C.C.; Tian, T.; Hao, Z.B.; Zhao, B. The effect of long term ageing on γ′ phase in spray formed FGH100L superalloy settled by different solution treatment. Powder Metall. Technol. 2021, 39, 483–489. [Google Scholar]
- Wolff, I.M. Precipitation accompanying overheating in nickel-base superalloy. Mater. Perform. 1992, 29, 55–61. [Google Scholar] [CrossRef]
- Lee, H.T.; Lee, S.W. The morphology and formation of gamma prime in nickel-base superalloy. J. Mater. Sci. Lett. 1990, 9, 516–517. [Google Scholar] [CrossRef]
- Li, A.L.; Tang, X.; Cao, L.M.; Gai, Q.D. Influence of solution temperature on microstructure and mechanical properties of K447A superalloy. J. Iron Steel Res. 2011, 23, 423–426. [Google Scholar]
- Pei, Z.; Han, W.; Gang, Z.; Chen, X.; Li, J.; Tian, Y. Effect of cooling rate on microstructure and mechanical properties of K465 superalloy. J. Iron Steel Res. Int. 2009, 16, 70–74. [Google Scholar] [CrossRef]
- Sajjadi, S.A.; Elahifar, H.R.; Farhangi, H. Effects of cooling rate on the microstructure and mechanical properties of the Ni-base superalloy UDIMET 500. J. Alloys Compd. 2008, 455, 215–220. [Google Scholar] [CrossRef]
- Torster, F.; Baumeister, G.; Albrecht, J.; Lütjering, G.; Helm, D.; Daeubler, M.A. Influence of grain size and heat treatment on the microstructure and mechanical properties of the nickel-base superalloy U720LI. Mater. Sci. Eng. A 1997, 234, 189–192. [Google Scholar] [CrossRef]
- Lapin, J.; Gebura, M.; Bajana, O.; Pelachová, T.; Nazmy, M. Effect of size and volume fraction of cuboidal γ′ precipitates on mechanical properties of single crystal nickel–based superalloy CMSX-4. Kov. Mater. 2009, 47, 129–138. [Google Scholar]
- Wang, J.; Pan, Z.; Wang, Y.; Wang, L.; Su, L.; Cuiuri, D.; Zhao, Y.; Li, H. Evolution of crystallographic orientation, precipitation, phase transformation and mechanical properties realized by enhancing deposition current for dual-wire arc additive manufactured Ni-rich NiTi alloy. Addit. Manuf. 2020, 34, 101240. [Google Scholar] [CrossRef]
- Feng, Y.; Zhou, X.; Zou, J.; Tian, G. Effect of cooling rate during quenching on the microstructure and creep property of nickel-based superalloy FGH96. Int. J. Miner. Metall. Mater. 2019, 26, 493–499. [Google Scholar] [CrossRef]
- Gayda, J.; Kantzos, P.; Miller, J. Quench crack behavior of nickel-base disk superalloys. Pract. Fail. Anal. 2003, 3, 55–59. [Google Scholar] [CrossRef]
- Mao, J.; Chang, K.M.; Keefer, V.L.; Furrer, D. An investigation on quench cracking behavior of superalloy Udimet 720LI using a fracture mechanics approach. J. Mater. Eng. Perform. 2000, 9, 204–214. [Google Scholar] [CrossRef]
- Mao, J.; Chang, K.M.; Yang, W.; Ray, K.; Vaze, S.P.; Ferrer, D.U. Cooling precipitation and strengthening study in powder metallurgy superalloy U720LI. Metall. Mater. Trans. A 2001, 32, 2441–2452. [Google Scholar] [CrossRef]
- Fan, X.; Guo, Z.; Wang, X.; Yang, J.; Zou, J. Morphology evolution of γ′ precipitates in a powder metallurgy Ni-base superalloy. Mater. Charact. 2018, 139, 382–389. [Google Scholar] [CrossRef]
- Yang, J.X.; Zheng, Q.; Sun, X.F.; Guan, H.R.; Hu, Z.Q. Morphological evolution of γ′ phase in K465 superalloy during prolonged aging. Mater. Sci. Eng. A 2007, 457, 148–155. [Google Scholar] [CrossRef]
- Zhu, L.; Pan, H.; Cheng, J.; Xiao, L.; Guo, J.; Ji, H. Dendrite evolution and quantitative characterization of γ′ precipitates in a powder metallurgy Ni-based superalloy by different cooling rates. J. Alloys Compd. 2022, 918, 165677. [Google Scholar] [CrossRef]
- Zhao, S.; Xie, X.; Smith, G.D.; Patel, S. Gamma prime coarsening and age-hardening behaviors in a new nickel base superalloy. Mater. Lett. 2004, 58, 1784–1787. [Google Scholar] [CrossRef]
- Ges, A.; Fornaro, O.; Palacio, H. Long term coarsening of γ′ precipitates in a Ni-base superalloy. J. Mater. Sci. 1997, 32, 3687–3691. [Google Scholar] [CrossRef]
- Goodfellow, A.J.; Galindo-Nava, E.I.; Schwalbe, C.; Stone, H.J. The role of composition on the extent of individual strengthening mechanisms in polycrystalline Ni-based superalloys. Mater. Des. 2019, 173, 107760. [Google Scholar] [CrossRef]
- Galindo-Nava, E.I.; Connor, L.D.; Rae, C.M.F. On the prediction of the yield stress of unimodal and multimodal γ′ Nickel-base superalloys. Acta Mater. 2015, 98, 377–390. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Liu, R.; Hu, P.; Xiao, C.; He, J. Improved tensile properties of micro-grain casting K447A alloy. Metall. Mater. Trans. A 2023, 54, 1710–1720. [Google Scholar] [CrossRef]
- Wang, Y.; He, J.; Hu, P.; Xiao, C.; Wang, X. Exceptional cryogenic tensile properties of K4169 superalloy by micro-grain casting process. Mater. Des. 2023, 236, 112450. [Google Scholar] [CrossRef]
- Huang, S.; Huang, M.; Li, Z. Effect of interfacial dislocation networks on the evolution of matrix dislocations in nickel-based superalloy. Int. J. Plast. 2018, 110, 1–18. [Google Scholar] [CrossRef]
- Tian, S.; Zhou, H.; Zhang, J.; Yang, H.; Xu, Y.; Hu, Z. Formation and role of dislocation networks during high temperature creep of a single crystal nickel–base superalloy. Mater. Sci. Eng. A 2000, 279, 160–165. [Google Scholar]
- Xiong, J.; Zhu, Y.; Li, Z.; Huang, M. Quantitative study on interactions between interfacial misfit dislocation networks and matrix dislocations in Ni-based single crystal superalloys. Acta Mech. Solida Sin. 2017, 30, 345–353. [Google Scholar] [CrossRef]
C | Cr | Co | W | Mo | Ta | Al | Ti | Hf | B | Zr | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|
0.16 | 8.7 | 10.6 | 10.3 | 0.63 | 3.0 | 5.4 | 1.05 | 1.5 | 0.012 | 0.053 | Bal. |
After Solution Treatment | After Aging Treatment | |||||||
---|---|---|---|---|---|---|---|---|
Volume Fraction (%) | Size (nm) | Volume Fraction (%) | Size (nm) | |||||
Primary γ′ | Secondary γ′ | Primary γ′ | Secondary γ′ | Primary γ′ | Secondary γ′ | Primary γ′ | Secondary γ′ | |
WQ | 13.8 ± 2.1 | -- | 543 ± 21 | -- | 21.1 ± 1.7 | 23.9 ± 3.3 | 775 ± 19 | 113 ± 10 |
AC | 11.1 ± 2.3 | 25.9 ± 1.9 | 547 ± 13 | 76 ± 12 | 25.7 ± 0.6 | 22.6 ± 2.5 | 795 ± 17 | 115 ± 9 |
FC | 35.7 ± 3.7 | 20.7 ± 4.6 | 865 ± 15 | 190 ± 21 | 34.4 ± 2.4 | 14.6 ± 1.8 | 936 ± 36 | 156 ± 16 |
Hardness (HV) | UTS (MPa) | YS (MPa) | EL (%) | E (GPa) | |
---|---|---|---|---|---|
WQ | 400 ± 8 | -- | -- | -- | 205 |
AC | 384 ± 6 | 1210 ± 13 | 960 ± 11 | 8.5 ± 0.6 | 205 |
FC | 364 ± 6 | 1167 ± 9 | 771 ± 1 | 13.5 ± 0.2 | 205 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; He, J.; Hu, P.; Xiao, C.; Wang, X. Effect of Cooling Rate on the Microstructure and Mechanical Property of Nickel-Based Superalloy MAR-M247. Materials 2024, 17, 982. https://doi.org/10.3390/ma17050982
Wang Y, He J, Hu P, Xiao C, Wang X. Effect of Cooling Rate on the Microstructure and Mechanical Property of Nickel-Based Superalloy MAR-M247. Materials. 2024; 17(5):982. https://doi.org/10.3390/ma17050982
Chicago/Turabian StyleWang, Yue, Jinshan He, Pinpin Hu, Chengbo Xiao, and Xitao Wang. 2024. "Effect of Cooling Rate on the Microstructure and Mechanical Property of Nickel-Based Superalloy MAR-M247" Materials 17, no. 5: 982. https://doi.org/10.3390/ma17050982
APA StyleWang, Y., He, J., Hu, P., Xiao, C., & Wang, X. (2024). Effect of Cooling Rate on the Microstructure and Mechanical Property of Nickel-Based Superalloy MAR-M247. Materials, 17(5), 982. https://doi.org/10.3390/ma17050982