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Abstract: Magnesium Potassium Phosphate Cements (MKPCs) are considered a good alternative
for the immobilization of aluminium radioactive waste. MKPC composition and moisture curing
conditions are relevant issues to be evaluated. The corrosion of pure aluminium (A1050) and AlMg
alloys (AA5754) with 3.5% of Mg is studied in MKPC systems prepared with different MgO/KH2PO4

(M/P) molar ratios (1, 2, and 3M) and moisture curing conditions (100% Relative Humidity (RH) and
isolated in plastic containers (endogenous curing)). The Al corrosion potential (Ecorr) and corrosion
kinetic (icorr and Vcorr) are evaluated over 90 days. Additionally, the pore ion evolution, the matrix
electrical resistance, the pore structure, and compressive strength are analysed. The corrosion process
of Al alloy is affected by the pH and ion content in the pore solution. The pore pH increases from
near neutral for the 1M M/P ratio to 9 and 10 for the 2 and 3M M/P ratio, increasing in the same
way the corrosion of pure Al (AA1050) and AlMg alloys (AA5754). The effect of Mg content in the
alloy (AA5754) becomes more relevant with the increase in the M/P ratio. The presence of phosphate
ions in the pore solution inhibits the corrosion process in both Al alloys. The MKPC physicochemical
stability improved with the increase in the M/P ratio, higher mechanical strength, and more refined
pore structure.

Keywords: magnesium potassium phosphate cement (MKPC); immobilization of Al radioactive
waste; corrosion; hydrogen release; pH; pore ion content

1. Introduction

Low- and intermediate-level radioactive solid and liquid wastes (LILW) need to be
stabilized before sending to the geological repository. These nuclear wastes are placed into
steel containers using a cement matrix for the immobilization of the waste as part of the
engineering barrier system [1–3]. Ordinary Portland cement (OPC) is commonly used as
a cementitious material for the immobilization of these wastes. However, to ensure safe
storage, it is necessary to determine the reactivity and the stability of the radioactive waste
in the cementitious matrix and in the disposal environment.

LILW may contain radioactive metals [4] derived from the decommissioning of nuclear
power plants and other industrial activities. These metals can chemically interact with the
ions dissolved in the pore cementitious matrix, causing instability and compromising the
long-term conditioning of the radioactive metal. One critical element for the immobilization
of radioactive metals is the pH of the cement pore solution. Metals have a critical pH
passivity domain [5] that, in the case of aluminium, covers from pH 4 to 9; for beryllium,
from pH 2.9 to 11.7; and for activated magnox metal of magnesium–aluminium alloys,
pH > 10.5. These pH critical values must be considered for the immobilization of the
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respective radioactive metal in the optimal cementitious matrix. According to this, other
alternative cementitious matrices to the commonly used OPC are reported in the literature,
such as brucite cement for beryllium [6], magnesium phosphate cement for aluminium [7,8],
or OPC blended with secondary cementitious materials such as blast furnace slags (BFS) or
fly ash (FA) for magnox alloy [9], which have demonstrated good behaviour.

In this context, the present study focuses on the immobilization of radioactive alu-
minium in alternative cementitious systems, magnesium phosphate cement (MKPC). Al is
an amphoteric metal that reacts in the environment, growing a protective alumina oxide
layer (Al2O3) in contact with air or in water, as described in Equation (1) [5], which is stable
in a pH range from 4 to 9, identified as the Al passivation domain [5,10].

2Al + 6H2O → Al2O3·3H2O + 3H2 (1)

Outside of this pH range, the Al2O3 protective layer formed on the surface of the
aluminium metal is soluble, and corrosion of the Al metal continues with associated
hydrogen gas accumulation according to the redox reaction in an acidic media (pH < 4)
(see Equation (2)) and in a basic media (pH > 9) (see (Equation (3)) [5]:

2Al + 6H+ → 2Al3+ + 3H2 (2)

2Al + 2OH− + 2H2O → 2AlO2
− + 3H2 (3)

The process in Equation (3) is that expected in OPC matrices with an alkaline na-
ture, contributing to increasing the pressure in the waste metallic container used for the
radioactive waste storage system and leading to its cracking and explosion risk.

Due to the high alkalinity of conventional OPC cement matrices (pH > 13), their use to
encapsulate radioactive Al is not recommended. MKPC matrices, with almost neutral pore
pH, have been proposed as a potential alternative for Al immobilization [11,12]. MKPC,
with a magnesia to phosphate molar ratio of 1, is a type of cement that hardens via an
acidic–basic reaction between an alkaline magnesia source (MgO) and an acid phosphoric
salt, such as potassium dihydrogen phosphate (KH2PO4) [13] in the presence of water. The
main reaction involved in MKPC is summarized in Equation (4):

MgO + KH2PO4 + 5H2O → KMgPO4·6H2O (4)

According to Equation (4), magnesium potassium phosphate hexahydrate
(KMgPO4·6H2O), also known as K-struvite, is the MKPC stoichiometric reaction product.
This chemical reaction involves the dissolution of MgO, producing Mg2+ and OH− ions,
and then the interaction with KH2PO4 (PO4

3− and K+ ions), resulting in the precipitation
of K-struvite. These reactions involve a high exothermic process, and the incorporation of
inorganic additions (e.g., FA, metakaolin or pumice) can contribute to decreasing the total
heat and improve the chemical and mechanical properties in a more controlled thermal en-
vironment [14]. Due to the rapid acidic–basic reaction, a chemical retarder (e.g., orthoboric
acid (H3BO3)) is usually introduced to delay the kinetics of the reaction and control the
setting time [15]. MKPC binders with a 1M magnesia-to-phosphate ratio (M/P ratio) have
potential advantageous properties with respect to Portland cementitious matrices, such as
their lower pH, rapid strength development, resistance to high-temperature environments,
low permeability, and excellent corrosion resistance for Al immobilization [16].

However, there are many factors, such as the M/P ratio and the moisture content
during curing, that influence the performance of the final MKPC. In the MKPC matrix with
near-neutral pH, the aluminium is more stable, thus reducing the risk of Al corrosion and
the amount of H2 released for long-term management of the radioactive metal. This is the
reason why the main criteria for aluminium immobilization are based on the volume of
H2 production.

Studies in the literature have reported the volume of hydrogen (per unit embedded
metal surface) produced by the corrosion of aluminium in OPC and MKPC cement systems



Materials 2024, 17, 1263 3 of 27

employing gas chromatography (GC) [8,17]. Massive amounts of H2 gas in OPC cement
pastes of about 40 L/m2 [8] and 50 L/m2 in mortar systems have been reported after one
year of exposure [17]. Lower volumes of H2 were detected with values of 0.03 L/m2 in
cement pastes [8] and 0.5 L/m2 in mortar [17] for the same period with MKPC systems.
Also, H2 release values estimated from electrochemical measurements, such as impedance
spectroscopy (EIS), have been reported [17] to be about 250 L/m2 in OPC mortars and
2 L/m2 in MKPC mortars over 250 days of testing. The main differences between both
techniques can be due to a reaction inside the cement-based matrix or partial adsorption of
H2 in the mortar, as explained by [17]. Hydrogen release volumes during the early age of
contact (15 days) have been estimated for the Al corrosion rate determined from Linear
Polarization Resistance (LPR) [18], with values of 0.14 to 0.33 L/m2 in mortars MKPC
1M and 11.6 to 17.8 L/m2 in standard OPC mortars for pure Al (A1050) and AlMg (3.5%)
(AA5754) alloy, respectively.

The mix design, such as the M/P ratio, and the moisture content during curing play an
important role in the physical–chemical stability of MKPC matrices and in the aluminium
reactivity. Wang et al. [19] studied the influence of MgO/KH2PO4 molar ratio of 1 to 5 on the
microstructural properties of MKPC cement pastes cured at 100%RH and room temperature
and concluded that lower M/P ratios show lower strength to compression. Wang et al. [20]
also analysed the effect of increasing the M/P molar ratio (7 to 17) in MKPC cement pastes,
working at a constant temperature of 20 ◦C, and found that the pH of MKPC pore solution
increases at a higher M/P ratio, with a decrease in the concentration of phosphate ions
in MKPC pore solution. Chong et al. [21] studied the influence of external environmental
humidity (air curing, 98%RH, 65 ± 5%RH, and water immersion) on MKPC cement pastes
using an M/P mass ratio of 3 and found that air curing results in higher compressive
strength and lower total porosity in contrast with the water immersion. Wang et al. [20]
also studied the effect of the M/P ratio and curing humidity on the corrosion phenomena of
different metallic alloys. For Mg alloy, Wang et al. [20] found that an increase in corrosion
resistance in M/P molar ratio from 7 to 17 implies an increase in the pore pH. The increase in
corrosion resistance was attributed to the adsorption of phosphate ions on the surface of the
Mg alloy oxide film, which consists of magnesium phosphate compounds. Chong et al. [21]
also identified a reduction in the corrosion degree of Al-Zn-Mg alloy under air curing,
resulting in a lower amount of corrosion products on the metal surface.

To enhance the efficiency of the long-term immobilization of radioactive Al in MKPC
matrices, it is necessary to understand the role of the MgO/KH2PO4 (M/P) ratio and the
moisture content at curing that affect the MKPC matrix stability and the corrosion kinetic
of Al, which is the main aim of this work. Three M/P ratios and two curing conditions
were considered (the standard 100%RH and isolated in plastic containers to simulate the
site conditioning in the drum). A pure Al (A1050) and AlMg (AA5754) alloy embedded
in MKPC mortars was used to assess the effect of their different electrochemical reactivity
to understand the corrosion kinetic and quantify the volume of H2 gas released from the
Al alloys. Moreover, the understanding of the physical-chemical processes involved in
the microstructure and stability of MKPC matrices was determined through analyses of
physical, mineralogical, and chemical properties.

2. Materials and Methodology
2.1. Raw Materials

Two different grades of commercial aluminium alloy were used, as shown in Table 1.

Table 1. Chemical composition of pure Al (A1050) and AlMg alloys (AA5754) (in wt%).

Material Al Mg Fe Cu Si Mn Cr Zn Ti

A1050 99.50 0.05 0.15 0.001 0.14 0.05 - 0.05 0.05
AA5754 94.50 3.50 0.40 0.30 0.40 0.30 0.25 0.20 0.15
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Hard-burnt magnesia (MgO, 97.45%) from Martin Marietta Magnesia Specialties, an
American-based company and a leading supplier of high-purity magnesia and dolomitic
lime products, was used to prepare the MKPC matrices. Chemical composition of MgO
product is summarized in Table 2, which presents high crystalline content of periclase as
main crystalline phase, as observed in previous studies [18]. A low-cost KH2PO4 (fertilizer
grade of 98%) supplied by Yara (Krista TM) was employed. H3BO3 (>96%) from VWR
Chemicals was added as a retarder to delay the acid–base reaction and control the setting
time. FA type F from two different sources was introduced as filler material to enhance the
fluidity, limit the temperature rise during the setting time, and control the shrinkage risk.
XRD pattern of FA shows (see Figure 1) an amorphous hump associated with the vitreous
structure, together with the presence of mullite, quartz, and hematite as secondary phases.

Table 2. Chemical oxide composition of MgO product (% wt).

Material Al2O3 CaO Fe2O3 K2O MgO Na2O SiO2 SO3

MgO product 0.15 0.93 0.18 0.68 97.45 0.11 0.42 0.06
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Figure 1. XRD patterns of the FA type F. Legend: M: mullite, Q: quartz, F: magnetite, H: hematite.

2.2. MKPC Mortar and Cement Paste Preparation

MKPC mortar and paste samples were prepared using different MgO/KH2PO4 (M/P)
molar ratios of 1, 2, and 3 for matrix characterization tests. For corrosion studies, MKPC
mortars with coupons of pure Al (A1050) and AlMg (AA5754) alloys embedded were also
prepared for corrosion performance study. Additionally, MKPC mortars, with an M/P
1 molar ratio and two stainless-steel meshes embedded, were used for the characterization
of the electrical properties of the MKPC matrix.

Dosages used in this study are given in Table 3. A water/(MgO + KH2PO4) mass ratio
of 0.5 for mortars and 0.3 for cement pastes were employed. The FA/(MgO + KH2PO4)
and H3BO3/(MgO + KH2PO4) mass ratios were 1 and 0.02, respectively, according to [22].
In mortars, a standardized graded sand with 99% silica content was incorporated with a
sand/solid mass ratio of 1. Specimens were cured at a temperature of 22 ± 2 ◦C under
two different moisture conditions: (1) in a chamber at 100%RH and (2) isolated in sealed
plastic containers, identified as endogenous curing. MKPC samples used in this study are
summarized in Table 4.
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Table 3. Formulation dosages for MKPC cement pastes and mortars for different MgO/KH2PO4

(M/P) molar ratios (1 L batch).

Material M/P Ratio = 1M M/P Ratio = 2M M/P Ratio = 3M

Compound (mass, g) Mortar Paste Mortar Paste Mortar Paste

MgO 70 100 110 170 140 210
KH2PO4 232 332 183 282 155 232
Sand (≤2 mm) 302 - 293 - 295 -
Fly Ash (FA) 302 432 293 452 295 442
H3BO3 6 9 6 9 6 9
Water 154 130 149 136 150 133

Table 4. MKPC sample geometry, type of test, curing conditions, and M/P ratio.

Type of Test
Al Alloy Corrosion MKPC Matrix

Ecorr, icorr, Vcorr,
Volume of H2

Electrical Resistivity
and Mass Loss

Compression, MIP, XRD, Pore Ion Content
and pH

Cement
material Mortar Mortar Paste Mortar

M/P ratio 1, 2, 3M 1M 1M 1, 2, 3M 1M

Curing
condition 100%RH Isolated

curing 100%RH Isolated
curing

Isolated
curing,

100%RH
100%RH Isolated

curing

Sample
Geometry
cm

5 × 5 × 5 9.5 × 6 3 × 3 × 3 1 × 1 × 6 5 × 5 × 5 9 × 2.3

Prism Cylinder Prism Prism Cylinder

Metal Al/Al-Mg SS mesh -
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2.3. Characterization Methodology
2.3.1. MKPC Matrix Characterization

Mechanical strengths were performed according to UNE EN 196 1 standard [23] using
an Autest 200 machine of Ibertest (Madrid, Spain). Replicate samples of cement paste
samples of 1 × 1 × 6 cm were used for each curing condition (four for compressive strength
data and two for flexural data; not included in present paper) to obtain the mean values
and experimental deviations (for the sample type, see Table 4, point d).

To characterize the MKPC microstructure, total porosity and pore size distribution
were analysed by Mercury Intrusion Porosimetry (MIP), while its mineralogy was deter-
mined by X-ray diffraction (XRD) at different curing ages (7, 28, 50, 70, and 90 days). MIP
tests were run in specimens of 1 cm2 of mortar using an AutoPore IV 9500 V1.09 serial
293 porosimeter of Micromeritics Instrument Corporation (Norcross, GA, USA). The XRD
tests were conducted in 80 µm powder samples using a D8 Advance Powder Diffractometer
of Bruker Corporation (Billerica, MA, USA) under a step size of 0.01981◦ and a counting
time of 0.5 s from 5◦ to 60◦ (2θ). For both techniques, the chemical reaction was stopped by
immersion of the sample in isopropanol for 24 h to remove the excess of liquid water. MKPC
powders from paste and mortar were used. Pore pH value and pore ion composition (PIC)
were also determined according to the procedure described by Alonso et al. [24]. A sample
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of MKPC paste and mortar was ground to a particle size of 80 µm, and a 1:1 solid/liquid
suspension using deionized water was prepared. After 5 min of stirring, the solution was
filtered, and the pH was determined. Pore pH measurements were performed using a
HI1043 digital electrode of Hanna Instruments (Gipuzkoa, Spain) with a pH stability range
of 0 to 14. ICP-OES technique was employed to obtain the ionic composition of the pore
solution (P, B, Mg, K) using a Varian 725 ES ICP Optical Emission Spectrometer of Agilent
Technologies (Santa Clara, CA, USA).

Electrochemical impedance spectroscopy (EIS) was used for the characterization of the
electrical resistivity and dielectric properties of the MKPC matrices. Prismatic 1M MKPC
mortar samples of 3 × 3 × 3 cm dimensions were measured over 90 days under two different
moisture content: in a chamber at 100%RH and isolated in sealed plastic containers (see
Table 4, point c). Two stainless steel meshes of 3 × 3 cm each were embedded in the mortars
at a distance of 1.5 cm. Measurements were obtained using a sine wave AC voltage of 32 mV
r.m.s at a frequency of 10 kHz using an Autolab AUT84750 potenciostat/galvanostat by
Metrohm Hispania (Madrid, Spain), using an excitation potential of 10 mV in a frequency
range from 105 Hz to 0.01 Hz. The evolution of the electrical resistance was determined
using the inflection point at different frequencies, and the electrical resistivity was calculated
following Equations (5) and (6):

k = S/L (5)

ρe = k Re (6)

where S is the surface of the electrodes (S = 9 cm2), L is the distance between the electrodes
(L = 1.5 cm), k is the constant of the cell, Re is the electrical resistance provided by the
equipment, and ρe is the electrical resistivity. Five sample replicates were prepared for
each condition to use average values and to obtain the experimental error to ensure the
replicability of the results.

The pore water content was determined at different curing ages from 2 to 90 days
to understand the evolution of the electrical properties with pore moisture content and
curing reaction evolution. Three replicate MKPC mortar pieces for the isolated condition
and two replicate MKPC mortar pieces for 100%RH condition were dried in an oven using
a constant temperature of 40 ◦C to guarantee that the K-struvite in the MKPC matrix was
not altered by the temperature [25]. The mass loss of the samples was recorded at different
ages of curing for 72 h until stabilization and attributed to water mass loss.

2.3.2. Aluminium Corrosion Characterization

Electrochemical measurements were carried out to monitor the corrosion response of
pure Al (A1050) and AlMg (AA5754) alloy of 10 × 1.5 × 0.02 cm dimensions embedded in
MKPC mortar samples. Exposure surface areas of 2 and 3cm2 were used for embedding in
MKPC mortar systems under isolated, plastic container, and at 100%RH curing conditions,
respectively. Prior to the Al introduction in the mortar system, the surface was cleaned with
isopropanol to remove possible impurities. The tested metal surface was delimited using
an isolating electrochemical tape. Table 5 shows the cell geometry and electrode connection
for Al corrosion measurement in MKPC mortar at 100%RH and in isolated curing. Two
different electrochemical cell configurations were used in this study depending on the
mortar design and the moisture curing condition:

- A three-electrode cell was used for prismatic MKPC 5 × 5 × 5 cm mortars with
different M/P ratios (1, 2, and 3 molar) at 100%RH (see Table 4, point a), which
includes two embedded coupons of A1050 and AA5754 alloy as working electrodes,
and a bar of graphite of 5 mm ∅ as counter electrode. A distance of 1 cm between
working electrode and counter electrode was used. An external reference electrode of
Ag/AgCl was employed.

- A three-electrode cell configuration for 9.5 × 6 cm cylinder MKPC 1M mortars under
isolated curing were applied. Hermetic plastic containers covered with parafilm were
employed to isolate the samples from the atmosphere and prevent evaporation (see
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Table 4, point b). Pure A1050 or AA5754 alloy as working electrodes and graphite as a
counter electrode were used, spaced at 1.5 cm. An external Ag/AgCl electrode was
employed for corrosion potential measurements (Ecorr).

Table 5. Sample cell configuration and electrode connection for electrochemical corrosion tests at
100%RH and isolated in plastic containers curing conditions.

Isolated Curing 100%RH Curing

Cell configuration Connection Cell configuration Connection
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measurements to avoid drying of the MKPC matrix. Ecorr is expressed by the standard
hydrogen electrode (SHE) for the Pourbaix diagrams. Three replicate samples allowed the
calculation of experimental errors.

For electrochemical measurements, an Autolab AUT84750 potentiostat/galvanostat
was used and driven by NOVA 1.10.1.9 version software. In this paper, the corrosion
response was carried out using the traditional method described in [26,27] of making
electrical contact with the metal embedded in concrete to measure the corrosion potential
(Ecorr) using an external Ag/AgCl reference electrode. The corrosion rate was determined
by Linear Polarization Resistance (LPR). The polarization range used varied ±20 mV with
respect to the Ecorr [28,29]. To ensure the accuracy of the Rp measurements, correction for
the mortar ohmic drop (IR) was carried out. The IR was determined at 10 kHz frequency
and removed from the Rp measurement to obtain the real Rp value according to [28]. Rp
was used to calculate the corrosion current (Icorr) using Equation (7), as described in [30]:

Icorr = B/Rp (7)

Stern–Geary constant B value of 26 was determined from the slopes of the anodic and
cathodic branches in the polarization curves of pure Al (A1050), embedded in 1M MKPC
mortar system for 90 days under 100%RH curing, according to Equation (8) [30]:

B = (βa·βc)/(2.303·(βa + βb)) (8)

where βa of 140 mV/dec and βc of 110 mV/dec were obtained, as shown in Figure 2.
For this Tafel extrapolation method, the working electrode was polarized in the range of
±250 mV. This study has corroborated the selected B value of 26 mV compared with those
of the literature related to aluminium corrosion, which has reported B values ranging from
26 to 29 mV [31] or 28 to 40 mV [32,33] under acidic and alkaline environments, respectively.
A B value of 26 mV is also known for many actively corroding systems, especially in the
case of steel embedded in cementitious systems [34–36]. Constant B allows us to calculate
the current density (icorr) for pure Al (A1050) and AlMg alloys (AA5754) in all MKCP
mortar matrices in present study.
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Figure 2. Potentiodynamic polarization curves and Tafel slopes in pure Al (A1050) embedded in 1M
MKPC mortar system.

After the determination of B and Rp, corrosion rate was then calculated in µm/year
using Equation (9), according to the ASTM procedure G102-89 [37]:

Vcorr (µm/year) = 3.27 · icorr/d · EW (9)

where Vcorr is the corrosion rate (µm/year), icorr is the current density (µA/cm2), d is the
density of the metal (2.7 g/cm3 for Al), and EW is the equivalent weight (9 g/equivalent
for Al).

3. Results
3.1. Characterization of MKPC Matrix Performance

To understand the effect of the M/P ratio and the moisture content on the MKPC
physical stability, Figure 3 includes the mechanical strength of MKPC cement pastes after
28 days of curing. The standard deviation is also included. Under both types of curing
conditions, higher M/P ratios (2 and 3M) develop more than 50% higher compressive
strengths (1M: 8.6 ± 5, 2M: 35 ± 1.6 and 3M: 40 ± 0.6 MPa). The reason for this behaviour
has been attributed to the pore structure evolution of the matrix during curing and to the
amount of unreacted components, such as MgO, that can contribute to the densification
of the matrix and to the nucleation and precipitation of reacted products. Wu et al. [38]
and Wang et al. [39] suggest that at higher M/P ratios, a denser microstructure, due
to the coexistence and micromorphology of the main reaction products, is generated.
Wang et al. [39] suggest that at higher M/P ratios during curing time, the synthesized
K-struvite crystals are fully developed, and the crystal growth is more complete, which
makes the cement grains well-interconnected and form denser reinforced microstructure.
On the other hand, apparently, the moisture content during curing has shown no effect with
the 1M M/P ratio, while a certain increase in isolated curing for 2 and 3M was observed.
The greater dispersion found with 1M at 100%RH is probably a consequence of the greater
instability of this matrix that generates excess phosphates in the matrix favoured by the
high moisture content in the pores, as will be discussed later in the paper.
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Figure 3. Compressive strengths and standard deviations of MKPC cement pastes at different M/P
ratios (1, 2, and 3M) under 100%RH and isolated in plastic container after 28 days of curing.

To understand the differences in mechanical strength depending on the M/P ratio and
the moisture content during curing, total porosity and pore size distributions were also
evaluated. Pore size distribution during MKPC ageing is fundamental to understanding the
pore connectivity in relation to the advance of the acid–base reaction at the microstructural
level. Regarding the effect of moisture content during curing in the pore structure, total
porosity and pore size distribution have been represented in Figure 4a,b. Some lower
total porosities are measured during curing in isolated curing conditions, 9.3 ± 0.8%, with
respect to 10.7 ± 1% at 100%RH. However, the pore size distribution shows significant
differences; the proportion of capillary pores below 0.1 µm is lower in the isolated systems
(2.2 ± 0.4%) than in those cured at 100%RH (3.1 ± 1.6%), with a clear increase with curing
time. As suggested by Ding et al. [40], lower porosity values under isolated conditions
could be explained by the presence of a larger amount of intermediate pore size (1 to
10 µm) over time, in agreement with Wu et al. [38]. The content of water in pores can
have a significant effect on the evolution of reaction components in the development of
MKPC microstructures. However, these differences in pore size and distribution are not
appreciated in compressive strength, which are very similar but with higher scatter in
1M at 100%RH. Furthermore, in isolated curing, the pore water is consumed without any
addition, being insufficient to allow the acid–base reaction to progress adequately.

The relationship between the total porosities and the pore size distribution using
different M/P ratios is shown in Figure 4b–d for 1, 2, and 3M curing under 100%RH. A
general trend of increase in total porosity during curing occurs with the increase in M/P
ratio, with 10.0 ± 1% in 1M, 10.5 ± 0.5% in 2M, and 12.0 ± 0.9% in 3M being detected.
However, these total porosities do not fit well with the higher compressive strengths at
a higher M/P ratio (see Figure 3). To analyse the effect of total porosity in mechanical
strength development, the pore size distribution was considered, highlighted in Figure 4 as
the following pore ranges: >100, 10–100, 1–10, 0.01–0.1, and <0.01 µm. The first to notice
is the increase in capillary pores of size < 0.1 µm with higher M/P ratios (1M: 3.2 ± 1.6%,
2M: 3.6 ± 1.5%, and 3M: 5.2 ± 1.3%), as also observed by [41–43]. Some authors [44] have
detected a relationship between the decrease in porosity and the increase in compressive
strengths as the M/P ratio increases from 4 to 12.
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Figure 4. Total porosity and pore size distribution evolution in µm over 90 days of curing of MKPC
mortars: (a) 1M isolated in plastic container, (b) 1M in 100%RH, (c) 2M in 100%RH, and (d) 3M
in 100%RH.

Synergy with the dielectric properties and pore network can also be found, as evalu-
ated with EIS, to provide more information about the MKPC matrix at the microstructural
level. Figure 5a,b show the 1M M/P EIS response under isolated and 100%RH at a time
interval of up to 70 days of curing. As reported in the literature [45–49], the high-frequency
domain in an EIS diagram is attributed to the properties of the cement matrix that can be
explained in terms of the pore network: solid phase, disconnected pores, and the electrical
resistance of the pore network in terms of the continuously connected pores. Zoomed
areas of the Nyquist diagram are represented in Figure 5c,d, which correspond to the
high-frequency domain up to 105 Hz for both curing conditions. The inflection point close
to the real impedance (Z’) axis has been used to determine the electrical resistance evolu-
tion with matrix maturity. Under isolated conditions (see Figure 5c), the matrix electrical
resistance increases over time with a shift towards lower frequencies in the inflection point
of the high-frequency domain, as also detected in Poras et al. [50]. This is attributed to the
acid–base reaction progression with pore water consumption. Contrary, under 100%RH
(see Figure 5d), only a slight shift in the high-frequency domain of the Nyquist diagram
is observed at the end of the test without a significant increase in the mortar electrical
resistance over time. This aspect has been associated with a better electrical conductivity
response. Different EIS capacitive response in terms of electrochemical behaviour related to
the diameter of the Nyquist semicircle is also detected at low and intermediate frequencies
over time for both conditions, related to the connectivity of the pore network of the bulk
matrix. A dependence of the apparent dielectric constant on the pore network was also
suggested by Cabeza et al. [48], associated with the diameter of the Nyquist semicircle.
Under 100%RH, a decrease in the diameter of the semicircle associated with a decrease in
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the dielectric constant was detected (see Figure 5b), with lower capacitive over time being
related to a good pore network in the matrix. On the other hand, an increase in the diameter
of the semicircle related to an increase in the capacitive matrix behaviour was observed for
the isolated condition (see Figure 5a), giving poor connectivity in the pore network.
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Figure 5. EIS response for 1M MKPC mortar: (a) Nyquist plots in isolated curing at low frequency,
(b) Nyquist plots in 100%RH at low frequency, (c) Nyquist plots in isolated curing at high frequency,
and (d) Nyquist plot in 100%RH at high frequency.

Physical stability of MKPC matrices in terms of acid–base reaction progress with the
time of curing was analysed through the changes in the electrical resistivity (ρ) calculated
with the R data from EIS and the (Equations (5) and (6)) and pore water content. As
observed in Figure 6 (left subfigure), average resistivity of 19.2 ± 2.7 Ω·m after 7 days
and 67.1 ± 21.3 Ω·m after 90 days was measured under isolated curing. Previous studies
by the authors [18] suggested electrical resistivity values of 15 Ω·m after 7 days for 1M
MKPC mortars in isolated curing. The significant increase in ρ in isolated curing is related
to a progressive decrease in the water content in the pores, as illustrated in Figure 6 (right
subfigure), which is consumed in the progress of acid–base reaction. The initial water
content of 5.1 ± 0.1% by g in the sample (bgs) to final values of 2.3 ± 0.05% (bgs) was
determined. The increase in electrical resistivity with curing time in isolated curing could
also be explained by a reduction in capillary pores (see Figure 4a) and a decrease in pore
connectivity (see Figure 5a) over time, as suggested by Liu et al. [51]. In the case of
100%RH, resistivity values of 8.3 ± 1.5 Ω·m after 7 days were measured, which moderately
increased over curing advance to final average ρ values of 16.4 ± 4.1 Ω·m. This short-
change of electrical resistivity at 100%RH is a consequence of greater water content in
pores, in contrast with isolated media (see Figure 6 (right subfigure)). The initial pore
water content of 5.0 ± 0.01 % (bgs) to 4.7 ± 0.01% (bgs) was measured at 100%RH. A slight
decrease after 28 days was identified, which could explain the small increase in resistivity
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values under 100%RH curing. The progression of the acid–base reaction of MgO and
KH2PO4 was complete under 100%RH since a constant moisture supply was available by
the environment as the reaction advanced and consumed to form more KMgPO4·6H2O
(K-struvite). Electrical resistivity data under high-moisture curing conditions are also
reported in the literature [52–54], with values in the range of 0 to 2.5 Ω·m for MKPC cement
pastes and pore solutions.
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Figure 6. (Left): Electrical resistivity. (Right): pore water content (% bgs) evolution over curing time
for 1M MKPC mortar under 100%RH and isolated curing.

The chemical microstructure of MKPC matrixes can be modified by the M/P ratio
and the moisture content. The type of solid phases, the amount of reacted and unreacted
products, and the pore solution evolution with curing are affected. Figures 7 and 8 include
the crystalline phases determined by XRD. Figure 7 considers the effect of the M/P ratio
and moisture on the X-ray diffraction patterns. MKPC mortars at 1, 2, and 3M M/P ratios
after 28 days at 100%RH curing and 1M MKPC mortar at isolated curing were used. K-
struvite was detected as the main mineral phase for all systems. Diffraction reflections
corresponding to quartz and mullite, coming from the FA and quart corresponding to the
sand used to prepare the mortar, were also identified. As expected, at higher M/P ratios
(2 and 3M), more residual periclase was detected due to more MgO and less phosphate used
to prepare the different MKPC formulations (see Table 3). The coexistence of periclase and
K-struvite could densify the matrix and nucleate the progressive precipitation of reacted
phases in MKPC cement matrices that would contribute to the strength development, as
observed in Figure 3. Also, the increase in capillary pores over time (see Figure 4) may
indicate the progressive formation and nucleation of K-struvite, densifying the matrix,
as suggested by Ding et al. [40]. In 1M MKPC matrices, no significant differences exist
between both curing conditions. With 100%RH, the MKPC acid–base reaction is expected
to be favoured, and the main reflections of K-struvite with lower residual periclase were
detected at 20.99◦ and 42.92◦, respectively, as also observed in previous studies by the
authors [18]. However, the formation of other phosphate amorphous phases cannot be
discarded and favoured due to the high amount of KH2PO4 in the MKPC initial formulation
(see Table 3) and enough water to maintain the progress of the reaction. Under isolated
curing, K-struvite and more defined reflections of non-reacted MgO were detected at 20.83◦

and 42.92◦, respectively, probably because the water amount for the progress reaction is
not enough. Other differences observed, as shown in Figure 7, were related to the intensity
of the main reflection of K-struvite with 147 a.u. and 27.5 a.u. for isolated curing and
100%RH, respectively. A slight shift of 0.16◦ in the main reflection position of the K-struvite
was observed under 100%RH, justified by a decrease in the interplanar distances by the
compression of its lattice structure, as recently suggested by Li et al. [55].
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Figure 7. XRD pattern of MKPC mortars at different M/P ratios (1, 2, and 3M) at 100%RH and
isolated curing after 28 days. Legend: S: K-struvite, P: periclase, Q: quartz and M: mullite.
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Figure 8. XRD patterns of MKPC mortars 1M after 90 days at 100%RH. Left: 1M M/P. Right: 3M
M/P. Legend: S: K-struvite, P: periclase, Q: quartz and M: mullite.

The influence of the M/P ratio in the ageing of MKPC matrices was analysed in the
XRD patterns for 1 and 3M M/P mortars shown in Figure 8 (till 90 days at 100%RH).
Quartz and mullite, components from the FA, and sand were also identified. Figure 8 (left
subfigure) shows that for 1M M/P ratio, periclase diffraction peaks are significantly reduced
after 28 days of curing, indicating that most of the MgO has reacted with phosphates to
form K-struvite. This is not the case with samples prepared with a 3M M/P ratio, as shown
in Figure 8 (right subfigure), where intense diffraction reflections of residual periclase
are identified at all curing ages. In this context, the advance of matrix ageing has been
attributed to the advance of MgO and KH2PO4 acid–base reaction and the formation of
K-struvite. The coexistence of both MgO and K-struvite contributes to the densification of
the microstructure, with a more refined pore structure and higher compressive strength
with the increase in the M/P ratio, as also suggested by [39,40]. However, the precipitation
of brucite has been observed in every system, even in the systems with high periclase
content, after 90 days at 100%RH.
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With regard to the chemical composition of MKPC matrixes, that is to say, the pore ion
content and its evolution with the time of curing, results are compiled in Figures 9 and 10.
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100%RH and at isolated curing.
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The pH of the liquid pore media was analysed to better understand the reaction
mechanism of MgO/KH2PO4 to form the cementitious main product, K-struvite, which
also affects the electrochemical stability of aluminium immobilized in the matrix. The effect
of the M/P ratio (1, 2, and 3M) and the moisture content during curing (100%RH and in
isolated curing) on the pore pH was determined in cement pastes and mortars, as shown in
Figure 9. There was a clear increase in the pore pH values with the increase in the M/P
ratio (observed in both pastes and mortars). Some authors have also predicted an increase
in the pH with an increase in the M/P ratio, verified using a thermodynamic database and
thermodynamic modelling [56] with pH values up to 12.1 for an M/P ratio > 1, and in [57]
with a pore pH of around 10.5 for an M/P ratio of 4. Differences in pH were also found
between mortars and cement paste for the same M/P ratio, the latter showing lower pH
values. Mortars are initially prepared with higher w/s ratios, and these can have an impact
on the solubility of the different phases and the release of the ions to the pore solution.
The most plausible consequence could be associated with the equilibria with the other
pore ions in the pores, such as, for instance, phosphates, which will be analysed later. An
increase in the pH evolution with curing was detected for all M/P ratios and the two
moisture content studied. A stabilization of pH was found after 28 days of curing, with
values of 8.7 and 9.5 in cement pastes and 10.3 and 10.5 in mortars for 2M and 3M M/P
ratios, respectively. Near-neutral pH values were observed at lower M/P ratios of 1M for
both curing conditions. Final pH values of 8.6 and 8.1 in mortar and pastes, respectively,
were identified for 1M under 100%RH, with a slight evolution over time. The isolated
curing gives a lower pH of around 7.8 after stabilization. The slight difference between the
two curing conditions is explained by the differences in the pore ion content related to the
progress of the acid–base reaction.

The MKPC microstructural changes in the function of the M/P ratio and curing
conditions are in chemical equilibria with the evolution of pore ion content, as can be
deduced from Figure 10a (phosphates, P), Figure 10b (borates, B), Figure 10c (magnesium,
Mg), and Figure 10d (potassium, K). Understanding the effect of the M/P ratio at 100%RH,
higher phosphate content in early stages is observed at a lower M/P ratio (see Figure 10a).
In addition to that, the phosphate content is higher in cement paste than in mortar, which
could explain the lower pH values observed in Figure 9. This would support the fact that
phosphates are also pore pH controllers. As described in previous studies [18], at pH 7,
the predominant form of phosphate is H2PO4

− (50%) and HPO4
2− (50%), which moves to

100% HPO4
2− with higher pH [58]. In Figure 10a, a significant decrease in P occurs over

time in all systems, associated with the progress of acid–base reaction of MgO and KH2PO4.
K-struvite is formed as the main product, as observed in the XRD patterns (see Figure 7),
corroborated by a decrease in K ions in the pore solution with time (see Figure 10d). In the
case of 1M, almost all MgO reacts and soluble phosphate remains free in the pore solution
in a higher proportion than in 2 and 3M. Figure 10c also shows the Mg2+ concentrations
over time, and low contents are measured in general in the pore solution, below 80 ppm for
mortar 1M and cement paste and mortar 2 and 3M. At a lower M/P ratio, some higher ion
content is detected for cement paste in 100%RH and in isolated curing. Borates are also
identified in Figure 10b, decreasing over time in all M/P ratios, however, no effect on the
M/P ratio can be clearly derived. As suggested by Lahalle et al. [59] and Zheng et al. [60],
borates are not precipitated in the crystal form as a reaction product of hardened cement
matrix, at least not in crystalline form—as XRD patterns show (see Figure 7)—but remains
in the pore solution. As reported by Lahalle et al. [61], the decrease in B ions in the pore
solution over time could be explained by adsorption of boric acid or the precipitation of a
coating layer of B(OH)4

− on the surface of MgO that could slow down its dissolution.
To understand the effect of curing, in Figure 10, a comparison of 100%RH with isolated

curing for 1M MKPC mortar is illustrated. In the isolated curing, the MKPC acid–base
reaction is not complete due to a lack of external moisture supplying more phosphates,
Mg, and B in the pore solution. More P ions in the isolated curing would indicate that
non-reacted phosphates remained in the pore solution.
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3.2. Characterization of Al Alloy Corrosion in MKPC Matrices

It is well established that the moisture content of concrete is a significant parameter
that controls the rebar corrosion phenomena [62,63]. In the present study, the effect of
two levels of moisture content in the pores of MKPC cementitious matrices (100%RH and
isolated curing) was evaluated to characterize the corrosion behaviour of pure Al (A1050)
and AlMg 3.5% (AA5754) alloy in 1M MKPC mortars. The monitoring of corrosion potential
(Ecorr) versus time is observed in Figure 11 (left subfigure). A continuous growth to more
anodic values is observed for 1M MKPC mortars under isolated conditions, compared with
100%RH curing. Under isolated conditions, the acid–base reaction is not complete and
leads to a lower pore pH and a higher number of phosphate ions, both effects possibly
contributing to the passivation process and the formation of the passive layer, as also
mentioned in [64,65]. In the first days of interaction with the matrix at isolated curing,
the AlMg alloy (AA5754) shows more anodic Ecorr values than pure Al (A1050. But this
situation changes with curing time, probably due to the higher number of phosphate ions
at early stages, which could be better adsorbed on the surface of the AlMg alloy (AA5754),
giving a protective effect in the corrosion response. In addition to that, the pore pH may
also have a significant role, as suggested by Wang et al. [20].
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Figure 11. (Left): Ecorr evolution (vs. Ag/AgCl). (Right): Ecorr (vs. SHE) and pH for Mg and Al
Pourbaix diagrams in 1M MKPC mortar systems under 100%RH and isolated curing.

At 100%RH, three stages in the Ecorr evolution were identified for pure Al (A1050) and
AlMg alloys (AA5754). In the first stage of up to 16 days, the Ecorr potential shows a severe
evolution to the cathodic region (Al: −0.84 ± 0.03 V; AlMg: −0.81 ± 0.06 V; day 16), which
after 16 days suddenly rises to a more anodic Ecorr region till 62 days (Al: −0.76 ± 0.02 V;
AlMg: −0.75 ± 0.04 V; day 62). The third region starts with a gradual evolution to more
anodic Ecorr that stabilizes at 90 days with similar Ecorr values (Al: −0.52 ± 0.02 V; AlMg:
−0.53 ± 0.06 V; day 90). It is important to notice that these three stages of the Ecorr evolution
are not detected under isolated conditions (see Figure 11, left subfigure). On the contrary,
an increasing trend towards more anodic values is observed, probably as a consequence of
the pore ion and lower pore pH remaining more stable, as shown in Figures 9 and 10. Also,
the water content is significantly reduced and consumed in the MKPC acid–base reaction
progress, limiting the corrosion response due to the increase in the electrical resistivity
of the matrix (as shown in Figure 6). The Ecorr of pure Al (A1050) and the AlMg alloys
(AA5754) in 1M MKPC mortar at 100%RH are very similar and approaches with exposure
time to the AlMg alloy in isolated curing conditions.

The corrosion response is corroborated by the Pourbaix diagram, drawn in Figure 11
(right subfigure) for aluminium and magnesium metals. A cross-merger of both E-pH
Pourbaix diagrams was made according to [50]. Both 1M MKPC mortars (100%RH and in
isolated curing) are in the Al passivity range but below the water-reduction potential with
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H2 release associated. To understand the reactivity of AlMg, the Mg Pourbaix diagram
was also analysed. For both moisture contents, AlMg (AA5754) has a higher probability to
locate in a corrosion stage. This effect is not appreciated in the Al Pourbaix diagram for
both moisture content, where AlMg alloy (AA5754) has the same trend as pure Al (A1050),
as also observed by [50]. However, as the pH of 1M MKPC at isolated curing is lower
than at 100%RH, pure Al (A1050) and AlMg alloys (AA5754) presented fewer corroding
risks under isolated curing. This has been associated with the adsorption of phosphate
ions on the metal surface contributing to a protective effect in the corrosion response, as
suggested by Wang et al. [20], as well as a lack of water to maintain the corrosion process,
as demonstrated in Figure 6.

Figure 12 (left subfigure) shows the icorr versus time up to 90 days of test for 1M
MKPC mortars evaluating the effect of moisture content on the corrosion kinetic with
isolated curing and 100%RH. At 100%RH, three stages of icorr evolution are also detected,
as shown in Figure 11 (left subfigure). In the first stage, up to 16 days, a significant
increase in the corrosion current density is detected at early stages, probably due to the
high metal reactivity in the first days of interaction with the matrix, which decreases fast
(Al: 0.13 ± 0.01 µA/cm2; AlMg: 0.18 ± 0.12 µA/cm2; day 16). In the second stage, up
to 62 days, a decrease in the corrosion kinetic is also identified (Al: 0.13 ± 0.09 µA/cm2;
AlMg: 0.10 ± 0.04 µA/cm2; day 62), which stabilizes up to 90 days in a third stage
(Al: 0.13 ± 0.07 µA/cm2; AlMg: 0.11 ± 0.03 µA/cm2; day 90). Under isolated curing, a
significant decrease in icorr over time is observed, one order of magnitude lower than for
the 100%RH condition, and the three states discussed are not as clearly visible under this
endogenous (isolated) curing (Al: 0.02 ± 0.01 µA/cm2; AlMg: 0.03 ± 0.01 µA/cm2; day 90).
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Figure 12. (Left): icorr. (Right): corrosion rate (Vcorr) versus time for pure Al (A1050) and AlMg
alloys (AA5754) in 1M MKPC mortar at 100%RH and isolated curing.

To understand this evolution in the long term, the corrosion rate in µm/year was
calculated using Equation (9) [37]. Under 100%RH, Vcorr values have the same trend
as icorr with the three evolution stages: up to 16 days (Al: 1.45 ± 0.02 µm/year; AlMg:
1.97 ± 1.26 µm/year; at day 16), up to 62 days (Al: 1.43 ± 0.95 µm/year; AlMg: 1.09 ± 0.4
µm/year; at day 60), and up to 90 days (Al: 1.39 ± 0.82µm/year; AlMg: 1.15 ± 0.38 µm/year;
at day 90). On the other hand, under isolated conditions, a continuous decrease in the
Vcorr is detected, one order of magnitude lower than at 100%RH, with final values of
0.26 ± 0.16 µm/year and 0.29 ± 0.09 µm/year for pure Al and AlMg alloys, respectively.

The M/P molar ratio in the MKPC formulation has been shown to be a relevant
parameter in the matrix microstructure that would also affect the aluminium corrosion
response as the chemical pore composition is changed (as shown in Figure 10). The
monitoring of the corrosion potential (Ecorr) during 90 days of curing at a 100%RH and
a 1, 2, and 3 M/P ratio is shown in Figure 13 (left subfigure). Three stages of the Ecorr
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evolution are also detected in the three systems of MKPC with different levels in Ecorr and
duration, evolving from more cathodic to anodic values with the curing time, as presented
in Table 6. The first stage of up to 16 days for 1M and up to 22 days for 2 and 3M was
detected. The second stage was up to 62 days for 1M, 54 days for 2M, and up to 48 days
for 3M. Finally, the duration of the third stage was up to 90 days in all M/P systems. As
observed in Figure 13 (left subfigure), more stabilization of corrosion potential in each stage
was detected for 1 and 2M, which shows a more general fluctuating evolution at a higher
M/P ratio of 3M. According to this, a similar trend of evolution of pure Al (A1050) and
AlMg 3.5% alloy (AA5754) was observed for all systems. A higher phosphate content in
the pore solution (see Figure 10a) and lower pH (see Figure 9) in the 1M M/P ratio MKPC
formulation would probably lead to less Al corrosion than at higher M/P ratios [20].
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Figure 13. (Left): Ecorr evolution (vs. Ag/AgCl). (Right): Ecorr (vs. SHE) and pH for Mg and Al
Pourbaix diagrams in MKPC mortars at 1, 2, and 3M M/P ratios under 100%RH conditions.

Table 6. Ecorr of pure Al (A1050) and AlMg alloys (AA5754) in MKPC mortars with 1, 2, and 3M M/P
ratios under 100%RH.

MKPC
M/P Ratio = 1M M/P Ratio = 2M M/P Ratio = 3M

Days Ecorr (V) Days Ecorr (V) Days Ecorr (V)

Metal - Al AlMg - Al AlMg - Al AlMg

1st stage 0−16 −0.84
±0.03

−0.81
± 0.06 0−22 −0.94

±0.04
−0.96
±0.02 0−22 −1.00

±0.04
−1.03
±0.06

2nd stage 16−62 −0.76
±0.02

−0.75
±0.04 22−54 −0.88

±0.01
−0.88
±0.01 22−48 −0.92

±0.08
−0.93
±0.06

3rd stage 62−90 −0.52
±0.02

−0.53
±0.06 54−90 −0.71

±0.02
−0.74
±0.02 48−90 −0.76

±0.03
−0.80
±0.03

The corrosion current density was also determined. Figure 14 (left subfigure) shows
the icorr versus time up to 90 days for 1, 2, and 3M M/P ratios of MKPC mortars at 100%RH,
and Figure 14 (right subfigure) shows the corrosion rate (Vcorr) in µm/year. It appears
that the three stages of evolution are not as clear as in the corrosion potential evolution
shown in Figure 13 (left subfigure). Two defined regions in icorr and Vcorr evolution can be
appreciated for all M/P ratios. The first stage, up to 16 days in 1M and up to 22 days in
2 and 3M, was identified. The second and final stages are up to 90 days, with stabilization
over time observed for all systems, equalizing their corrosion response. Average values of
corrosion current density and corrosion rate are summarized in Tables 7 and 8, respectively,
which could clearly evaluate the evolution of the corrosion response in the different stages
and the influence of the M/P ratio. Corrosion rate values of about 7 nm/year of Al in 1M
M/P ratio MKPC cement pastes were identified in the literature [17].
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Figure 14. (Left): icorr versus time. (Right): Corrosion rate (Vcorr) versus time for pure Al (A1050)
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Table 7. icorr for pure Al (A1050) and AlMg alloys (AA5754) in MKPC mortars at 1, 2, and 3M M/P
ratios at 100%RH.

MKPC
M/P Ratio = 1M M/P Ratio = 2M M/P Ratio = 3M

Days icorr (µA/cm2) Days icorr (µA/cm2) Days icorr (µA/cm2)

Metal - Al AlMg - Al AlMg - Al AlMg

1st stage 0−16 0.13
±0.01

0.18
±0.11 0−22 0.36

±0.09
0.43
±0.08 0−22 0.63

±0.28
0.52
±0.34

2nd stage 16−90 0.13
±0.07

0.11
±0.03 22−90 0.20

±0.07
0.16
±0.04 22−90 0.22

±0.04
0.20
±0.03

Table 8. Corrosion rate (Vcorr) of pure Al (A1050) and AlMg alloys (AA5754) in MKPC mortars with
1, 2, and 3M M/P ratios at 100%RH.

MKPC
M/P Ratio = 1M M/P Ratio = 2M M/P Ratio = 3M

Days Vcorr (µm/yr) Days Vcorr (µm/yr) Days Vcorr (µm/yr)

Metal - Al AlMg - Al AlMg - Al AlMg

1st stage 0−16 1.45
±0.02

1.97
±1.26 0−22 3.93

±1.00
4.64
±0.90 0−22 6.81

±3.15
5.65
±3.80

2nd stage 16−90 1.39
±0.81

1.15
±0.38 22−90 2.19

±0.80
1.73
±0.43 22−90 2.44

±0.43
2.21
±0.36

To understand the corrosion response evolution at 1, 2, and 3M M/P ratios, Figure 15
shows the changes during curing in the electrical resistance of the three M/P matrices ob-
tained from the ohmic drop determination, as described for Rp measurement. A significant
increase in electrical resistance was observed for a higher M/P ratio, however, higher icorr
values were determined (see Figure 14 (left subfigure) and Table 7). This indicates that the
corrosion process is not under resistance control, but the different pore solutions should
have a significant contribution to the process. The higher pore pH (see Figure 9) and the
presence of lower phosphate ions in the pore solution (see Figure 10) contribute to the
lower corrosion resistance of the Al alloy, as also suggested by [20]. The same behaviour
for both pure Al (A1050) and AlMg alloys (AA5754) was detected.
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Figure 15. Electrical resistance (ohmic drop) versus time of MKPC mortars for 1, 2, and 3M M/P at
100%RH for pure Al (A1050) and AlMg alloy (AA5754) samples.

4. Discussion

As described above, MKPC matrices have been considered a promising alternative to
OPC cementitious matrices for the immobilization of low- to intermediate-level radioactive
aluminium alloys [6,7,9,11,12,17,18,50]. OPC alkaline matrices have a pH outside of the
aluminium passive domain, which is primarily responsible for the corrosion of Al alloys,
limiting the formation of the passive layer, as Pourbaix suggests [9], with a high risk of
hydrogen release. In the case of LILW, this situation would induce internal tensions in the
steel containers of the Al alloy encapsulated. According to this, MKPC matrices with a
pH range from 4 to 9 are optimum alternative cementitious materials for reactive Al alloy
immobilization. The contribution of this study has been the investigation of the effect of
the M/P ratio in MKPC matrices and the curing moisture content in the corrosion response
of pure Al (A1050) and AlMg alloys (AA5754). The comprehensive and simultaneous
analyses of the metal corrosion response and the physical–chemical microstructure change
in the matrices are necessary to understand the balance for the adequate stability of the
immobilization matrix and the adequate control of the corrosion process.

4.1. Effect of MKPC Matrix Changes and Microstructural Stability

MKPC matrices with a low M/P ratio, as the 1M used in the present work, have
derived in the appearance of chemical instabilities. The processes involved are not well
understood and seem to be primarily related to the MgO and KH2PO4 dosages used in
the preparation of the matrices but also can be related to the moisture at curing conditions,
which can explain the different results in the literature, wherein most experiments have
been performed in isolated containers.

In the present study, instability was found due to the appearance of white efflorescence
in the 1M M/P ratio when cured in a high-moisture atmosphere (standard 100%RH), as
illustrated in Figure 16 (left subfigure). Also, it has been found that this MKPC dosage
has low mechanical strength (see Figure 3), although it has a more refined pore structure
than if autogenous (isolated) curing is used. If high moisture in the matrix and the external
environment is maintained and high phosphates are in the pore solution, as happens in
1M M/P ratio, the rapid dissolution of the excess of soluble phosphates can leach out and
crystallize in the form of white efflorescence. The XRD analyses of the efflorescence in
Figure 16 (right subfigure) indicate the consequence of precipitation of magnesium and
potassium phosphates, as also postulated by Wang et al. [19], compromising the MKPC
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microstructural stability that needs to be guaranteed for the optimal immobilization of
reactive Al waste.
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Figure 16. (Left): White efflorescences in 1M MKPC M/P ratio in 100%RH. (Right): XRD pattern
of the white efflorescences. Legend: P-Al: aluminium phosphates, AlPO4; P-Mg: magnesium
phosphates, H16MgP2O10, H8Mg7P2O16, H7MgPO7, and K-P: potassium phosphates, H8K4P4O16,
H16K6P6O20.

To avoid these instabilities, different M/P ratios (1, 2, and 3M) and curing conditions
(at isolated curing and at 100%RH) were employed in the present study, evaluating their
influence on the macro and microstructure. The acid–base reaction is complete in 100%RH
with the formation of K-struvite with minor residual periclase in the 1M microstructure (see
Figure 7). In endogenous curing (isolated curing), the reaction does not progress properly
due to the lack of water in the system, with more dissolved ions in the pore solution
and lower reaction products (see Figure 10). This situation explains the lower mechanical
strengths in 1M M/P ratio, and the precipitation of less stable and non-crystalline phosphate
phases due to the high phosphate concentration in the pore solution cannot be discarded.
At a higher M/P ratio, the coexistence of K-struvite and MgO increases the mechanical
strength, also related to the K-struvite micromorphology that is fully developed at a higher
M/P ratio, as suggested by Wang et al. [39].

In addition to that, the different ion content in the pore solution should be in equilib-
rium and show a relationship for the different MKPC matrices; this is the case between
phosphates (P) and pH, as shown in Figure 17. The content of phosphate contributes to
controlling the pH in the pore solution, which increases with the increase in the M/P ratio.
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Figure 17. Phosphate content as function of pH for 1, 2, and 3M MKPC M/P ratios.
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4.2. Effect of MKPC Matrix Changes on Al Alloy Corrosion Kinetics and Risk of H2 Evolution

To better understand the contribution of pore characteristics of MKPC matrices in
pure Al (A1050) and AlMg alloys (3.5% Mg) (AA5754), the corrosion response, in µm/year,
was analysed with respect to the pH and phosphate (P) content in the pore solution, as
shown in Figure 18. As illustrated in Figure 18, left subfigure, the changes in the pore
pH of MKPC matrices have a relevant influence on the Al and AlMg corrosion response.
According to the MKPC formulation, pore pH increases at a higher M/P ratio (see Figure 9),
with a higher initial corrosion rate of pure Al that equalizes for all systems at the final
stage. The increase in one pH unit from 7–8 (Al passive range) to 9 or 10 (for 2 and 3M) is
duplicate or triplicate at the initial corrosion rate of Al alloy, from 10 µm/year to 20 and
30 µm/year. However, in the long-term interaction, even at a high pH, the corrosion rate
equalizes between 3 and 5 µm/year, which suggests the positive contribution of other ions
in the pore solution to control the corrosion process of Al alloys.
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ion content for 1, 2, and 3M M/P ratio at 100%RH.

A significant influence on the corrosion rate of Al alloy was found with the phos-
phate content in Figure 18 (right subfigure). Phosphates can attach to the metal surface,
generating a protective effect against corrosion, as suggested by Wang et al. [20]. The
different phosphate forms can also be affected depending on the pore solution pH. The
competition of H2PO4

− and HPO4
2− species in 1M, compared to the predominant species

of HPO4
2− in the case of 2 and 3M M/P ratio, would allow the phosphates to behave as

corrosion inhibitors for pure Al (A1050) and AlMg alloys (AA5754), as postulated by the
authors in [18]. The borates from the boric acid are present in the pore solution, as shown
in Figure 10b, as also suggested by [59,61]. The evolution of B content with curing age
is independent of the M/P ratio; these borates may also contribute to the control of the
corrosion of Al alloy, as suggested in [66].

Another discussion point is the influence of the M/P ratio and curing moisture condi-
tion on the volume of hydrogen released of pure Al (A1050) and AlMg at 3.5% (AA5754).
This calculation is based on Faraday’s law (Equations (10)–(13)), which requires the alu-
minium weight loss, moles, and charge accumulated during the corrosion process, Qacum
(in Coulombs), as observed in the following equations proposed by the authors:

Icorr = B/Rp (10)

icorr = Icorr ·S (11)

PP (Al) = (Qacum ·Mw (Al))/(n ·F) (12)

V (L) =
3
2

· PP (Al)
Mw (Al)

· (R · T)
P

(13)

where PP (Al) is the weight loss of Al and AlMg alloys from the icorr, S is the exposed
surface area of the metal embedded in the mortar (cm2), Mw is the aluminium molecular
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weight (26.98 u), R is the gas constant (0.082 atm L/K mol), T is the absolute temperature
(22 ± 2 ◦C = 298 K), and P is the pressure (1 atm). Figure 19 shows the evolution of the
cumulative volume of H2 released during the test, and the volume of H2 after 90 days,
normalized to L/m2, is shown in Table 9. An increase in the volume of H2 release over time
is detected at a higher M/P ratio, with a difference of more than two orders of magnitude
between 1M and 3M. A higher initial phosphate amount in the 1M M/P ratio (see Figure 10)
allows a lower amount of H2 release over 90 days due to the protection of the metal.
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100%RH. (Right): 1M MKPC under 100%RH and for isolated curing.

Table 9. Accumulated H2 release for pure Al (A1050) and AlMg alloys (AA5754) over 90 days at the
1, 2, and 3M M/P ratios under 100%RH and isolated in plastic containers (endogenous curing).

MKPC M/P Ratio = 1M M/P Ratio = 2M M/P Ratio = 3M

Parameter H2 (L/m2) H2 (L/m2) H2 (L/m2)

Metal Al AlMg Al AlMg Al AlMg

100%RH 2.05
±0.48

2.14
±0.63

4.97
±0.48

5.93
±0.86

6.23
±0.42

7.21
±0.39

Isolated 0.60
±0.06

0.61
±0.15 - - - -

Figure 19 (right subfigure) shows the accumulated H2 release in 1M MKPC mortars
evaluating the effect of curing moisture conditions (isolated curing and at 100%RH). Higher
H2 volumes are detected under 100%RH, where the phosphate ions decrease over time
(see Figure 10a) due to the correct progress of the acid–base reaction under high moisture
content in pores. Lower H2 release with constant evolution over time are found in isolated
environments, which is related to higher phosphate and borate ions in the pore solution
and lower pore pH (see Figures 9 and 10). A similar evolution of H2 release for pure Al
(A1050) and AlMg (AA5754) was detected at a 1M M/P ratio, higher for AlMg in 2 and 3M.

5. Conclusions

Each type of LILW requires optimal design and a compatible cementitious matrix to
guarantee the long-term safety of the repository. MKPCs have been selected as a suitable
matrix for the immobilization of radioactive aluminium waste. To optimize the efficiency
of long-term immobilization of the installation, the role of MKPC dosage as a function of
MgO/KH2PO4 (M/P) and moisture content in pores is considered based on the hypothesis
that these two aspects affect the stability of the MKPC matrix and the corrosion kinetic of
Al. Furthermore, discrepancies have been detected in the literature regarding the physical–
chemical stability of MKPC matrices and the predicted hydrogen release volume. The
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present study allows us to detect that the instabilities are more prone at low M/P ratios
and in high humidity. Corrosion kinetics and hydrogen release are greater for a high M/P
ratio and high pore moisture content. A balance between both aspects is needed to ensure
the long-term stability of the immobilization of Al alloy in the MKPC matrix. An M/P ratio
greater than 1 is necessary to obtain the physical stability of the matrix, and an M/P ratio
less than 2 does not significantly increase the corrosion kinetics and H2 gas release.

The specific conclusions from the present study that corroborate the beneficial use of
MKPC matrices to immobilize aluminium radioactive waste can be summarized as follows.

- The corrosion process of Al alloy is affected by the pH and ion content in the pore
solution. The increase in pH from 7–8 in 1M M/P to 9 and 10 in 2 and 3M M/P is
duplicate and triplicate the initial corrosion rate of Al alloys that equalizes at long-
term interaction.

- The presence of phosphate ions in the pore solution inhibits the corrosion process
in both Al alloys. The presence of borates also has an influence on decreasing the
corrosion rates. The effect of Mg in the alloy is more relevant with the increase in the
M/P ratio.

- Accumulated average H2 release over 90 days in 1, 2, and 3M M/P ratios under
100%RH conditions were 2.04 L/m2 and 2.14 L/m2 in 1M, 4.97 L/m2 and 5.93 L/m2

in 2M, and 6.23 L/m2 and 7.22 L/m2 in 3M, for pure Al (A1050) and AlMg alloys
(AA5754), respectively. With the lower moisture content in pores in the endogenous
(isolated) curing, the corrosion kinetic is significantly reduced. Calculated values of
H2 are 0.59 L/m2 and 0.61 L/m2 for pure Al (A1050) and AlMg alloys (AA5754).

- More of the hydrogen release occurs during the first 15 days of the interaction of the
Al alloy with the MKPC matrix; values between 50–60% of the total H2 release at
90 days have been measured to attenuate at longer exposures and during the ageing
of the matrix. This aspect has to be considered in experimental campaigns and for
long-term predictions of H evolution.

- The physical–chemical stability of the MKPC matrices in terms of microstructural
properties shows a high dependence on the pore moisture content and M/P molar
ratio used in the formulation.

- The 1M M/P ratio exhibits lower strengths in both curing conditions, yielding matrix
instabilities and phosphate efflorescences. The increase in M/P ratios allows higher
capillary pores and higher mechanical strength of the matrices.

- The pore solution is mainly dominated by phosphates, borates, and K but a low Mg
content. The pore ion content decreases with the M/P ratio and curing advance.
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