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Abstract: The initial melting quality of a high-speed laser cladding layer has an important impact on
its post-treatment and practical application. In this study, based on the repair of hydraulic support
columns of coal mining machines, the influence of high-speed laser cladding process parameters on
the quality of Fe-Cr-Ni alloy coatings was investigated to realize the accurate prediction of coating
quality. The Taguchi orthogonal method was used to design the L25(56) test. The prediction models
of the relationship between the cladding process and the coating quality were established using
the Random Forest (RF) and AdaBoost (Adaptive Boosting, AB) algorithms, respectively. Then, the
prediction accuracy of the two models was compared, and the process parameter features were
screened for importance evaluation. The results show that the AB prediction model is more accurate
than the RF prediction model and more sensitive to abnormal data. The importance evaluation
based on the AdaBoost model shows that the scanning speed has a great influence on the height and
surface roughness of the coating. On the other hand, the overlap rate is the most important factor
in controlling the dilution ratio and near-surface grain size of high-speed laser melting coatings. In
addition, the micro-hardness of the coating and the thermal effect of the substrate can be effectively
enhanced by adjusting the laser power and scanning speed. Finally, it was verified that the AB
prediction model could accurately estimate the quality indexes of the coating with a prediction error
less than 6%. The results show that it is feasible to predict the quality of high-speed laser cladding
with the AB algorithm. It provides a basis for the adjustment of process parameters in the subsequent
quality control process of cladding.

Keywords: high-speed laser cladding; random forest; AdaBoost; regression analysis; coating
quality prediction

1. Introduction

The coating prepared via laser cladding technology can not only ensure the bonding
strength but also meet the requirements of protective properties [1,2]. Thus, in recent years,
as a representative of green manufacturing, laser cladding has been increasingly used
in the preparation of protective coatings. However, this process has the disadvantages
of low efficiency, insufficient forming quality and accuracy, and the subsequent need for
two or even multiple procedures to meet the requirements of use. Alongside that, the
cladding layer has high crack sensitivity, and the crack control in the forming process is
also very difficult [3,4]. To solve these problems, the German Fraunhofer Institute of Laser
Technology invented extreme-high-speed laser cladding (EHLA) [5]. EHLA replaces the
traditional electroplating process as an advanced green manufacturing technology and has
broad application prospects. Currently, high-speed laser cladding has been applied to the
oil drilling and production part repair industry to address the issues that traditional laser
cladding has a great impact on the heat of the substrate and the processing efficiency is
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low. As a new generation of processing technology, its working principle and heat transfer
mode are very different from traditional cladding technology. Owing to the shielding effect
of the powder material on the laser energy and the two-stage melting process before/after
entering the melt pool, the substrate has a low heat input, the coating dilution ratio is
smaller than 1/4 of traditional cladding, and the surface roughness is reduced to less than
1/10 of traditional cladding [6]. Additionally, it has a 100–250 times higher cladding speed
than the traditional cladding, which leads to the fine grain of the coating, thus allowing for
the improvement of all aspects of the coating performance [7,8].

High-speed laser cladding is a complex metallurgical process, and the stability of
the entire process is affected by many factors such as process parameters, equipment
conditions and even materials [9]. In the cladding process, the laser beam, powder ma-
terial and substrate interact, and the cladding parameters (such as laser power, scanning
speed, overlap ratio and powder feeding rate) affect each other. Given this, constructing
a model to predict the cladding quality is the main way to achieve the quality control of
high-speed laser cladding coating. Generally, there are three main methods to construct the
relationship model between input machining parameters and output machining results:
the finite element method, the phenomenology method, and the machine learning method,
to investigate the relationship between process parameters and their responses in the laser
cladding process [10,11]. The finite element method [12,13] normally constructs models
through physical driving to make predictions. Kumar et al. [14] proposed and solved a
set of dimensionless transport equations to study the laser metal deposition process, and
they calculated the deposition trajectory geometry, dilution ratio, and maximum molten
pool temperature. Chai et al. [15] investigated the temperature field of Ni316AA formed
by laser cladding based on the balance of gravitational potential energy and interfacial
free energy of molten metal, and they calculated the profile of cladding orbit using an
improved droplet formation method. Nevertheless, the current physical drive method
cannot simulate the entire cladding process in a short time, so it fails to predict the ma-
chining result quickly. The phenomenological method is a type of analysis method based
on multivariate mathematical statistics. It connects important controllable process pa-
rameters with required geometric features through mathematical relations [16–18]. It is
mainly designed and developed by factor design, Taguchi design, central composite design
(CCD), and response surface method (RSM) [19]. Menghani [20] employed a full factorial
design approach to briefly explore the overlap rate, microhardness and microstructure of
individual coatings while determining optimal cladding conditions through multi-response
optimization. Khorram [21,22], respectively, utilizing response surface methodology and
central composite design for cladding 75Cr3C2 + 25(80Ni20Cr) coating, investigated its
influence on geometric parameters (width, height, and cladding angle), dilution rate, and
hardness. The mathematical statistical analysis process of the phenomenological method
usually requires basic experiments. Its statistical analysis is completely based on experi-
mental data, and the accuracy of regression is closely related to the number of experimental
samples. Machine learning (ML) is a data-driven approach that directly mines the relation-
ships between input and output data. The use of this relationship for classification and
prediction can greatly simplify the forecasting model, improve the forecasting efficiency,
and shorten the forecasting time [23]. Le et al. [24] used backpropagation neural network
(BPNN) and particle swarm optimization (PSO) algorithms to establish a prediction model
between process parameters and laser cladding coating morphology. To guarantee coating
molding quality, Deng et al. [25] established the back-propagation neural network (BPNN)
and quantum-behaved particle swarm optimization (QPSO) neural network prediction
model to obtain the mapping relationship between the laser cladding preparation process
parameters and Ti (C, N) ceramic coating microhardness. Chen et al. [26] constructed a
prediction model of coating quality characteristics based on support vector machine (SVM)
to correctly describe the relationship between cladding process parameters (input variables)
and coating quality characteristics (output characteristics). Zhao et al. [27] developed a
laser cladding parameter optimization method based on RSM and NSGA-II algorithms
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to obtain the best process parameters of laser cladding TC4 alloy powder. Gao et al. [28]
utilized 316 models of a backpropagation neural network (BPNN), random forest (RF) algo-
rithm and response surface method (RSM) to establish the predictive relationship between
deposition input parameters and machining state parameters, geometric morphology and
mechanical property parameters. The prediction time of data-driven methods is greatly
reduced compared with physically driven methods.

In this study, 45# steel, which is commonly used for hydraulic pillars in the coal mining
industry, is used as the matrix material. The Fe-Cr-Ni alloy powder, which has good wear
resistance and weak acid corrosion resistance at room temperature below 500, and has
a wide range of raw materials and cheap price, is chosen as the cladding material. Two
models were constructed based on RF and AB algorithms for the coatings prepared using
high-speed laser cladding technology, respectively. Firstly, the L25(56) experiment was
designed based on the Taguchi orthogonal method, and the combination of different process
parameters was taken as the research object. Secondly, RF and AB models were constructed
for training. Process parameters such as laser power (P), scanning speed (Ss), overlap ratio
(Or) and powder feeding rate (Vp) were taken as the input, and the response values such as
cladding layer height (H), molten pool depth (D), dilution ratio (η), grain size (Ds), surface
roughness (Ra) and microhardness (HV0.2) were taken as the output. After the model
training was completed, the process parameters of the training group were again input
into the model for prediction, and the preliminary prediction performance verification of
the predicted model was carried out. Then, the accuracy of the two established prediction
models was compared, and the characteristics of the process parameters were screened for
the importance assessment. Finally, the AB prediction model was further used to predict
the cladding layer height (H), molten pool depth (D), dilution ratio (η), grain size (Ds),
surface roughness (Ra) and microhardness (HV0.2) of the coating under six combinations
of new process parameters.

2. Experimental Design
2.1. Experimental Equipment and Materials

The test system adopts the ZKZM-2000 fiber optic high-speed laser system (Zhongke
Zhongmei Laser Technology Co., Ltd., Zhangjiagang, China). The experimental equipment
is illustrated in Figure 1, and the equipment parameters are listed in Table 1. The base
material is ASTM 1045 plate, with a size of 70 mm × 150 mm × 8 mm, and it is the common
material for the hydraulic support column of coal machines. The powder material is an Fe-
Cr-Ni-based alloy powder (the powder particle size ranges between 35 and 53 µm, Nanjing
Zhongke Yuchen Co., Ltd., Nanjing, China). The composition of the Fe-Cr-Ni-based alloy
powders is presented in Table 2. Before the test, the surface of the substrate is ground with
400 grit sandpaper and then wiped with alcohol to remove the oil; subsequently, it is dried
for use in a drying oven, with a holding temperature of 100 ◦C and a holding time of 2 h.

Table 1. The equipment parameters of the ZKZM-2000 fiber high-speed laser cladding system.

Parameter Type Inversion

Power 500–2000 W
Wave length 1080 nm

Spot diameter 1.2 mm
Powder feeding method Three-way coaxial powder feeding

Scanning speed 0–20 m
Gas flow 20–25 L/min

Maximum spindle speed 200 r/min
Machine stroke (X-axis) 3222 mm
Machine stroke (Y-axis) 400 mm
Machine stroke (Z-axis) 300 mm
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Figure 1. ZKZM-2000 fiber optic high-speed laser system.

Table 1. The equipment parameters of the ZKZM-2000 fiber high-speed laser cladding system.

Parameter Type Inversion 
Power 500–2000 W 

Wave length 1080 nm 
Spot diameter 1.2 mm

Powder feeding method Three-way coaxial powder feeding
Scanning speed 0–20 m 

Gas flow 20–25 L/min 
Maximum spindle speed 200 r/min 
Machine stroke (X axis) 3222 mm
Machine stroke (Y-axis) 400 mm 
Machine stroke (Z-axis) 300 mm 

Table 2. The chemical composition/Value (wt.%) of the Fe-Cr-Ni-based alloy powders. 

Chemical
Composition

C Si Cr Ni Mo B Fe 

Value (wt.%) 0.15 4.5 22 13 2 1.6 Bal.

2.2. Experimental Principle 
The differences between the principles of high-speed laser cladding and traditional 

laser cladding processes are demonstrated in Figure 2 (the red area represents the coating 
during the melting process, the dark gray area represents the solidified fused coating, the 
light gray area represents the heat affected zone (HAZ) of the substrate during the melting 
process, and the blue area represents the substrate). The main differences lie in the way 
the powder is melted and the way the molten pool is formed. As shown in Figure 2a, in 
traditional laser cladding, most of the energy of the high-energy laser beam is acted on 
the matrix melting pool, and only a small amount of energy is acted on the powder parti-
cles. Then, the powder particles are fed into the molten pool via the combined action of 
the powder gas and gravity. Because of this, the temperature of the molten pool is higher 
than that of the powder particle Tp. As shown in Figure 2b, in high-speed laser cladding, 
the high-energy laser beam is shielded by powder. Most of the energy is acted on the 
powder particles to heat the powder to near its melting point. The remaining small 
amount of energy is acted on the substrate to form an extremely shallow molten pool. The
semi-molten powder particles are sprayed into the molten pool at a high speed, and an 
extremely thin metallurgical layer is formed after short contact. The temperature of the 
molten pool is almost consistent with that of powder particles (Tliq ≈ Tp) [8]. Thus, com-
pared with the traditional laser cladding substrate, the high-speed laser cladding bath ab-
sorbs less energy, so the bath is shallower and the zone affected by heat is smaller. 

Figure 1. ZKZM-2000 fiber optic high-speed laser system.

Table 2. The chemical composition/Value (wt.%) of the Fe-Cr-Ni-based alloy powders.

Chemical Composition C Si Cr Ni Mo B Fe

Value (wt.%) 0.15 4.5 22 13 2 1.6 Bal.

The ZKZM-2000 fiber high-speed laser system is used in the experiment. The high-
speed laser cladding process uses +15 mm defocusing, and the spot size is 1.2 mm. The
powder is fed by a powder feeder with a high-precision coaxial nozzle, which ensures a
very small focused powder point (1.2 mm) even at a high powder feed speed. The shielding
gas and powder gas are argon gas (purity 99.99%).

2.2. Experimental Principle

The differences between the principles of high-speed laser cladding and traditional
laser cladding processes are demonstrated in Figure 2 (the red area represents the coating
during the melting process, the dark gray area represents the solidified fused coating, the
light gray area represents the heat affected zone (HAZ) of the substrate during the melting
process, and the blue area represents the substrate). The main differences lie in the way
the powder is melted and the way the molten pool is formed. As shown in Figure 2a, in
traditional laser cladding, most of the energy of the high-energy laser beam is acted on the
matrix melting pool, and only a small amount of energy is acted on the powder particles.
Then, the powder particles are fed into the molten pool via the combined action of the
powder gas and gravity. Because of this, the temperature of the molten pool is higher than
that of the powder particle Tp. As shown in Figure 2b, in high-speed laser cladding, the
high-energy laser beam is shielded by powder. Most of the energy is acted on the powder
particles to heat the powder to near its melting point. The remaining small amount of
energy is acted on the substrate to form an extremely shallow molten pool. The semi-molten
powder particles are sprayed into the molten pool at a high speed, and an extremely thin
metallurgical layer is formed after short contact. The temperature of the molten pool is
almost consistent with that of powder particles (Tliq ≈ Tp) [8]. Thus, compared with the
traditional laser cladding substrate, the high-speed laser cladding bath absorbs less energy,
so the bath is shallower and the zone affected by heat is smaller.
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Figure 2. The schematic of the process principle: (a) conventional laser cladding; (b) high-speed
laser cladding.

2.3. Experimental Design

To construct the prediction model of high-speed laser cladding parameters and
cladding layer quality, certain experiments are required as a training group. Accord-
ing to the existing research, laser power (P), scanning speed (Ss), overlap ratio (Or) and
powder feeding rate (Vp) are the most important process parameters that affect the quality
of the cladding layer, so only these four parameters need to be changed in the experimental
design. For regression models, the more experimental results can be referred to during
training, the better the fitting effect of the model, but the higher the complexity of the
experiment. Therefore, L25(56) experiments were designed in this study based on the
Taguchi orthogonal, and the statistical results were taken as training sets for the RF model
and AB model.

2.4. Experimental Method

The coating was prepared via high-speed laser cladding. The specimen was cut
perpendicular to the scanning direction, with a cutting size of 10 mm × 10 mm × 8 mm.
The metallographic sample was then etched with aqua regia (=3:1) for 30 s. The height of
the cladding layer and the depth of the molten pool of the cross-section were observed with
the VS200-500U optical microscope (Shenzhen AOSVI Microoptical Instrument Co., Ltd.,
Shenzhen, China) (3 position data were taken for each sample), and the coating dilution
ratio was calculated according to Equation (1). On the other hand, the surface roughness
was measured by the VHX-6000 ultra-depth field microsystem (Keens (China) Co., Ltd.,
Shanghai, China). The microhardness of the coating was measured by the HVS-1000B
Vickers microhardness tester (Dongguan Zhongte Precision Instrument Technology Co.,
Ltd., Dongguan, China) (the loading load was 200 g, the loading time was 15 s, and the
hardness test was conducted three times at the same height of 50 µm from the surface,
and the average value was taken as the hardness value of the position). Alongside that,
the microstructure of the coating was observed by the LEO-1430VP scanning electron
microscope (SEM) (LEO Electron Microscopy Ltd., Jena, Germany). Additionally, the grain
size of the coating near the surface, magnified 5000 times, was measured using ImageJ
software (1.8.0.345). The macroscopic morphology of the sample is illustrated in Figure 3,
the factors and levels of cladding experiment design are shown in Table 3, and the response
results are presented in Table 4.

η ≈
∑n

i=1
Di

Di + Hi

n
(1)

where Di and Hi represent the depth of the molten pool and the coating height on the i-th
channel, respectively; n represents the total number of molten channels.
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Figure 3. The macroscopic morphology of high-speed laser cladding coating.

Table 3. Taguchi test factors and levels.

No.
Laser Power/ Scanning Speed/ Overlap Ratio/ Powder Flow Rate/

P (W) Ss (mm/min) Or (%) Vp (r/min)

1 660 3600 20 2.5
2 880 7200 35 3
3 1100 10,800 50 3.5
4 1320 14,400 65 4
5 1540 18,000 80 4.5

Table 4. The experimental design and the corresponding experimental responses.

No.

Process Parameter Response

Laser
Power/

Scanning
Speed

Overlap
Ratio

Powder
Feeding Rate Height Depth Dilution

Rate
Grain
Size Roughness Hardness

P (W) Ss
(mm/min)

Or
(%)

Vp
(r/min)

H
(µm)

D
(µm)

H
(%)

Ds
(µm)

Ra
(µm) HV0.2

1 660 3600 20 2.5 245.15 27.24 10 2.34 34.63 764.83
2 660 7200 35 3 131.01 51.8 28.33 2.17 25.63 769.87
3 660 10,800 50 3.5 170.3 29.07 14.58 1.03 6.71 915.10
4 660 14,400 65 4 90.29 9.03 9.09 0.75 3.03 969.22
5 660 18,000 80 4.5 105.51 25.12 19.23 0.78 9.96 987.57
6 880 3600 35 3.5 431.22 36.7 7.84 1.99 26.63 707.07
7 880 7200 50 4 293.37 27.5 8.57 1.1 24.8 838.93
8 880 10,800 65 4.5 222.01 14.17 6 0.8 4.49 862.75
9 880 14,400 80 2.5 237.17 12.48 5 0.89 4.62 822.71

10 880 18,000 20 3 101.63 31.54 23.68 1.39 24.05 803.18
11 1100 3600 50 4.5 514.41 45.92 8.2 1.15 25.75 869.69
12 1100 7200 65 2.5 272.33 31.25 10.29 0.87 17.9 819.93
13 1100 10,800 80 3 467.05 10.86 2.27 0.95 10.75 857.91
14 1100 14,400 20 3.5 109.78 34.1 23.68 1.51 14.26 797.77
15 1100 18,000 35 4 72.38 16.51 18.57 1.22 22.2 876.60
16 1320 3600 65 3 755.01 64.45 7.87 1.16 18.9 692.25
17 1320 7200 80 3.5 340.56 31.79 8.54 1.09 20.89 802.23
18 1320 10,800 20 4 184.97 33.63 15.38 1.83 21.38 756.58
19 1320 14,400 35 4.5 137.86 27.57 16.67 1.25 18.55 811.26
20 1320 18,000 50 2.5 165.23 18.36 10 1.01 18.82 822.14
21 1540 3600 80 4 948.57 102.4 9.75 1.31 26.57 624.48
22 1540 7200 20 4.5 190.51 51.29 21.21 1.72 26.57 729.75
23 1540 10,800 35 2.5 226.66 65.8 22.5 1.28 17.65 770.49
24 1540 14,400 50 3 208.09 31 12.96 1.03 4.49 771.56
25 1540 18,000 65 3.5 171.21 21.95 11.36 0.71 5.53 849.48
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3. Model for Predicting the Quality of the Cladding Layer

The most intuitive way to evaluate the model is to measure its prediction accuracy and
prediction time. RF and AB are non-parametric regression models with a good prediction
effect, so there is no need to test the hypothesis conditions such as normality and indepen-
dence of variables, nor consider the collinear problem of multiple variables and adjust the
parameters multiple times. Also, the importance of each parameter to the characteristics of
the response can be measured. This feature facilitates an in-depth understanding of the
high-speed laser cladding process.

3.1. Establishment of Prediction Model

Ensemble learning is mainly divided into the bagging algorithm and the boosting
algorithm, and their major differences are demonstrated in Figure 4. RF, first proposed
by Breiman [29], is a collection of classification and regression trees. It is a modified
algorithm based on the Bagging strategy. In the process of generating each decision tree,
the samples and characteristic variables of the training dataset are randomly sampled, and
each decision tree will generate rules and judgment values according to its attributes. Then,
the forest realizes the regression of the random forest algorithm by integrating the rules and
judgment values of all decision trees [30]. RFs generally prevent overfitting by reducing the
complexity of each tree and the number of features used to build the decision tree. AB is a
typical Boosting algorithm. Its operation principle is similar to the human learning process:
each learning process will gain the experience of the previous one and correct the previous
mistake. The strong classifier synthesized using this method retains the advantages of the
weak classifiers and weakens their disadvantages. When the AB algorithm runs, it first
assigns the same weight to each weak classifier, then updates the weight of each classifier
according to the result of the weak classifier, and synthesizes a strong classifier according
to the weight obtained in the last iteration [31]. The algorithm has a simple structure
and strong robustness, can handle continuous and discrete values, and possesses great
advantages in reducing bias and improving the accuracy of deep learning.
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A high-speed laser cladding coating quality prediction model was constructed based
on RF and AB algorithms. The model building process is as follows:

3.1.1. The RF Model

1. A training set with n samples was selected from the high-speed laser cladding param-
eter combination sample set using the Bootstrap method. The selected samples were
used to train a decision tree as the sample of the decision tree node.

2. m features were randomly selected from the 6 features of the sample, satisfying the
condition m << 6. Then, 1 feature was chosen from the m features as the splitting
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feature of the node; steps 1 to 2 were repeated 100 times, where 100 is the number of
decision trees in the RF.

3. The trained RF was used to predict the test sample, and the prediction result was
obtained using the voting method.

The construction process of the RF model is shown in Figure 5.
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3.1.2. The AB Model

1. m samples were selected from the 25 sample sets of high-speed laser cladding as a
training set D, D = ((x1, y1), (x2, y2), . . ., (xm, ym)).

2. A sampling weight D1(x) = wj was assigned to each training sample, with the initial
wj = 1/m, i = 1. A training set was generated by sampling with replaceability, with
an equal volume and weight. A weak learner ht(x) was assigned for each training
round, and the weight of the weak learner αt was calculated.

3. Weak learners were combined into a strong learner: H(x) = sign(∑T
t1 αtht(x)).

The prediction flow of the AB model is shown in Figure 6.
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RF and AB models were trained with 25 sets of experiments. Given the need to predict
cladding coating quality under different process parameters, the design input (Xi) is

Xi = [Pi, Ssi, Ori, Vpi] (i = 1, . . ., n) (2)

where Pi stands for the laser power, Ssi stands for the scanning speed, Ori stands for the
overlap ratio and Vpi stands for the powder feeding rate.

For each set of defined inputs, there is a corresponding set of output responses:

Yi = [Hi, Di, ηi, Dsi, Rai, Hvi] (i = 1, . . ., n) (3)

where Hi, Di, ηi, Dsi, Rai and Hvi represent the cladding layer height, molten pool depth,
dilution ratio, grain size, surface roughness and microhardness, respectively.
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3.2. Tests and Results

The prediction model was constructed based on RF and AB algorithms. The process
parameters such as laser power, scanning speed, overlap ratio and powder feeding rate
were taken as the inputs, and the response values such as cladding layer height, molten
pool depth, dilution ratio, grain size, surface roughness, and microhardness were taken as
the outputs. After the model training was completed, the process parameters of the training
group were again input into the model for prediction. The prediction performance of the
two constructed prediction models was preliminarily verified, and their prediction accuracy
was compared. The comparison between the predicted value and the real value of RF and
AB models is shown in Figure 7. It can be seen that the AB model is more accurate than
the RF model, and it also captures more volatile data points and shows greater sensitivity
to abnormal data (maximum or minimum) in the prediction process of multiple response
values. This makes the AB model more accurate in predicting the quality of high-speed
laser cladding.

Then, the R2 values of the two models were obtained to check the fit between the
prediction data and the measured data, as listed in Table 4. For all output responses, the
closer the R2 values to 1, the higher the correlation between the predicted data and the
measured data, and the better the model fit. By comparing the predicted values of the two
models with the measured values in Figure 7 and Table 4, it can be found that the R2 value
of the AB model is generally closer to 1 than that of the RF model.
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The calculation method of R2 is shown in Equation (4):

R2 = 1 − ∑i(ŷi − yi)
2

∑i(yi − yi)
2 (4)

4. Importance Evaluation and Prediction Model Verification
4.1. Evaluation of the Importance of High-Speed Laser Cladding Process Parameters

Importance analysis is used to calculate the contribution of each process parameter to
the target response value and rank the importance of process parameters. Based on this,
the sensitivity relationship between each variable and the target value can be obtained, and
the higher the ranking variable, the greater its impact on the target value. (i.e., target values
are more sensitive to variables that rank higher). The feature selection process of machine
learning (importance assessment) is integrated with the learner training process, and both
are optimized within the same optimization process, i.e., the importance assessment was
carried out automatically during the training of the learner.

The importance test of the AB prediction model was conducted. The response values
of cladding layer height, molten pool depth, dilution ratio, grain size, surface roughness,
and microhardness were used to evaluate the importance of laser power, scanning speed,
overlap ratio, and powder feeding rate. The result is shown in Figure 8. Factors greater
than 0.15 in importance were considered to have a great effect on response [19]. It can be
seen that the change in laser power has the greatest effect on the microhardness of the
coating and the molten pool depth, but it has little effect on the grain size. The variation in
scanning speed and overlap ratio has a great effect on the coating quality. The scanning
speed mainly affects the height and surface roughness of the cladding layer. Alongside
that, the overlap ratio mainly affects the dilution ratio and surface roughness. The powder
feeding rate has a relatively small effect on the coating quality, and it has the biggest effect
on the molten pool depth. The results indicate that the densification of microstructure
is significantly promoted by the increase in scanning speed, and the homogenization of
dendrites near the surface is caused by the high overlap ratio.

On the other hand, it can be seen that when a higher coating thickness and a smaller
surface roughness are required, adjusting the scanning speed is the most effective way
to meet this requirement. To adjust the grain size near the surface of the coating and the
dilution ratio of the coating, only the overlap ratio needs to be controlled. Additionally,
coating depth and microhardness require a coordinated effect of power and scanning speed.
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These observations can provide a basis for adjusting process parameters in the subsequent
process of cladding quality control.
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4.2. Verification of High-Speed Laser Cladding Coating Quality Using the AB Prediction Model

To test the predictive performance of the AB prediction model, another six sets of
experiments were designed to compare and verify the response values and predicted values
such as cladding layer height, molten pool depth, dilution ratio, grain size, and surface
roughness and microhardness. The experimental design and results are listed in Table 5.
The process parameters of the six validation experiments were selected based on the results
of Taguchi’s experiments and were the optimal process parameters determined based on
six indicators. The height of the cladding layer (H), depth of the melt pool (D), dilution
ratio (η), grain size (Ds), surface roughness (Ra), microhardness (HV0.2), MAE and RMSE
values were calculated to characterize the accuracy of the model. Specifically, MAE (mean
absolute error) is the mean of the absolute error between the predicted and observed values;
it indicates the degree of dispersion of the samples and is more sensitive to outliers. RMSE
(root mean square error) is the sample standard deviation of the difference between the
predicted and observed values. The smaller the values of MAE and RMSE, the higher the
accuracy of the model. The calculation methods of MAE and RMSE are shown in Equations
(5) and (6). The comparative verification results are illustrated in Figure 9. The precision
characterization data of the AB model are listed in Table 5.

MAE =
1
25

25

∑
i=1

|ŷi − yi| (5)

RMSE =

√√√√ 1
25

25

∑
i=1

(yi − ŷi)
2 (6)

It can be seen from Table 6 that for the AB prediction model, the prediction error of
each response value is less than 6%, indicating that there is a good correlation between the
input parameters of the prediction model and the feature prediction results. According to
the above prediction results, it is feasible to use the AB algorithm to build a high-speed
laser cladding coating quality prediction model. It can play an important guiding role in
predicting coating process parameters and even performance optimization.
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Table 5. The experimental design of the AB model and the corresponding experimental responses.

No.

Process Parameter Response

Laser
Power/

Scanning
Speed

Overlap
Ratio

Powder
Feeding Rate Height Depth Dilution

Rate
Grain
Size Roughness Hardness

P (W) Ss
(mm/min)

Or
(%)

Vp
(r/min)

H
(µm)

D
(µm)

H
(%)

Ds
(µm)

Ra
(µm) HV0.2

1 660 14,400 65 3.5 85.78 9.57 10.04 0.79 5.83 903.29
2 660 18,000 50 4.5 95.35 25.15 20.87 1.03 6.23 927.11
3 880 3600 65 2.5 401.57 35.9 8.21 1.15 16.82 758.64
4 880 18,000 65 3.5 170.66 19.7 10.35 0.75 4.69 881.57
5 1100 18,000 65 3.5 180.59 20.51 10.20 0.91 6.09 837.64
6 1540 3600 80 3 985.15 100.5 9.25 1.35 18.82 658.49

Table 6. Characterization of precision data of the AdaBoost model.

Model
Height (H) Depth (D) Dilution (η)

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

AdaBoost 39.372 45.009 0.979 1.603 1.678 0.997 0.578 0.819 0.963

Model
Dendrite size (Ds) Roughness (Ra) Hardness (Hv0.2)

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

AdaBoost 0.035 0.038 0.966 0.723 0.972 0.971 17.992 21.011 0.949

5. Conclusions

In this study, two algorithms, RF and AB, were used to construct a coating quality
prediction model. A total of 31 experiments were conducted in the training group and the
verification group to train and verify the model, respectively. The conclusion of this study
is as follows:

(1) The prediction process of high-speed laser cladding coating quality is complicated,
and the RF and AB algorithms have strong mapping ability and nonlinear relation-
ships. Therefore, when solving complex multivariate nonlinear problems, they can be
adopted to address the issue of high-precision fitting, which is difficult for multiple-
regression analysis, thereby achieving effective prediction of cladding quality. The
AB prediction model captures volatile data points, and it is more accurate and more
sensitive to abnormal data (maximum or minimum) than the RF in the prediction of
multiple response values.

(2) The AB algorithm was also used to evaluate the importance of process parameters
during the training of the learner. The most effective method to change the height
and surface roughness of the cladding layer is to adjust the scanning speed. On the
other hand, the overlap rate is the most important factor for controlling the dilution
ratio and near-surface grain size of high-speed laser cladding. Alongside that, the
microhardness of the coating and the thermal effect of the substrate can be effectively
enhanced by adjusting the laser power and scanning speed. These observations
provide a basis for the adjustment of process parameters in the stability control of the
melting process.

(3) The experimental results indicate that the prediction errors of the AB model on the
response values of cladding layer height, molten pool depth, dilution ratio, grain
size, surface roughness and microhardness are all less than 6%. Therefore, the quality
of the high-speed laser cladding layer can be predicted by this prediction model
during machining. The prediction results indicate that the application of machine
learning methods based on the AB algorithm has a certain reference value and practical
significance in parameter prediction and performance optimization of the high-speed
laser cladding process. It provides a new idea for the process parameter control in
high-speed laser cladding.
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