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Abstract: The elasticity matrix and the coefficients of thermal expansion (CTEs) of 8-harness satin-
woven (8HS) carbon-fiber-reinforced carbon matrix (C/C) composites at high temperatures were
obtained by the asymptotic homogenization method (AHM) and finite element method (FEM). By
analyzing the microstructure of the 8HS C/C composites, a representative volume element (RVE)
model considering a braided structure was established. The effects of the temperature and component
volume fraction on the elasticity matrix and CTEs of the composites were investigated. The sensitivity
of model parameters, including the size of RVE model and mesh sensitivity, were studied. The
optimal calculation model was employed. In addition, the effects of the 4HS methods and 8HS
methods on the elastic constants of the composites were compared. The temperature and variation in
the carbon fiber volume fraction were found to have a significant impact on the elasticity matrix and
CTEs of composite materials. At the same volume fraction of carbon fibers, some elastic coefficients of
the 4HS composite material were slightly lower than those of 8HS composite material. This research
affords a computational strategy for the accurate prediction of the themo-mechanical properties of
satin-woven C/C composites.

Keywords: microstructure; asymptotic homogenization; elasticity matrix; coefficient of thermal
expansion; temperature dependence

1. Introduction

Carbon-fiber-reinforced carbon matrix (C/C) composites exhibit a series of excellent
properties such as low density, high strength, high plasticity, and impact resistance, and
they are a widely used braided material [1]. In terms of the fiber reinforcement orienta-
tion, they can be divided into unidirectional (UD), two-directional, and three-directional
forms. The research and application of UD fiber-reinforced composites have been quite
extensive, but their transverse performance defects cannot be ignored. Nowadays, braided
composites have been widely used in various fields due to their more attractive transverse
characteristics than UD composites [2].

C/C composites are widely used in high-temperature environments. Their thermo-
mechanical performance at high temperatures affects their application. The properties of
braided C/C composites are mainly affected by the method of weaving, the material type
of the fibers and matrix, and the volume fraction of each component [3]. According to
different weaving methods, they can be divided into woven, knitted, and nonwoven types.
In terms of weaving efficiency, manufacturing costs, and overall performance, woven fabric
has more advantages than knitted fabric, and it is the most widely used fabric structure.
The carbon fabric preforms of the most common 2D C/C composites are usually woven in
plain, twill, and satin patterns, and the resulting C/C composites have a lower modulus
than the fibers themselves due to the curvature and wavy appearance of the fiber bundles
at the knitting junction.
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To fully understand the role of C/C composites in high-temperature environments,
their thermo–mechanical properties were investigated. Chen [4] tested the compression,
bending, and tensile properties of carbon fiber/silicon (C/SiC) composites from room
temperature up to 1000 ◦C and analyzed the fracture micromorphology of the composites.
Cheng [5] first studied the bending performance of C/C composites at a temperature of
2600 ◦C and observed their plastic deformation at high temperatures.

Currently, tests at high temperatures (above 1600 ◦C) are difficult, and the high cost
of material production and characterization, the time cost, and doubts about the accuracy
of the results have prompted scholars to investigate the properties of composites using
theoretical methods and numerical methods.

Theoretically, works based on theoretical analytical methods include those by Tran
et al. [6] using the Mori–Tanaka [7] method to derive the Eshelby spherical non-uniformity
problem and predict the equivalent properties of gradient composites containing spherical
inclusions. The classical methods, such as the self-consistent method and Mori–Tanaka
method, reflect the average of the stress and strain of representative volume elements, which
can solve some problems in the calculation of the material properties, but most of them
are still limited to the calculation of the linear and nonlinear basic mechanical properties
of heterogeneous materials. Meanwhile, many assumptions and premises proposed by
commonly used semi-analytical methods about the microstructure limit the application of
theoretical methods in material research with complex microstructures. Therefore, more
accurate and convenient simulation methods for composite materials have become the
focus of research.

Numerically, with the wide application of large-scale commercial finite element soft-
ware, RVE, a representative volumetric element method based on finite element software,
has also been used to analyze the equivalent properties of composites with complex shapes.
Pahr et al. [8] found that the FEM can study the macroscopic mechanical properties of
heterogeneous materials in more detail than experiments. Salviato [9] analyzed the in-layer
size effect of textile composite structures from both experimental and numerical aspects.
Using the three-dimensional finite element method (FEM), Galatti et al. [10] performed a
preliminary prediction of the mechanical behavior for composite materials fabricated by
continuous filament fabrication (CFF). Srivastava [11] predicted the effect of embedding
graphene sheets (GSs) into the carbon matrix of 4D-C/C composites on the elastic modulus
through the FEM. The representative volume element (RVE) method has been used to pre-
dict the properties of braided composites, but it lacks a strict mathematical framework to
clarify the relationship between the equivalent properties and material layout. In contrast,
the asymptotic homogenization method (AHM) was born from strict mathematical theory
and has a higher computational efficiency [12].

The detailed numerical calculation of the structural–mechanical behavior of com-
posites is time-consuming, which can be significantly improved by the homogenization
method [12]. The AHM is considered for the calculation of the thermodynamic properties
of composite materials.

In the 1970s, scholars introduced the homogenization theory proposed by Benssou-
san [13] and Sanchez-Palencia [14] into the study of heterogeneous materials. This method
is utilized to analyze material systems with multiple scales, enabling the connection be-
tween the microscopic scale containing the second phase space and the macroscopic scale of
the overall structure. Compared to the RVE method, this approach offers advantages such
as not requiring a global periodicity assumption and allowing different microstructures
at various points within the macroscopic structure. Based on this method, Guedes [15]
pioneered a computational program that merges the AHM with the FEM to determine the
effective elastic moduli of composite materials, thereby advancing the practical applica-
tion of the AHM in engineering domains. Harsanyi [16] applied the AHM to solve the
equivalent properties of plate and shell structures with microstructures. Macedo et al. [17]
extended this theory to the failure judgment of composites. Dutra et al. [18] integrated the
AHM with commercial finite element software to compute the equivalent properties of
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materials, providing a comprehensive framework of the requisite procedures to further
facilitate the multidisciplinary application of the AHM across various engineering fields.
Wei [19] combined the AHM and the multiphase FEM to study the performance of 3D
braided composites, focused on exploring the influence of voids and interphase defects on
their effective thermal expansion coefficient.

In the performance prediction of woven composites, both Barile [20] and Holmes [21]
conducted relevant research on plain-weave composites. Axinte [22] established six differ-
ent models of satin-fabric-reinforced composites. Naylor [23] conducted tensile tests on
5-harness satin (5HS)-weave carbon fiber epoxy composites. Skinner [24] used the 5HS
weaving method to enhance carbon fiber/silicon carbide matrix composite (C/SiC) CMCs
and studied their nonlinear constitutive behavior considering damage. Alshahrani [25]
used frame tests to investigate the deformation mechanism of 8HS carbon/epoxy prepreg
under in-plane shear. Aghaei [26] experimentally compared the effects of plain, 5HS,
and 8HS weaving on the mechanical properties of glass fiber/epoxy composites. The
results showed a slight edge in the tensile modulus for the 8HS over the 5HS and plain
weave methods.

Considering the influence of temperature on the mechanical properties of materials,
Karpov [27] studied the mechanical properties of 4D C/C composites in the temperature
range of 20~2800 ◦C and provided the reasons why the mechanical properties of the studied
materials had a special temperature dependence. Priyanka [28] fabricated mixed carbon–
Kevlar fiber composites using plain and 2 × 2 twill weaves and tested them for their tensile
strength, compressive resistance, bending, and low-velocity impact. Cheng [29] studied the
mechanical behavior of plain-weave C/C composites at high temperatures. Skinner [30]
simulated the mechanical response of plain-weave (C/SiC) CMCs in the temperature
range from room temperature to 1200 ◦C. Petkov [31] studied the weight loss and damage
development of 8HS carbon-fiber-reinforced polyimide composites in high-temperature
(288 ◦C and 320 ◦C) environments in air. Siddgonde [32] studied the RVE model of 5HS
C/C composites and predicted their thermo-elastic properties at high temperatures but did
not consider the effect of the carbon fiber volume fraction on them. Xu [33] found through
experimental research that 8HS C/C composites treated at specific high temperatures
exhibit better overall performance.

In this paper, considering that there is still a gap in the research on the equivalent
of 8HS C/C composites related to temperature as well as the advantages of asymptotic
homogenization methods in predicting the performance of periodic composite materials,
we prepared 8HS C/C composites and conducted structural characterization. By combining
the asymptotic homogenization method (AHM) with the finite element method (FEM), we
calculated the elastic constants and thermal expansion coefficients of representative volume
element (RVE) models by varying carbon fiber volume fractions at different temperatures,
and we then explored the temperature dependence of the 8HS C/C composites properties.
Additionally, the effects of the 4HS and 8HS weaving methods on the equivalent elastic
constants of the composites were compared.

2. Asymptotic Homogenization Theory and Its Application

As a multi-scale analysis method, the asymptotic homogenization method [12,34]
encompasses two spatial scales: micro scale and macro scale. This technique views the
composite material as being composed of a repeated microstructure with a periodic and
high non-uniformity.

2.1. Equivalent Elastic Tensor Asymptotic Homogenization Equation

Assuming that Ω ⊂ R3 is a three-dimensional simply connected bounded field with a
perfectly smooth boundary, the thermo-mechanical coupling equilibrium of the structure in
this region is described by the relevant dynamic equation and the heat conduction equation.

∂σij

∂xj
= − fi (1)
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∂qi
∂xi

= 0 (2)

On the boundary ∂Ω, the displacement ui = 0, where, σij represents the stress acting
on Ω; fi is the force; xj is the macroscopic coordinate; and qi is thermal cycle vector. The
stress–strain relationship in linear thermo-mechanical problems can be expressed as

δij = Cijkl(εkl − εT
kl) (3)

The above formula is further expressed as

σij = Cijklεkl − βij∆T (4)

where βij = Cijkl · αkl ; Cijkl is the elastic constant tensor; αij is the CTE; εkl is the total strain;
εT

kl is thermal strain; T is the temperature field; the temperature difference is ∆T = T − T0;
and T0 is the initial temperature.

The expression of the thermal cycle tensor, qi, is as follows:

qi = −κij
∂T
∂xj

(5)

where κij is the heat conduction tensor. These coefficients follow symmetry, with Cijkl =
Cjikl = Cklij and βij = β ji.

The micro and macro scales are related by a very small positive number, ε. y =
(y1, y2, y3) is the microscale coordinate system, and x = (x1, x2, x3) is the macroscopic
coordinate system.

ε =
xi
yi

(6)

When ε → 0+ , heterogeneous macrostructures can be regarded as homogeneous
macrostructures.

In a two-scale system, all structural field variables, q, are functions of the macroscopic
coordinates x and microscopic coordinates y, as qε(x) = q(x, y). Its partial derivative with
respect to x is expressed as:

∂

∂xi
[q(x, y)] =

∂q
∂xi

+
1
ε

∂q
∂yi

(7)

Therefore, Equations (4) and (5) become (8) and (9), respectively.

σij(x, y) =
1
2

Cijkl(y)
{

∂uk(x, y)
∂xl

+
1
ε

∂uk(x, y)
∂yl

}
− βij(y)∆T(x, y) (8)

qi(x, y) = −κij(y)
∂T(x, y)

∂xj
(9)

The displacement and temperature are asymptotically expanded to an infinite series
with a small parameter, ε, as follows:

ui(x, y) = u(0)
i (x, y) + εu(1)

i (x, y) + ε2u(2)
i (x, y) + O(ε3) (10)

T(x, y) = T(0)(x, y) + εT(1)(x, y) + ε2T(2)(x, y) + O(ε3) (11)

Similarly, asymptotic expansions of stress and heat flow can be obtained, as follows:

σ
(n)
ij = Cijkl

(
∂u(n)

k
∂xl

+
∂u(n+1)

k
∂yl

)
− βij∆T(n), (n = 0, 1, 2 · · · ) (12)
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q(n)i = −κij

(
∂T(n)

∂xj
+

∂T(n+1)

∂yj

)
, (n = 0, 1, 2 · · · ) (13)

After a series of formula transformations, the governing equation of the thermo-elastic
problem can be expressed as [35]

∫
Ω

{
1
|Y|

∫
Y

Cijkl

[(
∂u(0)

k
∂xl

+
∂u(1)

k
∂yl

− αkl∆T

)
∂v
∂xj

]
dY

}
dΩ =

∫
Ω

fivdΩ +
∫

∂Ω

tivdΓ (14)

where Cijkl is the elastic constant tensor; αkl is the coefficient of thermal expansion; ∆T is
the temperature difference; fi and ti are the body force and the surface force, respectively;
vi is an arbitrary function; Y is the period of the function; and Γ is the boundary of the
region Ω.

The feature functions χkl
i (y) and Li(y) can be defined to represent the relationship

between u(0) and u(1):

u(1)
i (x, y) = −χkl

i (y)
∂u(0)

k (x)
∂xl

+ Li(y)T(x) (15)

Based on the asymptotic expansion method, the equivalent thermal performance
prediction formula of composite materials considering the thermo-mechanical coupling
effect is expressed as

CH
ijkl =

1
|Y|

∫
Y

(
Cijkl − Cijmn

∂χkl
m

∂yn

)
dY (16)

βij =
1
|Y|

∫
Y

(
Cijkl(y)αkl − Cijmn(y)

∂Lm(y)
∂yn

)
dv (17)

αH
kl = (CH

ijkl)
−1

βH
ij (18)

When the asymptotic homogenization method is used to predict the equivalent prop-
erties, the corresponding characteristic fields χkl

i (y) and Li(y) must be solved, but the
complex microstructure of the composite material makes it difficult to obtain to an analyt-
ical solution of the characteristic fields. Therefore, numerical methods such as the finite
element method were used to solve the characteristic fields required for the performance
prediction, and the equivalent properties of the composite material were calculated based
on the numerical solution of the characteristic fields.

Based on the characteristic displacement, the equivalent elastic tensor is re-expressed
as follows [36]:

CH
ijkl =

1
|Y|

∫
Y

Cijpq(ε
0(kl)
pq − ε

∗(kl)
pq )dY (19)

where ε
0(kl)
pq is the unit strain applied to the node and ε

∗(kl)
pq is the characteristic strain.

According to Sigmund’s work [37], the above formula can be written in matrix form
as follows:

[CH ] =
1
|Y|

∫
Y

([ε0]− [ε∗])
T
[C]([ε0]− [ε∗])dY (20)

where CH is the equivalent elastic tensor.
Based on the finite element discrete form, [ε] = [B][χ], [K] =

∫
Y [B]T [C][B]dY, and

[ f ] = [K][x]; [B] is the derivative matrix of the form function, [K] is the stiffness matrix;
and [ f ] is the force matrix. Then, we obtain the finite element form of the asymptotic
homogenization formula for the elasticity matrix [35].

[CH ] =
1
|Y| ([χ

0(ij)]− [χ∗(ij)])
T
([ f 0(kl)]− [ f ∗(kl)]) (21)
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where [χ0] is the displacement field generated by the unit prestrain field and [χ*] is the
characteristic displacement field obtained by solving the periodic boundary problem.

Similarly, [K][L] = [φα], [φα] =
∫

Y [B]T [C][α]dY, and [φL] = [K][L]; [B] is the deriva-
tive matrix of the form function; [K] is the stiffness matrix; and [φα] is the solution of the
case where all the nodal degrees of freedom are constrained and the load (−1K) is applied
at the nodes. Then, we obtain the finite element form of the asymptotic homogenization
formula for the thermoelastic constant [35].

[βH ] =
1
|Y| (χ

0(ij))
T
([φα]− [φL]) (22)

2.2. Periodic Boundary Condition

When applying the AHM to predict the equivalent mechanical properties of composite
materials, the whole structure of the material is not required. A representative region that
contains all the essential details of the microscopic structure is used. There is a boundary
between the representative region and the surrounding periodic region of the composite.
Therefore, when considering the boundary of the selected representative region, appropriate
boundary conditions must be introduced to achieve the numerical homogenization of the
effective mechanical properties of the composite. A previous study [38] has pointed out
that when predicting the equivalent properties of composites, boundary conditions that
satisfy Hill’s energy law [39] must be selected, including a uniform stretching boundary, a
linear displacement boundary, and periodic boundary. However, the linear displacement
boundary condition usually leads to higher results, while the uniform stretching boundary
condition is the opposite and is a better choice than the periodic boundary condition.

For an RVE area ω, the border ∂ω is divided into two parallel parts of the relative ∂ω+

and ∂ω−, and the two parts meet as ∂ω = ∂ω+ ∪ ∂ω− and 0 = ∂ω+ ∩ ∂ω−. Any material
node on the surface ∂ω+ can find a corresponding point on the surface ∂ω−,and the normal

vector on both surfaces satisfies
⇀

n+ = −
⇀

n−. By coupling the structural field values of the
corresponding nodes, the general form of the equation used is

uk+
i − uk−

i = uRP
i (23)

where superscript k+ and k− represent the corresponding set of nodes on two parallel
surfaces of the cell, and uRP

i is the perturbation applied to the reference point. At the
same time, it is necessary to classify the nodes on the boundary so that the boundary node
traversal is not repeated.

2.3. Finite Element Implementation of AHM

(1) Calculate the elasticity matrix.

Step 1: Construct and apply a six-node displacement field [χ0(kl)] on the RVE and
solve to obtain the node reaction force [ f 0(kl)].

Step 2: Apply the node reaction field [ f 0(kl)] and the periodic boundary conditions
(Equation (23)) on the RVE. Apply a fixed constraint to one vertex of the model. Then, solve
to obtain the characteristic displacement field [χ∗(kl)].

Step 3: Apply the characteristic displacement field [χ∗(kl)] on the RVE and solve to
obtain the nodal reaction force [ f ∗(kl)].

Step 4: Calculate the elastic constants, CH , from Equation (21).

(2) Calculate the CTE.

Step 1: Apply thermal loads (−1K) on each node with the boundary condition that all
the nodal degrees of freedom are constrained and solve to obtain the corresponding nodal
reaction force [φα].

Step 2: Apply the nodal reaction force [φα] and periodic boundary conditions (Equation
(23)) on the RVE and solve to obtain the characteristic displacement field [L].
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Step 3: Apply the characteristic displacement field [L] on each node and solve to obtain
the corresponding nodal reaction force [φL].

Step 4: Calculate the effective thermoelastic constant, βH , from Equation (22).
Step 5: Calculate the effective CTE from Equation (18).

2.4. Verification of Asymptotic Homogenization

In order to explore the correctness of the calculation model, the same model was used
in this section, and the size of RVE and grid were adjusted according to the size given in
the literature.

Since it is not common to study the elastic properties of 8HS C/C composites with
detailed model data, the correctness of the calculation model was explored using a 4HS
C/C composite instead. The model building and property prediction methods used in this
study were adopted to predict the elastic properties of 4-harness satin-weave-reinforced
composites (4HS), and a single-cell model was established according to the sizes in the
literature [40]. The adopted carbon fiber was T800-12K. The matrix was a shape-memory
resin. The volume fractions of the fiber and resin were 45% and 55%, respectively.

The calculation results of this article and the experimental results of the reference [40]
are shown in Table 1. The results in the reference study were obtained by experiments,
and the experimental results were affected by the test method and material defects. The
calculation in this paper did not take into account other adverse factors affecting the
performance. The calculated performance was ideal, the overall value was close, and the
calculation error was less than 6%, so it was considered that the calculation accuracy of this
method was reasonable.

Table 1. Comparison between the calculation results in this paper and the experimental results
of others.

Present Work Reference [40] Relative Error

Longitude direction (X) 27.35 27.5 0.55%
Latitude direction (Y) 24.43 25.9 5.67%

3. Preparation and Characterization of 8HS C/C Composites
3.1. Preparation of 8HS C/C Composites

T700-12K carbon fiber was used as the raw material to prepare 8HS (shown in
Figure 1) prefabricated carbon cloth. After impregnating the prefabricated resin, the
material was densified to around 1.7 g/cm3 using alternating graphitization and chemical
vapor deposition (CVD) technology to obtain a two-dimensional C/C composite material.
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3.2. Observation of the Structure of 8HS C/C Composites

To enhance the accuracy of predicting the elastic coefficients of the composites,
it was imperative to thoroughly characterize both the composite sample and its mi-
crostructure dimensions, ensuring that the established RVE model could precisely forecast
material properties.

Figure 2a shows the prepared 8HS C/C composites. Due to the processing technology,
the material surface was enriched with deposited graphite and visible crack defects. The
structural details of the XY plane are shown in the Figure 2b. In both the X and Y directions,
weaving was performed every seven fibers, and the relative positions of the weaving nodes
were regularly staggered. The XY plane’s weaving structure had an obvious periodicity, as
shown in Figure 2.
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To characterize its microstructure, we cut a small piece of sample from the whole
sample and observed its structure and related dimensions by combining the use of both a
camera and a metallographic optical microscope. As shown in Figure 3, the dimensions
of longitudinal fibers and latitudinal fibers are characterized by examining magnified
interweaving points of the fibers.
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As shown in Figure 3, we randomly selected and measured the fiber width in the X
and Y directions and the distance between two adjacent fibers in ten groups. The fiber
width and axial spacing were obtained.

Figure 4 is a local observation map of the thickness direction (Z). We obtained the
thickness of the fiber and the thickness of the single-ply structure by the same method, and
we took a weighted average of the data. Detailed data are shown in below (Table 2 and
Figure 5).
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Table 2. Fiber parameters.

Item Data

Size of RVE L × W × H 9.6 × 9.6 × 0.72 mm3

Bundle width a 1.08 mm
Bundle thickness b 0.24 mm

Interfascicular distance d 1.2 mm
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3.3. Curve Shape and Cross Section Equation of Fiber Bundle

To determine the detailed fiber curve equation for the subsequent finite element
model, a periodic image of a single fiber was extracted from the local observation map
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in the thickness direction (Z), as shown in Figure 6, and the edges of the fiber part of the
image were smoothed before fitting the curve.
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Figure 6. Simplification of fiber bundle and curve fitting.

Considering the impact of the complexity of the fitted polynomial form on the subse-
quent modeling, we found that the middle part of the fiber was approximately straight due
to the vertical fiber compression above and the pulling effect at both ends of the fiber itself,
while the two ends of the fiber were raised due to the interlacing with the vertical fibers.
The fiber linear equation based on the observation results was simplified, the middle part
was treated as a straight line, the fiber junction points were fit using the cos function, and
the middle part was taken as the endpoint tangent of the cos function, as shown in Figure 7.
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For the cross-sectional shape of the fibers, based on experimental observations and
relevant descriptions in the literature [41,42], we assumed that the fiber cross-section was
elliptical. Combining the observed fiber width and thickness data, we took the fiber width
as the major axis of the ellipse and the fiber thickness as the minor axis of the ellipse.

Based on the node coordinates (x, y, z) and the fiber equation (see Figure 7), we
obtained the midpoint coordinates (y0, z0) of the fiber cross-section (elliptical surface)
where the node was located. Then, we input y, z, y0, z0 into Equation (24) to determine the
element properties that the node was in contact with.
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Taking the X-direction fiber as an example, its transverse cross section was parallel to
the YZ plane, and the equation of cross-section can be expressed as

y2( a
2
)2 +

z2(
b
2

)2 ≤ 1 (24)

4. Construction of RVE Model

The representative volume element requires the model size to be the minimum size
that includes the microstructural features. The size of the RVE must be small in relation
to the overall size and should contain macroscopically uniform typical structures. A
reasonable RVE model is of great significance to saving computing resources and reducing
computing time.

4.1. Modelling Strategy

According to the characterization results, the corresponding modeling program was
proposed.

The construction of RVE model was divided into two steps:
Step 1: The matrix finite element model conforming to the size conditions of RVE was

established to obtain the relevant information of the model;
Step 2: The model nodes and units were distinguished, and the type of each component

unit was determined (see Figure 8).
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According to steps shown in Figure 9, the structural distribution of each component
necessary for the establishment of the finite element model can be obtained. In order to
generate the finite element model of the composite RVE, a regular hexahedron composed
of the matrix material was first generated in the program, and the hexahedron grid was
divided into a discrete finite element model according to the discrete number S. Finally, the
matrix finite element model was judged by the linear equation of the fiber bundle and the
control coefficient of the fiber cross-section, and the final RVE model was obtained.
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4.2. Component Material Parameters

The RVE model consisted of two parts: the fiber bundle and the matrix. The fiber bun-
dle was composed of two phases of carbon fiber and the matrix, which can be considered as
a linear elastic transversely isotropic material. The carbon matrix was an isotropic material.
The elastic constant of the fiber bundle was calculated by the following micromechanical
formula [43]:

E11 = Vc f Ec f 11 + (1 − Vc f )Em

E22 = E33 = Em
1−
√

Vc f (1−Em/Ec f 22)

G12 = G13 = Gm
1−
√

Vc f (1−Gm/Gc f 12)

G23 = Gm
1−
√

Vc f (1−Gm/Gc f 23)

υ12 = υ13 = Vc f υc f 12 + (1 − Vc f )υm

υ23 = E22
2G23

− 1

(25)

where Vc f is the volume fraction of carbon fiber, and Vc f = 0.742 was taken from Ref. [44];
subscript c f is the correlation properties of the carbon fiber, and subscript m is the correla-
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tion properties of the carbon matrix. E11 and E22 are the elastic modulus of the carbon fiber
bundle in the longitudinal and transverse directions, respectively, and G12 and G23 are the
shear modulus of the carbon fiber in the 1–2 and 2–3 planes, respectively. v12 is Poisson’s
ratio of the carbon fiber bundle.

The mechanical properties of the carbon fiber bundles were calculated by substituting
the data from Tables 3 and 4 into Equation (25). These material parameters of the carbon
fiber (Table 3), the carbon matrix (Table 4), and the carbon fiber bundle (Tables 5 and 6) are
listed in Tables 3–6, respectively.

Here, unless otherwise stated, the relevant material performance parameters of each
component used in all calculations were as follows:

Table 3. Mechanical properties of carbon fiber [44].

T (K) E11 (GPa) E22 (GPa) = E33
(GPa)

G12 (GPa) = G13
(GPa) G23 (GPa) v12 = v13

300 233.13 23.11 8.97 8.23 0.200
500 232.82 23.08 8.96 8.22 0.200
700 231.79 22.98 8.92 8.18 0.200
900 231.17 22.92 8.89 8.16 0.200

1100 230.78 22.88 8.88 8.15 0.200
1300 229.36 22.74 8.83 8.10 0.200
1500 227.15 22.52 8.74 8.02 0.200
1700 221.81 21.99 8.53 7.83 0.200
1900 210.63 20.88 8.10 7.44 0.200
2100 186.41 18.48 7.17 6.58 0.200
2300 157.30 15.59 6.05 5.55 0.200

Table 4. Carbon matrix properties at high temperature [44,45].

T (K) E (GPa) v α (10−6/K) CP (J/kg/K) k (W/m/K)

300 11 0.2 1.20 726.4 150.5
500 11.08 0.2 1.45 1200.5 118.5
700 11.3 0.2 1.85 1532.0 88.4
900 11.55 0.2 2.15 1703.5 73.6

1100 11.85 0.2 2.36 1820.1 63.9
1300 12.42 0.2 2.54 1939.4 56.7
1500 13.54 0.2 2.7 2003.5 51.2
1700 15.01 0.2 2.86 2040.2 47.8
1900 16.19 0.2 3.02 2075.8 45.4
2100 17.03 0.2 3.18 2106.0 43.6
2300 16.97 0.2 3.34 2138.6 42.9

Table 5. Calculated mechanical properties of carbon fiber bundle.

T (K) E11 (GPa) E22 = E33 (GPa) G12 = G13 (GPa) G23 (GPa) v12 = v13 v23

300 175.82 20.05 8.54 7.96 0.20 0.26
500 175.61 20.07 8.55 7.96 0.20 0.26
700 174.90 20.10 8.55 7.95 0.20 0.26
900 174.51 20.17 8.55 7.96 0.20 0.27

1100 174.30 20.27 8.58 7.99 0.20 0.27
1300 173.39 20.39 8.61 8.00 0.20 0.27
1500 172.04 20.62 8.65 8.03 0.20 0.28
1700 168.46 20.66 8.59 7.97 0.20 0.30
1900 160.46 20.07 8.29 7.69 0.20 0.31
2100 142.71 18.26 7.48 6.92 0.20 0.32
2300 121.09 15.77 6.41 5.92 0.20 0.33
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Table 6. Thermal properties of carbon fiber bundle [44].

T (K) α11 (10−6/K) α22 (10−6/K) CP (J/kg/K) k11 (W/m/K) k22 (W/m/K)

300 −0.69 5.38 1673.95 186.85 192.01
500 0.38 6.24 1868.90 173.54 179.92
700 0.98 6.45 2032.00 160.77 165.98
900 1.44 6.58 2134.36 152.60 155.76

1100 1.78 6.54 2199.52 147.55 148.47
1300 2.02 6.50 2237.26 139.71 139.05
1500 2.24 6.49 2261.47 132.08 130.35
1700 2.42 6.51 2258.19 126.86 124.48
1900 2.59 6.51 2251.48 122.95 120.12
2100 2.68 6.52 2239.38 119.26 116.29
2300 2.67 6.49 2221.45 115.84 113.23

4.3. Determination of RVE Parameters

To construct an RVE model, the model size is the minimum size that includes mi-
crostructural characteristics. In order to predict the material properties accurately and
save on computational costs, it is very necessary to adopt the appropriate RVE model
parameters. The number of equidistant scattered points, S, determines the mesh size of the
RVE and affect the accuracy of the model calculation. In this section, the rationality of the
size of the RVE model and the influence of S on the prediction results are discussed through
the quantitative prediction of the mechanical properties, and the subsequent calculation of
the RVE model is determined.

4.3.1. Size Sensitivity Analysis

The size of the RVE model affects the calculation accuracy, and it is necessary to
explore the impact of the RVE size on the simulation results and its impact patterns.

The model shown in Figure 10 is the basic model, in which the reinforcement fiber and
graphite matrix account for 50% each. In order to investigate the influence of different RVE
sizes on the calculation results, the basic model was extended according to the fiber tiling
direction and the vertical direction, respectively, and the RVE models with different sizes
were generated.
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Figure 10. Basic computational RVE model.

In order to study the influence of the RVE size, RVEs with different sizes were con-
structed by increasing x and y times in the fiber lay-up (X and Y direction) and z times in the
vertical direction (Z direction) to study the sensitivity of the model parameters (Figure 11).
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According to composite theory, 8HS C/Cs are orthogonal anisotropic materials, and
the elasticity coefficient matrix of these materials includes nine independent parameters.
The elastic constants matrix and the CTE matrix are given below.

CH =



C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

C55 0
C66

 (26)

α =

α11
α22

α33

 (27)

Below are the results of the calculation for a temperature of 300 K and a number of
discrete points, S, of 160.

CH =



49.481 4.172 4.062 0 0 0
49.479 4.061 0 0 0

15.767 0 0 0
5.984 0 0

5.984 0
6.449

 (28)

α =

0.288
0.287

4.177

 (29)

From Equation (26), it can be seen that C11 ≈ C22, C13 ≈ C23, C44 ≈ C55, and α11 ≈ α22.
The analysis suggests that although there were no isotropic planes in the three orthogonal
elastic performance symmetry planes of the 8HS C/C composites, the fiber bundles in the X
and Y directions (1 and 2 directions, respectively) were woven in the same way. Meanwhile,
considering that the performance of woven composites is mainly influenced by the fiber
volume fraction and the weaving method in the structure [1], the same weaving method and
carbon fiber volume fraction resulted in highly similar cross-sectional structures and similar
performance values in the X and Y directions [32]. To avoid repetition, the subsequent
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computational analyses will only show the effect of each factor on the elastic constants
C11, C12, C13, C33, C44, C66 and the CTE α11, α33.

Table 7 shows the calculation results of the RVE extended model shown in Figure 11.
Although the variation in RVE dimensions in all three directions had an impact on the
calculated results, compared with the mean value, the largest difference in the elastic tensor
components appeared in the C33 of model XI, with a maximum value of 0.026 GPa and a
relative error of 0.163%. The maximum difference between the elastic tensor of model I and
model XI was 0.062 GPa. Through the comparison, it can be seen that whether increasing
the number of basic units along X, Y, or Z direction or increasing the number of the basic
unit in three directions at the same time, the effect on the elastic tensor was small, and
the calculation results of the basic units were reliable. Considering both computational
accuracy and cost, the size of the basic model (shown in Figure 10) was determined as the
RVE size for the subsequent calculations.

Table 7. Elastic coefficient matrix of the extended RVE model.

Number x y z C11 C12 C13 C33 C44 C66

I 0 0 0 49.482 4.172 4.062 15.767 6.449 5.984
II 1 0 0 49.483 4.174 4.067 15.788 6.449 5.988
III 2 0 0 49.484 4.174 4.069 15.795 6.449 5.989
IV 0 1 0 49.484 4.174 4.067 15.788 6.449 5.986
V 0 2 0 49.485 4.174 4.069 15.795 6.449 5.987
VI 0 0 1 49.486 4.175 4.073 15.807 6.449 5.990
VII 0 0 2 49.488 4.176 4.076 15.821 6.449 5.992
VIII 1 1 0 49.486 4.175 4.073 15.808 6.449 5.990
IX 1 0 1 49.487 4.176 4.076 15.818 6.449 5.992
X 0 1 1 49.488 4.176 4.075 15.818 6.449 5.991
XI 1 1 1 49.489 4.176 4.078 15.829 6.449 5.993

Average 49.486 4.175 4.072 15.807 6.449 5.990
Standard Error 0.00181 9.89 × 10−4 0.00394 0.01489 3.76 × 10−5 0.00232

4.3.2. Finite Element Mesh Sensitivity Analysis

To explore the influence of the number of equidistant scattered points S (Figure 12)
on the prediction of the material properties, models with the same material components
but different element numbers were established to study the sensitivity of the mesh size.
The dimensions in the X and Y directions of all the models were 9.6 mm and 9.6 mm, but
the dimensions in the Z direction were affected by the mesh size. The elliptic fiber had a
major axis of 1.08 mm and a minor axis of 0.24 mm. Theoretically, the volume fraction of
the fiber in the X and Y directions was 25%. The influence of S on the volume fraction of
each component in the models and the mesh number of models are shown in Table 8.

Table 8. Model parameters for mesh sensitivity analysis.

Model
Number

Number of
Equidistant

Scattered
Points S

Mesh
Size

X-Direction Fiber Y-Direction Fiber Carbon Matrix
Mesh
TotalNumber

of Mesh Vol.% Number
of Mesh Vol.% Number

of Mesh Vol.%

A 80 0.12 12,112 31.54 12,112 31.54 14,176 36.92 38,400
C 100 0.096 19,628 24.54 22,988 28.74 37,384 46.73 80,000
E 120 0.08 36,608 28.25 36,704 28.32 56,288 43.43 129,600
G 140 0.0686 49,324 25.17 52,276 26.67 94,400 48.16 196,000
I 160 0.06 77,232 25.14 77,264 25.15 152,704 49.71 307,200
J 170 0.0565 89,598 25.84 83,502 24.08 173,700 50.09 346,800
K 180 0.0533 109,684 26.04 104,972 24.92 206,544 49.04 421,200
L 200 0.048 153,104 25.52 153,136 25.52 293,760 48.96 600,000
M 240 0.04 260,000 25.08 260,000 25.08 516,800 49.85 1,036,800
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Figure 12. The construction of different equidistant scattered points S. Where, purple represents the
graphite matrix, red represents the X-direction fiber bundle, and blue represents the Y-direction fiber
bundle.

It can be seen from Figure 13 that with the increase in the number of equidistant
scattered points, S, the number of elements in the RVE model increased nearly exponentially.
In addition, the number of equidistant scattered points S had an effect on the volume
proportion of each component of the material, resulting in fluctuations in the performance
prediction results. After S = 160, the volume proportion of each component tended to be
stable, and the performance prediction results converged. Considering the computational
costs, model I with S = 160 was selected as the subsequent performance prediction
RVE model.
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5. Results and Discussion

In this section, the effects of the temperature and fiber volume fraction on the elastic
properties of the materials are discussed. In order to ensure the partial change in the fiber
shape and eliminate the influence of the fiber structure on the performance prediction, the
RVE model with different fiber volume fractions was established by adding a single layer
of the matrix. In addition, the effects of the 4HS and 8HS braiding methods on the material
properties are also discussed.

5.1. Effect of Temperature on Thermo-Mechanical Properties of Composites
5.1.1. Elasticity Coefficient

We calculated the material properties by taking a temperature point with a spacing
of 200 K within the temperature range from room temperature (300 K) to ultra-high tem-
perature (2300 K) to calculate the material properties, and we discuss the effect of the
temperature on the material properties based on the results. The following is the effect of
the temperature on models containing different volume fractions of carbon fibers.

Within the temperature range from 300 K to 2300 K, the elastic matrix components of
the composite materials with different carbon fiber contents showed an increasing trend
followed by decreasing trend with temperature.

As shown in Figure 14, for the models with different volume fractions of carbon fiber
(Volc f ), CH

11 stayed in the range of 300–1000 K and increased significantly in the range of
1000–1700 K. After that, its value decreased significantly with the increase in temperature,
and it was ultimately lower than its room-temperature performance. In addition, at the
same temperature, the performance of high Volc f was higher than that of low Volc f , and the
curve trend was more consistent with the carbon fiber performance curve. This is because
the fiber was the main bearer of the composite material under tensile conditions, and the
matrix mainly played the role of transferring the load. In addition, since the carbon fiber
bundle is a transversely isotropic material, the fiber bundle perpendicular to the direction
of load mainly participated in the load bearing with the transverse performance. The axial
properties of the composites were mainly dependent on the properties of the carbon fiber
bundles and affected by the matrix. In addition, an increase in the proportion of matrix
phase increased the influence of the matrix on the composite materials. Therefore, compared
to the sharp decline in performance of the composite materials with Volc f = 54.86% after
1700 K, the rate of declining for Volc f = 30.18% slowed down.
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As shown in Figure 15, the variation law of CH
12, CH

13, and CH
33 with temperature was

similar, there was no significant change within 500 K, the performance increased gently in
the temperature range of 500–1300 K, the performance increased sharply in the temperature
range of 1300–1900 K, and it reached the maximum value around 1900 K, after which the
performance declined. CH

33 is numerically different from CH
12 and CH

13, and the curve trend
of the three with temperature changes was similar to graphite. In addition, the decline rate
of the three after 1900 K changed to become affected by the graphite properties and fiber
volume fraction, and the degree of the influence was different. It can be seen from the curve
intersection position that CH

33 was more affected by the graphite properties. This is because
from the perspective of the Z direction, the connection between the reinforced fiber and
the graphite matrix in the composite material was similar to a series structure. According
to the theory of micromechanics [46], if the bulk fraction of a reinforced fiber is not large
enough, it will not have much of an effect on the improvement in the transverse properties
of the composite, which is mainly determined by the matrix phase.
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Figure 15. The influence curve of temperature change on (a) CH
12, (b) CH

13, and (c) CH
33.

Figure 16 shows that the shear modulus of the composite material under temperature
load presented a similar change rule to the elastic coefficients of graphite. Based on the the-
ory of micromechanics [46], the shear properties of composite materials are mainly affected
by the matrix, and the fiber properties have no obvious effect on the shear properties of
composite materials under the conventional fiber bulk ratio.
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Figure 16. The influence curve of temperature change on (a) CH
44 and (b) CH

66.

5.1.2. CTE

Figure 17 shows that both α11 and α33 increased with the increase in temperature, and
the change curves showed obvious nonlinear characteristics. The increasing trend of α11
with increasing temperature tended to be gentle, while the increasing trend of α33 with
increasing temperature had obvious stage characteristics. The growth rate of α33 before
1000 K was obviously higher than that after 1000 K. In addition, Volc f had little effect on
α11, but α33 was greatly affected by Volc f .
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Figure 17. The influence curve of temperature change on (a) α11 and (b) α33.

Figure 18 shows a comparison between the CTE of the 8HS C/C composites calculated
using the asymptotic homogenization method in this paper and the CTE of the 5HS C/C
composites calculated using the FEM method in Ref. [32]. Due to the different volume
fractions of the carbon fiber bundles used in this paper and in Ref. [32] (74.2% in this paper
and 80% in Ref. [32]) as well as the different performances of the carbon fiber bundles and
the different volume fractions of the carbon fibers woven into the C/C composites (not
provided in Ref. [32]), the weaving methods were also different (8HS in this paper and 5HS
in Ref. [32]). Therefore, it was not possible to quantitatively evaluate the accuracy of the
calculation results in this paper based on the literature results, but we can consider that
the calculation results in present work conformed to the trend of CTE of 2D woven C/C
composites changing with temperature.
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Figure 18. Comparison CTE of 8HSC/Cs between this paper and Ref. [32]. (a,b) Where, (a) α11 and
(b) α33.

5.2. Effect of Volume Fraction of Carbon Fiber on Thermo-Mechanical Properties of Composites
5.2.1. Elastic Coefficient

To discuss the effect of Volc f on the material properties, ten different models of Volc f
varying from 30% to 55% were established, and the increase in Volc f was not uniform. The
following is the law of the material-related properties changing with Volc f under different
temperature conditions.

With the increase in Volc f , the elastic properties of the 8HS C/C composites under
different temperature conditions showed nearly linear changes, but the changes were
not consistent.

Among them, Figure 19 shows that CH
11 increased nearly linearly with the increase in

Volc f at different temperatures, but the performance growth trend was different at different
temperatures. In the range of 300–1700 K, the performance increased nearly linearly with
the increase in Volc f , and the curve slope values were similar. CH

11 was mainly affected
by the properties of the carbon fiber, and the axial elastic coefficients of the carbon fiber
were much larger than those of graphite, resulting in an increase in CH

11 with the increase
in Volc f at different temperatures. However, after 1700 K, due to the decline in the carbon
fiber properties, the growth trend of CH

11 with Volc f slowed down. In addition, CH
11 at the

temperature of 1700 K and 1900 K was close in value, but due to the difference in the slope
of the near-linear curve, the two curves intersected with the increase in the fiber volume
fraction, and the intersection point appeared at about Volc f = 30%, after which the value
peak appeared at the temperature point of 1700 K.

Different from CH
11, which as mainly affected by the performance of the carbon fiber,

CH
12, CH

13, and CH
33 mainly depended on the performance of the graphite matrix, which

resulted in their values and growth rates being much smaller than those of CH
11. At the

same time, due to the difference in the performance of the reinforced phase and the matrix
phase at the ultra-high temperature, the growth rates of CH

12, CH
13, and CH

33 slowed down
around 1700 K, showing a downward trend. As a result, at 2300 K, CH

12 and CH
13 were almost

unaffected by Volc f , while CH
33 decreased with the increase in Volc f .

The influence curves of Volc f on CH
44 and CH

66 at different temperatures (Figure 20) were
similar to those of CH

33, but there were differences in the values and individual temperatures.
It can be seen from the slope of the near-linear curve that compared with CH

33, the trend of
CH

44 decreasing with the increase in Volc f at 2300 K was slowed down. This was due to the
fact that CH

44, which is related to the shear properties of the composite, was more affected
by the matrix graphite, and although the performance of the carbon fiber bundle decreased
sharply by more than 30% in the temperature range from 300 K to 2300 K, the value of CH

44
only decreased by about 3.4%, and the same CH

66 only decreased by about 2.4%.
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Figure 19. The influence curve of changes in Volc f on (a) CH
11, (b) CH

12, (c) CH
13, and (d) CH

33.
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Figure 20. The influence curve of Volc f change on (a) CH
44 and (b) CH

66.

5.2.2. CTE

From Figure 21, we can see that the change in Volc f had no obvious effect on α11. With
the increase in temperature, the influence curve tended to be more horizontal. α11 was most
significantly affected by Volc f at a temperature of 300 K, and it decreased with the increase
in Volc f from 0.438 × 10−6 to 0.261 × 10−6. It is predicted that α11 will approach zero with
the continuous increase in Volc f . α33 increased significantly with the increase in Volc f , and
the impact of changes in Volc f at different temperatures was different.
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Figure 21. The influence curve of changes in Volc f on (a) α11 and (b) α33.

5.3. Effect of Weaving Mode on Elastic Properties of Composites

In this section, we discuss the effect of different satin weaving methods on the elastic
coefficient of the C/C composites by establishing an RVE with the same fiber bundle size
and containing the same fiber volume fraction (35.5%, 46.42%) for the different weaving
methods (4HS and 8HS).

The temperature influence curves of the C/C composites corresponding to 4HS and
8HS are illustrated in Figures 22 and 23. It can be seen that the values of CH

11 and CH
12

of the 4HS C/C composites were smaller than those of the 8HS C/C composites, and
there was no significant difference in CH

13 and CH
33 between the two; similarly, there was no

obvious change in CH
44 and CH

66 related to shear performance. It can be considered that the
elastic properties of the 8HS C/C composites were slightly better than that of the 4HS C/C
composites, which is consistent with the experiments in Xu’s work [33].
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Figure 22. Elastic properties of 4HS C/C composites and 8HS C/C composites. The composites were
affected by different temperatures, with Volc f = 30.50%. (a–f) Where, (a) CH

11, (b) CH
12, (c) CH

13, (d) CH
33,

(e) CH
44, and (f) CH

66.
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The analysis shows that the horizontal properties of the braided fiber composites were
mainly affected by the fiber properties. For the 4HS C/C composites, the interweaving
frequency of warp and zonal fiber bundles was larger, and the bending portion of the
fiber bundles was higher. Therefore, the elastic properties of the composite in the X and
Y directions were slightly lower than those of the 8HS C/C composites. However, the
Z-direction properties of the composites mainly depended on the properties of the graphite
matrix, and the fiber weaving mode had no obvious effect on it. Similarly, the shear
properties of the composite also depended on the properties of the graphite matrix, and the
carbon fiber phase only had a significant effect on the shear properties of the composite
when the fiber proportion was extremely high. Therefore, when Volc f was 35.5% and 46.2%,
there was no significant difference in the values of CH

44 and CH
66 of the 4HS C/C composites

and 8HS C/C composites.

6. Conclusions

In this paper, the microstructure of 8HS C/C composites was characterized, and the
distribution and structure size of the carbon fiber phase were obtained. In addition, RVE
models with different volume fractions of carbon fibers were constructed. The elasticity
coefficient and the CTE of 8HS C/C composites at various temperatures were predicted
using asymptotic homogenization and the finite element method. The effects of temperature
and the material content on the properties of the 8HS C/C composites were discussed,
and the dependence of the elastic constants and the CTE of the 8HS C/C composites on
temperature was investigated. Furthermore, the properties of 4HS and 8HS composites
with the same fiber content were studied. The main conclusions are as follows:

(1) The temperature change had a significant effect on the elasticity constants and the
CTE of the composite. The rule of CH

11 affected by temperature showed that there was
no obvious change at a temperature of 500 K. With the increase in temperature, the
value of CH

11 first increased and then decreased under the influence of the carbon fiber
and graphite, and it reached an extreme value at 1500 K. The other stiffness matrix
elements were more obviously affected by the graphite matrix, and the temperature
of the extreme value was different. α11 and α33 also increased with the increase in
temperature, but the behavior of α11 with temperature presented obvious nonlinearity,
while the value of α33 increased with temperature approximately in two linear stages
with a boundary of 1000 K.

(2) The influence of Volc f on the elastic constants and CTE was not similar, and CH
11

showed a nearly linear increase with the increase in Volc f in all the temperature
ranges studied. The other elastic coefficients first increased and then decreased with
the increase in temperature and Volc f . α11 was almost unaffected by changes in Volc f
except at a temperature of 300 K, and α33 exhibited a nearly linear increase with
increasing Volc f .

(3) Regarding the influence of the weaving mode on the material properties, it was
observed that the elastic properties of the 4HS C/C composites were slightly lower
compared to those of the 8HS C/C composites due to the more frequent interweaving
and a higher proportion of bent fiber regions, while the shear properties showed no
significant difference.

Author Contributions: Conceptualization, C.R. and L.L.; investigation, C.R. and H.M.; methodology,
L.L.; writing—original draft preparation, C.R.; writing—review and editing, C.R., H.M. and L.L.;
formal analysis, C.R., J.L. and L.Z.; supervision, J.L. and L.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: The corresponding author Lisheng Liu acknowledges the support from the National
Natural Science Foundation of China (No. 11972267).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Materials 2024, 17, 1284 26 of 27

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wielhorski, Y.; Mendoza, A.; Rubino, M.; Roux, S. Numerical Modeling of 3D Woven Composite Reinforcements: A Review.

Compos. Part A 2022, 154, 106729. [CrossRef]
2. Das, T.K.; Ghosh, P.; Das, N.C. Preparation, Development, Outcomes, and Application Versatility of Carbon Fiber-Based Polymer

Composites: A Review. Adv. Compos. Hybrid Mater. 2019, 2, 214–233. [CrossRef]
3. Sayam, A.; Rahman, A.N.M.M.; Rahman, M.S.; Smriti, S.A.; Ahmed, F.; Rabbi, M.F.; Hossain, M.; Faruque, M.O. A Review on

Carbon Fiber-Reinforced Hierarchical Composites: Mechanical Performance, Manufacturing Process, Structural Applications and
Allied Challenges. Carbon Lett. 2022, 32, 1173–1205. [CrossRef]

4. Chen, W.; Wang, L.; Zhang, H.; Ji, N.; Li, G.; Ma, J. Test of Mechanical Properties of C/SiC Composites at Elevated Temperature
Air. J. Natl. Univ. Def. Technol. China 2021, 43, 26–32.

5. Cheng, T.; Zhang, R.; Pei, Y.; He, R.; Fang, D.; Yang, Y. Flexural Properties of Carbon-Carbon Composites at Temperatures up to
2600 ◦C. Mater. Res. Express 2019, 6, 085629. [CrossRef]

6. Tran, V.P.; Brisard, S.; Guilleminot, J.; Sab, K. Mori–Tanaka Estimates of the Effective Elastic Properties of Stress-Gradient
Composites. Int. J. Solids Struct. 2018, 146, 55–68. [CrossRef]

7. Gommers, B.; Verpoest, I.; Van Houtte, P. The Mori-Tanaka Method Applied to Textile Composite Materials. Acta Mater. 1998, 46,
2223–2235. [CrossRef]

8. Pahr, D.H.; Bohm, H.J. Assessment of Mixed Uniform Boundary Conditions for Predicting the Mechanical Behavior of Elastic and
Inelastic Discontinuously Reinforced Composites. Comput. Model. Eng. Sci. 2008, 34, 1–10.

9. Salviato, M.; Kirane, K.; Esna Ashari, S.; Bažant, Z.P.; Cusatis, G. Experimental and Numerical Investigation of Intra-Laminar
Energy Dissipation and Size Effect in Two-Dimensional Textile Composites. Compos. Sci. Technol. 2016, 135, 67–75. [CrossRef]

10. Galati, M.; Viccica, M.; Minetola, P. A Finite Element Approach for the Prediction of the Mechanical Behaviour of Layered
Composites Produced by Continuous Filament Fabrication (CFF). Polym. Test. 2021, 98, 107181. [CrossRef]

11. Srivastava, A.K.; Pathak, V.K.; Singh, R.; Kumar, R.; Kumar, I.; Agrawal, M.; Saxena, A. A Hierarchical Multiscale Modelling
Approach to Characterize the Elastic Response of Layered Graphene-Reinforced 4D-Carbon Carbon Composite. Int. J. Interact.
Des. Manuf. 2023. [CrossRef]

12. Bakhvalov, N.S.; Panasenko, G. Homogenisation: Averaging Processes in Periodic Media; Kluwer Academic Publishers: Dordrecht,
The Netherlands, 1989.

13. Bensoussan, A.; Lions, L.; Papanicolaou, G. Asymptotic Analysis for Periodic Structures; North Holland Publ.: Amsterdam,
The Netherlands, 1978.

14. Sanchez-Palencia, E.; Zaoui, A. Homogenization Techniques for Composite Media; Springer: Berlin/Heidelberg, Germany, 1987.
15. Guedes, J.M.; Kikuchi, N. Preprocessing and Postprocessing for Materials Based on the Homogenization Method with Adaptive

Finite Element Methods. Comput. Methods Appl. Mech. Eng. 1990, 2, 143–198. [CrossRef]
16. Hassani, B.; Hinton, E. Homogenization and Structural Topology Optimization; Springer: London, UK, 1999.
17. Macedo, R.; Ferreira, R.; Guedes, J.M.; Donadon, M.V. Intraply Failure Criterion for Unidirectional Fiber Reinforced Composites

by Means of Asymptotic Homogenization. Compos. Struct. 2017, 159, 335–349. [CrossRef]
18. Dutra, T.A.; Ferreira, R.T.L.; Resende, H.B.; Guimarães, A.; Guedes, J.M. A Complete Implementation Methodology for Asymptotic

Homogenization Using a Finite Element Commercial Software: Preprocessing and Postprocessing. Compos. Struct. 2020,
245, 112305. [CrossRef]

19. Wei, K.; Li, J.; Shi, H.-B.; Tang, M. Numerical Evaluation on the Influence of Void Defects and Interphase on the Thermal
Expansion Coefficients of Three-Dimensional Woven Carbon/Carbon Composites. Compos. Interface 2020, 27, 873–892. [CrossRef]

20. Barile, C.; Kannan, V.P.; Locasale, A.; Casavola, C. About Shear Properties of Plain Weave Fabric CFRP at High Temperatures:
Analytical and Experimental Approaches. Appl. Compos. Mater. 2023, 30, 753–771. [CrossRef]

21. Holmes, J.; Sommacal, S.; Das, R.; Stachurski, Z.; Compston, P. Characterisation of Off-Axis Tensile Behaviour and Mesoscale
Deformation of Woven Carbon-Fibre/PEEK Using Digital Image Correlation and X-ray Computed Tomography. Compos. Part B
Eng. 2022, 229, 109448. [CrossRef]

22. Axinte, A.; Ungureanu, D.; T, ăranu, N.; Bejan, L.; Isopescu, D.N.; Lupăs, teanu, R.; Hudis, teanu, I.; Ros, ca, V.E. Influence of
Woven-Fabric Type on the Efficiency of Fabric-Reinforced Polymer Composites. Materials 2022, 15, 3165. [CrossRef] [PubMed]

23. Naylor, R.; Hild, F.; Fagiano, C.; Hirsekorn, M.; Renollet, Y.; Tranquart, B.; Baranger, E. Mechanically Regularized FE DIC for
Heterogeneous Materials. Exp. Mech. 2019, 59, 1159–1170. [CrossRef]

24. Skinner, T.; Rai, A.; Chattopadhyay, A. Multiscale Ceramic Matrix Composite Thermomechanical Damage Model with Fracture
Mechanics and Internal State Variables. Compos. Struct. 2020, 236, 111847. [CrossRef]

25. Alshahrani, H. Influence of Pre-Consolidation Parameters on the Preforming Deformation Mechanisms of Polymeric Composites.
Mater. Today Proc. 2020, 28, 879–882. [CrossRef]

26. Aghaei, M.; Shokrieh, M.M.; Mosalmani, R. Effects of the Addition of Carbon Nanofibers on Mechanical Properties of Woven
Glass/Epoxy Composites with Different Weave Patterns. J. Ind. Text. 2022, 51 (Suppl. 2), 3094S–3118S. [CrossRef]

https://doi.org/10.1016/j.compositesa.2021.106729
https://doi.org/10.1007/s42114-018-0072-z
https://doi.org/10.1007/s42823-022-00358-2
https://doi.org/10.1088/2053-1591/ab23c9
https://doi.org/10.1016/j.ijsolstr.2018.03.020
https://doi.org/10.1016/S1359-6454(97)00296-6
https://doi.org/10.1016/j.compscitech.2016.08.021
https://doi.org/10.1016/j.polymertesting.2021.107181
https://doi.org/10.1007/s12008-023-01553-9
https://doi.org/10.1016/0045-7825(90)90148-F
https://doi.org/10.1016/j.compstruct.2016.08.027
https://doi.org/10.1016/j.compstruct.2020.112305
https://doi.org/10.1080/09276440.2019.1707586
https://doi.org/10.1007/s10443-023-10114-y
https://doi.org/10.1016/j.compositesb.2021.109448
https://doi.org/10.3390/ma15093165
https://www.ncbi.nlm.nih.gov/pubmed/35591497
https://doi.org/10.1007/s11340-019-00529-9
https://doi.org/10.1016/j.compstruct.2019.111847
https://doi.org/10.1016/j.matpr.2019.12.316
https://doi.org/10.1177/15280837221094225


Materials 2024, 17, 1284 27 of 27

27. Karpov, A.P.; Mostovoy, G.E. High-Temperature Mechanical Properties of Carbon and Composite Carbon-Carbon Materials.
Inorg. Mater. Appl. Res. 2015, 6, 454–460. [CrossRef]

28. Priyanka, P.; Mali, H.S.; Dixit, A. Carbon–Kevlar Intraply Hybrid Fabric Polymer Composites: Mechanical Performance. Iran.
Polym. J. 2023, 32, 633–645. [CrossRef]

29. Cheng, T. Understanding the Ultra-High-Temperature Mechanical Behaviors of Advanced Two-Dimensional Carbon-Carbon
Composites. Ceram. Int. 2020, 46, 21395–21401. [CrossRef]

30. Skinner, T.; Chattopadhyay, A. Multiscale Temperature-Dependent Ceramic Matrix Composite Damage Model with Thermal
Residual Stresses and Manufacturing-Induced Damage. Compos. Struct. 2021, 268, 114006. [CrossRef]

31. Petkov, V.I.; Joffe, R.; Fernberg, P. Thermal Oxidative Aging of Satin Weave and Thin-ply Polyimide Composites. Polym. Compos.
2022, 43, 2615–2627. [CrossRef]

32. Siddgonde, N.; Ghosh, A. Thermo-Mechanical Modelling of 5-Harness Satin Weave C/C Composites at High Temperature. Mater.
Today Proc. 2019, 18, 4011–4020. [CrossRef]

33. Xu, L.; Yang, W.; Chen, Z.; Zhang, Y. Preparation and Properties of High Performance Two-Dimensional Carbon/Carbon
Composites. Acta Mater. Compos. Sin. 2016, 33, 2877–2883.

34. Chen, D.; Liu, L.; Chu, L.; Liu, Q. Analytical Solution of Thermo–Mechanical Properties of Functionally Graded Materials by
Asymptotic Homogenization Method. Materials 2022, 15, 3073. [CrossRef]

35. Zhang, Y.; Shang, S.; Liu, S. A Novel Implementation Algorithm of Asymptotic Homogenization for Predicting the Effective
Coefficient of Thermal Expansion of Periodic Composite Materials. Acta Mech. Sin. 2017, 33, 368–381. [CrossRef]

36. Andreassen, E.; Andreasen, C.S. How to Determine Composite Material Properties Using Numerical Homogenization. Comput.
Mater. Sci. 2014, 83, 488–495. [CrossRef]

37. Sigmund, O. Materials with Prescribed Constitutive Parameters: An Inverse Homogenization Problem. Int. J. Solids Struct. 1994,
31, 2313–2329. [CrossRef]

38. Hazanov, S.; Huet, C. Order Relationships for Boundary Conditions Effect in Heterogeneous Bodies Smaller than the Representa-
tive Volume. J. Mech. Phys. Solids 1994, 42, 1995–2011. [CrossRef]

39. Hill, R. Elastic Properties of Reinforced Solids: Some Theoretical Principles. J. Mech. Phys. Solids 1963, 11, 357–372. [CrossRef]
40. Kang, X.; Fang, G.; Zhang, D.; Chen, W. Experimental Study of Tensile Mechanical Properties of 4-Harness Satin Weave Reinforced

Shape Memory Polymer Composites. Aerspace Shanghai 2016, 33, 63–70.
41. Pannier, Y.; Foti, F.; Gigliotti, M. High Temperature Fatigue of Carbon/Polyimide 8-Harness Satin Woven Composites. Part

I: Digital Image Correlation and Micro-Computed Tomography Damage Characterization. Compos. Struct. 2020, 244, 112255.
[CrossRef]

42. Sun, Y.; Zeng, H.; Xin, J. Thermal and Mechanical Properties of Plain Woven Ceramic Matrix Composites by the Imaged-Based
Mesoscopic Model. Heat Transfer Eng. 2023, 44, 2062–2078. [CrossRef]

43. Chamis, C. Mechanics of Composites Materials: Past, Present, and Future. Composites 1989, 1, 3–14.
44. Ai, S.; Fu, H.; He, R.; Pei, Y. Multi-Scale Modeling of Thermal Expansion Coefficients of C/C Composites at High Temperature.

Mater. Des. 2015, 82, 181–188. [CrossRef]
45. Zhao, L. Evaluating Elastic Modulus of Materials at Special Environments Based on the Split Ring Method and the Relative

Method. Master’s Thesis, China Building Materials Academy, Beijing, China, 2016.
46. Autar, K.K. Mechanics of Composite Materials, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1134/S2075113315050044
https://doi.org/10.1007/s13726-023-01150-3
https://doi.org/10.1016/j.ceramint.2020.05.237
https://doi.org/10.1016/j.compstruct.2021.114006
https://doi.org/10.1002/pc.26561
https://doi.org/10.1016/j.matpr.2019.07.343
https://doi.org/10.3390/ma15093073
https://doi.org/10.1007/s10409-016-0618-7
https://doi.org/10.1016/j.commatsci.2013.09.006
https://doi.org/10.1016/0020-7683(94)90154-6
https://doi.org/10.1016/0022-5096(94)90022-1
https://doi.org/10.1016/0022-5096(63)90036-X
https://doi.org/10.1016/j.compstruct.2020.112255
https://doi.org/10.1080/01457632.2022.2164689
https://doi.org/10.1016/j.matdes.2015.05.061

	Introduction 
	Asymptotic Homogenization Theory and Its Application 
	Equivalent Elastic Tensor Asymptotic Homogenization Equation 
	Periodic Boundary Condition 
	Finite Element Implementation of AHM 
	Verification of Asymptotic Homogenization 

	Preparation and Characterization of 8HS C/C Composites 
	Preparation of 8HS C/C Composites 
	Observation of the Structure of 8HS C/C Composites 
	Curve Shape and Cross Section Equation of Fiber Bundle 

	Construction of RVE Model 
	Modelling Strategy 
	Component Material Parameters 
	Determination of RVE Parameters 
	Size Sensitivity Analysis 
	Finite Element Mesh Sensitivity Analysis 


	Results and Discussion 
	Effect of Temperature on Thermo-Mechanical Properties of Composites 
	Elasticity Coefficient 
	CTE 

	Effect of Volume Fraction of Carbon Fiber on Thermo-Mechanical Properties of Composites 
	Elastic Coefficient 
	CTE 

	Effect of Weaving Mode on Elastic Properties of Composites 

	Conclusions 
	References

