Research Progress and the Prospect of Damping Magnesium Alloys
Abstract
:1. Introduction
2. Damping Magnesium Alloy System
2.1. Mg-Zr Damping Magnesium Alloys
2.2. Mg-Al Damping Magnesium Alloys
2.3. Mg-Ni Damping Magnesium Alloys
2.4. Mg-Li Damping Magnesium Alloys
2.5. Mg-RE Damping Magnesium Alloys
2.6. Mg-Si Damping Magnesium Alloys
2.7. Mg-Cu-Mn Damping Magnesium Alloys
3. High-Damping Magnesium-Based Composite Material
4. High-Damping Porous Magnesium
5. Summary and Outlook
- Compared with magnesium alloys, magnesium matrix composites are more able to meet the requirements of high performance and high damping. The development of damping magnesium alloys has made some progress, and many damping magnesium alloys have been put into use. Just as magnesium matrix composites are added with reinforcing phases, a new damping mechanism is introduced to balance the mechanical properties and damping properties of the alloy. How to introduce a new damping mechanism to make the damping modulating process flexible should be the next development trend of damping magnesium alloys. By adding new strengthening phases and alloying elements, the damping mechanism, besides dislocation damping and interface damping, is introduced to fundamentally solve the contradiction between damping performance and mechanical properties. It is bound to be an important research direction of high-performance and high-damping magnesium alloy materials in the future.
- Porous magnesium alloy material is also a material with great development potential. Overcoming the inflammable and oxidizable characteristics of magnesium alloy and developing industrial flame-retardant porous magnesium alloys are important issues for its application. At the same time, developing more sophisticated pore size and porosity control technology for porous magnesium alloys is also one of the ways to develop porous magnesium alloys. To further realize the micron and nano research of porous magnesium alloys is an important symbol of the maturity of porous magnesium alloy technology research.
- To maximize the advantages of vibration and noise reduction of magnesium alloys, it is also a new direction of concern to design product shapes and processing methods that are more conducive to vibration and noise reduction.
- The damping mechanism of magnesium alloys is still unclear. At present, most of the research experiments on damping mechanisms are only in the stage of modeling and analysis. There are many damping mechanisms, but they are not perfect. Even if the G-L dislocation model is recognized as correct, it only considers the influence of dislocation itself on the damping capacity and has not been subdivided into the specific influence of dislocation type. The influence mechanism of spiral dislocation on damping is still unclear. How to find the optimal dislocation type to further improve the damping is very worthy of study and discussion.
- Most of the damping magnesium alloys currently used are alloyed to enhance mechanical properties. However, there are still a few technologies that can be used in the preparation of magnesium alloys. Diversifying the preparation of damping magnesium alloys and reducing the preparation cost are important issues for the use of metal magnesium alloying.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shimizu, T.; Funakoshi, H.; Kobayashi, T.; Sugimoto, K. Reduction of noise and vibration in drum type washing machine using Q-learning. Control. Eng. Pract. 2022, 122, 105095. [Google Scholar] [CrossRef]
- Driscoll, M.M.; Donovan, J.B. Vibration-Induced Phase Noise: It Isn’t Just About the Oscillator. In Proceedings of the 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, Geneva, Switzerland, 29 May–1 June 2007; pp. 535–540. [Google Scholar]
- Stansfeld, S.A.; Clark, C.; Cameron, R.M.; Alfred, T.; Head, J.; Haines, M.M.; van Kamp, I.; van Kempen, E.; Lopez-Barrio, I. Aircraft and road traffic noise exposure and children’s mental health. J. Environ. Psychol. 2009, 29, 203–207. [Google Scholar] [CrossRef]
- Batessova, F.; Omirbay, R.; Sattarova, G.; Zholmagambetov, N.; Zholmagambetov, S.; Dostayeva, A.; Suleimenov, N.; Medeubayev, N. Reducing industrial noise by the use of damping alloys when manufacturing mining equipment parts. Heliyon 2023, 9, E17152. [Google Scholar] [CrossRef]
- Schaller, R. 8.7 High Damping Materials. Mater. Sci. Forum 2001, 366–368, 621–634. [Google Scholar] [CrossRef]
- Peltier, L.; Lohmuller, P.; Meraghni, F.; Patoor, E.; Laheurte, P.; Berveiller, S. Damping Behavior in a Wide Temperature Range of FeMn-Like High Entropy Shape Memory Alloys. Shape Mem. Superelast. 2022, 8, 335–348. [Google Scholar] [CrossRef]
- Gholami-Kermanshahi, M.; Wu, Y.-Y.; Lange, G.; Chang, S.-H. Effect of alloying elements (Nb, Ag) on the damping performance of Cu-Al-Mn shape memory alloys. J. Alloys Compd. 2023, 930, 167438. [Google Scholar] [CrossRef]
- Saedi, S.; Acar, E.; Raji, H.; Saghaian, S.E.; Mirsayar, M. Energy damping in shape memory alloys: A review. J. Alloys Compd. 2023, 956, 170286. [Google Scholar] [CrossRef]
- Mohamed, A.K.; Zadorozhnyy, M.Y.; Mansouri, Y.; Golovin, I.S. Magnetostriction and damping of forced vibrations in Fe-Cr-Mo-Al alloy. Mater. Lett. 2022, 314, 131863. [Google Scholar] [CrossRef]
- Nishiyama, K.; Matsui, R.; Ikeda, Y.; Niwa, S.; Sakaguchi, T. Damping properties of a sintered Mg-Cu-Mn alloy. J. Alloys Compd. 2003, 355, 22–25. [Google Scholar] [CrossRef]
- Najafi, S.; Mahmudi, R. Enhanced microstructural stability and mechanical properties of the Ag-containing Mg-Gd-Y alloys. J. Magnes. Alloys 2020, 8, 1109–1119. [Google Scholar] [CrossRef]
- Trang, T.T.T.; Zhang, J.H.; Kim, J.H.; Zargaran, A.; Hwang, J.H.; Suh, B.C.; Kim, N.J. Designing a magnesium alloy with high strength and high formability. Nat. Commun. 2018, 9, 2522. [Google Scholar] [CrossRef]
- Jamel, M.M.; Lopez, H.; Schultz, B.; Otieno, W. The Effect of Solidification Rate on the Microstructure and Mechanical Properties of Pure Magnesium. Metals 2021, 11, 1264. [Google Scholar] [CrossRef]
- Mishra, S.K.; Manakari, V.; Parande, G.; Matli, P.R.; Gupta, M. Development of Ultralight Binary Mg-Li Alloys: Enhancing Damping, Ductility, and Ultimate Compressive Strength beyond 2000 MPa. J. Mater. Eng. Perform. 2022, 32, 2723–2734. [Google Scholar] [CrossRef]
- Friedrich, H.E.; Mordike, B.L. Magnesium Technology—Metallurgy, Design Data, Applications; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Chowdhury, A.S.M.F.; Mari, D.; Schaller, R. The effect of the orientation of the basal plane on the mechanical loss in magnesium matrix composites studied by mechanical spectroscopy. Acta Mater. 2010, 58, 2555–2563. [Google Scholar] [CrossRef]
- Lambri, O.A.; Riehemann, W.; Salvatierra, L.M.; García, J.Á. Effects of precipitation processes on damping and elastic modulus of WE 43 magnesium alloy. Mater. Sci. Eng. A—Struct. Mater. Prop. Microstruct. Process. 2004, 373, 146–157. [Google Scholar] [CrossRef]
- Ritchie, I.G.; Pan, Z.L. High-damping metals and alloys. Metall. Trans. A 1991, 22, 607–616. [Google Scholar] [CrossRef]
- Kaya, A.; Çelik Kurtulan, Ç.; Türe, Y.; Ataman, A.; Arkin, E.; Palumbo, G.; Sorgente, D.; Turan, D. New Magnesium Alloys with High Elastic Modulus. In Proceedings of the International Materials Technologies and Metallurgy Conference Istanbul 2017, Istanbul, Turkey, 26–27 October 2017. [Google Scholar]
- Prasad, S.V.S.; Prasad, S.B.; Verma, K.; Mishra, R.K.; Kumar, V.; Singh, S. The role and significance of Magnesium in modern day research—A review. J. Magnes. Alloys 2022, 10, 1–61. [Google Scholar] [CrossRef]
- Pandey, R.; Tekumalla, S.; Gupta, M. Magnesium-iron micro-composite for enhanced shielding of electromagnetic pollution. Compos. Part B Eng. 2019, 163, 150–157. [Google Scholar] [CrossRef]
- Abdullaev, R.N.; Agazhanov, A.S.; Khairulin, A.R.; Samoshkin, D.A.; Stankus, S.V. Thermophysical Properties of Magnesium in Solid and Liquid States. J. Eng. Thermophys. 2022, 31, 384–401. [Google Scholar] [CrossRef]
- Gusieva, K.; Davies, C.H.J.; Scully, J.R.; Birbilis, N. Corrosion of magnesium alloys: The role of alloying. Int. Mater. Rev. 2015, 60, 169–194. [Google Scholar] [CrossRef]
- Kang, D.H.; Park, S.S.; Kim, N.J. Development of creep resistant die cast Mg-Sn-Al-Si alloy. Mater. Sci. Eng. A 2014, 590, 60–65. [Google Scholar] [CrossRef]
- Lentz, M.; Risse, M.; Schaefer, N.; Reimers, W.; Beyerlein, I.J. Strength and ductility with {10͞11} − {10͞12} double twinning in a magnesium alloy. Nat. Commun. 2016, 7, 11068. [Google Scholar] [CrossRef]
- Jayasathyakawin, S.; Ravichandran, M.; Baskar, N.; Anand Chairman, C.; Balasundaram, R. Mechanical properties and applications of Magnesium alloy—Review. Mater. Today Proc. 2020, 27, 909–913. [Google Scholar] [CrossRef]
- Mallick, P.K. 2—Advanced materials for automotive applications: An overview. In Advanced Materials in Automotive Engineering; Rowe, J., Ed.; Woodhead Publishing: Sawston, UK, 2012; pp. 5–27. [Google Scholar] [CrossRef]
- Fereshteh-Saniee, F.; Fakhar, N.; Karami, F.; Mahmudi, R. Superior ductility and strength enhancement of ZK60 magnesium sheets processed by a combination of repeated upsetting and forward extrusion. Mater. Sci. Eng. A 2016, 673, 450–457. [Google Scholar] [CrossRef]
- Qi, M.F.; Kang, Y.L.; Yan, Y.; Zhu, G.M.; Liao, W.N. Comparison of Microstructure and Mechanical Properties of AZ91D Alloy Formed by Rheomolding and High-Pressure Die Casting. J. Mater. Eng. Perform. 2015, 24, 3826–3834. [Google Scholar] [CrossRef]
- Riehemann, W. Damping in Magnesium and Magnesium Alloys; Wiley: Hoboken, NJ, USA, 2006; pp. 657–664. [Google Scholar] [CrossRef]
- Gupta, M.; Wong, W.L.E. Magnesium-based nanocomposites: Lightweight materials of the future. Mater. Charact. 2015, 105, 30–46. [Google Scholar] [CrossRef]
- Sugimoto, K.; Niiya, K.; Okamoto, T.; Kishitake, K. A Study of Damping Capacity in Magnesium Alloys. Trans. Jpn. Inst. Met. 1977, 18, 277–288. [Google Scholar] [CrossRef]
- Golovin, I.S.; Chubov, D.G.; Berezner, A.D.; Shcherbakov, A.A.; Schlagel, D.L.; Chang, H.W. Magnetostriction and damping of forced vibrations in Fe-Mo single and polycrystal alloys. J. Alloys Compd. 2022, 925, 166786. [Google Scholar] [CrossRef]
- Prasad, B. Critical assessment of strengthening mechanism of magnesium alloys: Review. Adv. Mater. Proc. 2017, 2, 734–744. [Google Scholar]
- Rokhlin, L.L.; Lukyanova, E.A.; Dobatkina, T.V.; Tarytina, I.E.; Korol’kova, I.G. Mechanical Properties of Mg-Dy-Sm-Zr Magnesium Alloys. Russ. Metall. (Met.) 2018, 2018, 619–624. [Google Scholar] [CrossRef]
- Alam, M.E.; Pal, S.; Decker, R.; Ferreri, N.C.; Knezevic, M.; Beyerlein, I.J. Rare-earth- and aluminum-free, high strength dilute magnesium alloy for Biomedical Applications. Sci. Rep. 2020, 10, 15839. [Google Scholar] [CrossRef] [PubMed]
- Nouha, L. Alloying Elements of Magnesium Alloys: A Literature Review. In Magnesium Alloys Structure and Properties; Tomasz, T., Paweł, J., Eds.; IntechOpen: Rijeka, Croatia, 2021; p. 9. [Google Scholar] [CrossRef]
- Pekguleryuz, M. Alloying Behavior of Magnesium and Alloy Design; Woodhead Publishing: Sawston, UK, 2013; pp. 152–196. [Google Scholar] [CrossRef]
- Kiani, F.; Lin, J.; Vahid, A.; Munir, K.; Wen, C.; Li, Y. Mechanical and corrosion properties of extruded Mg-Zr-Sr alloys for biodegradable implant applications. Mater. Sci. Eng. A 2022, 831, 142192. [Google Scholar] [CrossRef]
- Mahjoub, R.; Stanford, N. The electronic origins of the “rare earth” texture effect in magnesium alloys. Sci. Rep. 2021, 11, 14159. [Google Scholar] [CrossRef] [PubMed]
- Imandoust, A.; Barrett, C.D.; Al-Samman, T.; Inal, K.A.; El Kadiri, H. A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys. J. Mater. Sci. 2017, 52, 1–29. [Google Scholar] [CrossRef]
- Granato, A.; Lücke, K. Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies. J. Appl. Phys. 1956, 27, 789–805. [Google Scholar] [CrossRef]
- Granato, A.; Lücke, K. Theory of Mechanical Damping Due to Dislocations. J. Appl. Phys. 1956, 27, 583–593. [Google Scholar] [CrossRef]
- Tehranchi, A.; Yin, B.; Curtin, W.A. Solute strengthening of basal slip in Mg alloys. Acta Mater. 2018, 151, 56–66. [Google Scholar] [CrossRef]
- Wang, J.; Wan, Z.; Dang, C.; Zou, Y.; Wang, J.; Pan, F. Research Progress on the Damping Mechanism of Magnesium Alloys. Materials 2023, 16, 7318. [Google Scholar] [CrossRef]
- Prasad, D.S.; Shoba, C.; Varma, K.R.; Khurshid, A. Influence of wire EDM parameters on the damping behaviour of A356.2 aluminum alloy. J. Alloys Compd. 2015, 646, 257–263. [Google Scholar] [CrossRef]
- Motoyama, T.; Watanabe, H.; Ikeo, N.; Mukai, T. Mechanical and damping properties of equal channel angular extrusion-processed Mg-Ca alloys. Mater. Lett. 2017, 201, 144–147. [Google Scholar] [CrossRef]
- Zhou, G.; Yang, Y.; Sun, L.; Liu, J.; Deng, H.; Wen, C.; Wei, G.; Jiang, B.; Peng, X.; Pan, F. Tailoring the microstructure, mechanical properties and damping capacities of Mg-4Li-3Al-0.3Mn alloy via hot extrusion. J. Mater. Res. Technol. 2022, 19, 4197–4208. [Google Scholar] [CrossRef]
- Horita, Z.; Matsubara, K.; Makii, K.; Langdon, T.G. A two-step processing route for achieving a superplastic forming capability in dilute magnesium alloys. Scr. Mater. 2002, 47, 255–260. [Google Scholar] [CrossRef]
- Wan, D.Q.; Wang, H.B.; Ye, S.T.; Hu, Y.L.; Hu, J.J. High damping and good mechanical properties combined in as-cast Mg-0.6%Zr-Zn ternary alloys. Int. J. Cast Met. Res. 2019, 32, 262–265. [Google Scholar] [CrossRef]
- Gandel, D.S.; Easton, M.A.; Gibson, M.A.; Abbott, T.; Birbilis, N. The influence of zirconium additions on the corrosion of magnesium. Corros. Sci. 2014, 81, 27–35. [Google Scholar] [CrossRef]
- Bhattacharjee, T.; Mendis, C.L.; Sasaki, T.T.; Ohkubo, T.; Hono, K. Effect of Zr addition on the precipitation in Mg-Zn-based alloy. Scr. Mater. 2012, 67, 967–970. [Google Scholar] [CrossRef]
- Munir, K.; Lin, J.; Wen, C.; Wright, P.F.A.; Li, Y. Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications. Acta Biomaterialia 2020, 102, 493–507. [Google Scholar] [CrossRef]
- Niu, R.-L.; Yan, F.-J.; Wang, Y.-S.; Duan, D.-P.; Yang, X.-M. Effect of Zr content on damping property of Mg-Zr binary alloys. Mater. Sci. Eng. A 2018, 718, 418–426. [Google Scholar] [CrossRef]
- Wang, L.; Zhong, B.; Liang, T.; Xing, B.; Zhu, Y. Atmospheric thorium pollution and inhalation exposure in the largest rare earth mining and smelting area in China. Sci. Total Environ. 2016, 572, 1–8. [Google Scholar] [CrossRef]
- Yi, J.; Ning, Z.; Sun, J. Effect of grain size on the microstructure and mechanical properties of Mg-4Y-3Nd-0.5Zr alloy. Int. J. Mater. Res. 2014, 105, 607–609. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Chen, M.-S.; Lin, L.-H.; Lin, M.-H.; Wu, C.-Z.; Ou, K.-L.; Yu, C.-H. Effect of heat treatment on the microstructures and damping properties of biomedical Mg-Zr alloy. J. Alloys Compd. 2011, 509, 813–819. [Google Scholar] [CrossRef]
- Nagarajan, D. Quantitative measurements of strain-induced twinning in Mg, Mg-Al and Mg-Zn solid solutions. Mater. Sci. Eng. A 2022, 860, 144292. [Google Scholar] [CrossRef]
- Powell, B.R.; Krajewski, P.E.; Luo, A.A. Chapter 4—Magnesium alloys for lightweight powertrains and automotive structures. In Materials, Design and Manufacturing for Lightweight Vehicles, 2nd ed.; Mallick, P.K., Ed.; Woodhead Publishing: Sawston, UK, 2021; pp. 125–186. [Google Scholar] [CrossRef]
- Tahreen, N.; Zhang, D.F.; Pan, F.S.; Jiang, X.Q.; Li, D.Y.; Chen, D.L. Strengthening mechanisms in magnesium alloys containing ternary I, W and LPSO phases. J. Mater. Sci. Technol. 2018, 34, 1110–1118. [Google Scholar] [CrossRef]
- Wan, D.; Wang, H.; Ye, S.; Hu, Y.; Li, L. The damping and mechanical properties of magnesium alloys balanced by aluminum addition. J. Alloys Compd. 2019, 782, 421–426. [Google Scholar] [CrossRef]
- Shimizu, M.; Takeuchi, H. Damping capacity of Mg-Al and Mg-Li-Al alloy castings. Int. J. Cast Met. Res. 2016, 10, 159–163. [Google Scholar] [CrossRef]
- Kumar, A.; Meenashisundaram, G.K.; Manakari, V.; Parande, G.; Gupta, M. Lanthanum effect on improving CTE, damping, hardness and tensile response of Mg-3Al alloy. J. Alloys Compd. 2017, 695, 3612–3620. [Google Scholar] [CrossRef]
- Ma, H.; Wang, J. Effects of Y content on microstructure, mechanical and damping properties of Mg-Al-Y alloys. Mater. Res. Express 2021, 8, 066507. [Google Scholar] [CrossRef]
- Jun, J.-H.; Moon, J.-H. Effect of Ca addition on the damping capacity of Mg-Al-Zn casting alloys. Met. Mater. Int. 2015, 21, 780–783. [Google Scholar] [CrossRef]
- Jun, J.-H. Damping behavior of Mg-Zn-Al casting alloys. Mater. Sci. Eng. A 2016, 665, 86–89. [Google Scholar] [CrossRef]
- Hu, X.-S.; He, X.-D.; Zheng, M.-Y.; Wu, K. Effect of small tensile deformation on damping capacities of Mg-1%Al alloy. Trans. Nonferrous Met. Soc. China 2010, 20, s444–s447. [Google Scholar] [CrossRef]
- Nayeb-Hashemi, A.A.; Clark, J.B. The Mg-Ni (Magnesium-Nickel) system. Bull. Alloy Phase Diagr. 1985, 6, 238–244. [Google Scholar] [CrossRef]
- Santosh, S.; Kevin Thomas, J.; Rajkumar, K.; Sabareesh, A. Effect of Ni and Mn additions on the damping characteristics of Cu-Al-Fe based high temperature shape memory alloys. J. Alloys Compd. 2022, 924, 166258. [Google Scholar] [CrossRef]
- Radhamani, R.; Balakrishnan, M. NiTi shape memory alloy: Unraveling the role of internal friction in passive damping—A review. Mater. Today Commun. 2023, 37, 107276. [Google Scholar] [CrossRef]
- Wan, D.; Wang, J.; Wang, G.; Chen, X.; Linlin; Feng, Z.; Yang, G. Effect of Mn on damping capacities, mechanical properties, and corrosion behaviour of high damping Mg-3 wt.%Ni based alloy. Mater. Sci. Eng. 2008, 494, 139–142. [Google Scholar]
- Hu, X.S.; Zhang, Y.K.; Zheng, M.Y.; Wu, K. A study of damping capacities in pure Mg and Mg-Ni alloys. Scr. Mater. 2005, 52, 1141–1145. [Google Scholar] [CrossRef]
- Wan, D.Q.; Wang, J.C.; Wang, G.F.; Lin, L.; Feng, Z.G.; Yang, G.C. Effect of eutectic phase on damping and mechanical properties of as-cast Mg-Ni hypoeutectic alloys. Trans. Nonferrous Met. Soc. China 2009, 19, 45–49. [Google Scholar] [CrossRef]
- Schaller, R. Metal matrix composites, a smart choice for high damping materials. J. Alloys Compd. 2003, 355, 131–135. [Google Scholar] [CrossRef]
- Ren, L.B.; Quan, G.F.; Xu, Y.G.; Yin, D.D.; Lu, J.W.; Dang, J.T. Effect of heat treatment and pre-deformation on damping capacity of cast Mg-Y binary alloys. J. Alloys Compd. 2017, 699, 976–982. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, X.; Ding, W. The influence of heat treatment on damping response of AZ91D magnesium alloy. Mater. Sci. Eng. A 2005, 392, 150–155. [Google Scholar] [CrossRef]
- Pandya, A.; Shah, M.; Pramod, B.; Srivastava, N. A Review on Heat Treatment of Magnesium Alloys and Its Effect on Various Properties. In Advances in Material Science and Metallurgy; Springer: Singapore, 2023; pp. 77–87. [Google Scholar]
- Lu, R.; Jiao, K.; Li, N.; Hou, H.; Wang, J.; Zhao, Y. Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys. J. Magnes. Alloys 2022, in press. [Google Scholar] [CrossRef]
- Masing, G.; Tammann, G.A. Metallographische Mitteilungen aus dem Institut für physikalische Chemie der Universität Göttingen. LXXV. Über das Verhalten von Lithium zu Natrium, Kalium, Zinn, Cadmium und Magnesium. Z. Für Anorg. Und Allg. Chem. 1910, 67, 183–199. [Google Scholar] [CrossRef]
- Cain, T.W.; Labukas, J.P. The development of β phase Mg-Li alloys for ultralight corrosion resistant applications. npj Mater. Degrad. 2020, 4, 17. [Google Scholar] [CrossRef]
- Freeth, W.E.; Raynor, G.V. The Systems Magnesium-Lithium and Magnesium-Lithium-Silver. J. Inst. Metals 1954, 82, 575–580. [Google Scholar]
- Pavlic, O.; Ibarra-Hernandez, W.; Valencia-Jaime, I.; Singh, S.; Avendaño-Franco, G.; Raabe, D.; Romero, A.H. Design of Mg alloys: The effects of Li concentration on the structure and elastic properties in the Mg-Li binary system by first principles calculations. J. Alloys Compd. 2017, 691, 15–25. [Google Scholar] [CrossRef]
- Rahulan, N.; Gopalan, S.; Kumaran, S. Mechanical behavior of Mg-Li-Al alloys. Mater. Today Proc. 2018, 5, 17935–17943. [Google Scholar] [CrossRef]
- Sahu, B.R. Electronic structure and bonding of ultralight LiMg. Mater. Sci. Eng. B 1997, 49, 74–78. [Google Scholar] [CrossRef]
- Janovská, M.; Minárik, P.; Sedlák, P.; Seiner, H.; Knapek, M.; Chmelík, F.; Janeček, M.; Landa, M. Elasticity and internal friction of magnesium alloys at room and elevated temperatures. J. Mater. Sci. 2018, 53, 8545–8553. [Google Scholar] [CrossRef]
- Wang, J.-F.; Xu, D.-D.; Lu, R.-P.; Pan, F.-S. Damping properties of as-cast Mg-xLi-1Al alloys with different phase composition. Trans. Nonferrous Met. Soc. China 2014, 24, 334–338. [Google Scholar] [CrossRef]
- Qian, B.-Y.; Miao, W.; Qiu, M.; Gao, F.; Hu, D.-H.; Sun, J.-F.; Wu, R.-Z.; Krit, B.; Betsofen, S. Influence of Voltage on the Corrosion and Wear Resistance of Micro-Arc Oxidation Coating on Mg-8Li-2Ca Alloy. Acta Metall. Sin. (Engl. Lett.) 2019, 32, 194–204. [Google Scholar] [CrossRef]
- Saito, N.; Mabuchi, M.; Nakanishi, M.; Kubota, K.; Higashi, K. The aging behavior and the mechanical properties of the Mg-Li-Al-Cu alloy. Scr. Mater. 1997, 36, 551–555. [Google Scholar] [CrossRef]
- Acikgoz, S.; Kurnaz, S.C. The Effects of Individual Addition of Sn, Nd, and Ca on the Microstructure, Mechanical Properties, and Corrosion Behavior of the Mg-Li-Al Alloy. Int. J. Met. 2023, 17, 1580–1595. [Google Scholar] [CrossRef]
- He, Y.; Peng, C.; Feng, Y.; Wang, R.; Zhong, J. Effects of alloying elements on the microstructure and corrosion behavior of Mg-Li-Al-Y alloys. J. Alloys Compd. 2020, 834, 154344. [Google Scholar] [CrossRef]
- Song, J.-M.; Wen, T.-X.; Wang, J.-Y. Vibration fracture properties of a lightweight Mg-Li-Zn alloy. Scr. Mater. 2007, 56, 529–532. [Google Scholar] [CrossRef]
- Yang, X.; Jin, Y.; Wu, R.; Wang, J.; Wang, D.; Ma, X.; Hou, L.; Serebryany, V.; Tashlykova-Bushkevich, I.I.; Betsofen, S.Y. Simultaneous Improvement of Strength, Ductility and Damping Capacity of Single β-Phase Mg-Li-Al-Zn Alloys. Metals 2023, 13, 159. [Google Scholar] [CrossRef]
- Wang, D.; Liu, S.; Wu, R.; Zhang, S.; Wang, Y.; Wu, H.; Zhang, J.; Hou, L. Synergistically improved damping, elastic modulus and mechanical properties of rolled Mg-8Li-4Y-2Er-2Zn-0.6Zr alloy with twins and long-period stacking ordered phase. J. Alloys Compd. 2021, 881, 160663. [Google Scholar] [CrossRef]
- Wang, J.; Jin, Y.; Wu, R.; Wang, D.; Qian, B.; Zhang, J.; Hou, L. Simultaneous improvement of strength and damping capacities of Mg-8Li-6Y-2Zn alloy by heat treatment and hot rolling. J. Alloys Compd. 2022, 927, 167027. [Google Scholar] [CrossRef]
- Rhamdani, A.R.; Rhamdhani, M.A.; Brooks, G.; Pownceby, M.I.; Nugraha Thaha, Y.; Abbott, T.B.; Grandfield, J.; Hartley, C. The Production of Rare Earth based Magnesium and Aluminium Alloys—A Review. Miner. Process. Extr. Metall. Rev. 2023, 1–24. [Google Scholar] [CrossRef]
- Nasiri, Z.; Ghaemifar, S.; Naghizadeh, M.; Mirzadeh, H. Thermal Mechanisms of Grain Refinement in Steels: A Review. Met. Mater. Int. 2021, 27, 2078–2094. [Google Scholar] [CrossRef]
- Wang, H.; Boehlert, C.J.; Wang, Q.D.; Yin, D.D.; Ding, W.J. In-situ analysis of the tensile deformation modes and anisotropy of extruded Mg-10Gd-3Y-0.5Zr (wt.%) at elevated temperatures. Int. J. Plast. 2016, 84, 255–276. [Google Scholar] [CrossRef]
- Tekumalla, S.; Yang, C.; Seetharaman, S.; Wong, W.L.E.; Goh, C.S.; Shabadi, R.; Gupta, M. Enhancing overall static/dynamic/damping/ignition response of magnesium through the addition of lower amounts (<2%) of yttrium. J. Alloys Compd. 2016, 689, 350–358. [Google Scholar] [CrossRef]
- Tang, Y.T.; Zhang, C.; Ren, L.B.; Yang, W.; Yin, D.D.; Huang, G.H.; Zhou, H.; Zhang, Y.B. Effects of Y content and temperature on the damping capacity of extruded Mg-Y sheets. J. Magnes. Alloys 2019, 7, 522–528. [Google Scholar] [CrossRef]
- Niu, R.-L.; Yan, F.-J.; Duan, D.-P.; Yang, X.-M. Effect of yttrium addition on microstructures, damping properties and mechanical properties of as-cast Mg−based ternary alloys. J. Alloys Compd. 2019, 785, 1270–1278. [Google Scholar] [CrossRef]
- Wang, D.; Wu, H.; Wu, R.; Wang, Y.; Zhang, J.; Betsofen, S.; Krit, B.; Hou, L.; Nodir, T. The transformation of LPSO type in Mg-4Y-2Er-2Zn-0.6Zr and its response to the mechanical properties and damping capacities. J. Magnes. Alloys 2020, 8, 793–798. [Google Scholar] [CrossRef]
- Wang, D.; Ma, X.; Wu, R.; Wu, H.; Wang, J.; Zhang, S.; Zhang, J.; Hou, L. Effect of extrusion plus rolling on damping capacity and mechanical properties of Mg-Y-Er-Zn-Zr alloy. Mater. Sci. Eng. A 2022, 830, 142298. [Google Scholar] [CrossRef]
- Chandiran, E.; Ogawa, Y.; Ueji, R.; Singh, A.; Somekawa, H. Enhancement of damping capacity by deformation-induced martensitic transformation in Mg-Sc alloy. Mater. Sci. Eng. A 2023, 880, 145198. [Google Scholar] [CrossRef]
- Yamagishi, K.; Takeuchi, Y.; Ogawa, Y.; Ando, D.; Sutou, Y. B2 Ordering and Its Effect on Room Temperature Superelasticity in Mg-Sc Alloy. Metall. Mater. Trans. A 2023, 54, 2841–2848. [Google Scholar] [CrossRef]
- Beaudry, B.J.; Daane, A.H. A study of the scandium-magnesium system from 0 to 60 at.% scandium. J. Less Common Met. 1969, 18, 305–308. [Google Scholar] [CrossRef]
- Ogawa, Y.; Ando, D.; Sutou, Y.; Yoshimi, K.; Koike, J. Determination of α/β phase boundaries and mechanical characterization of Mg-Sc binary alloys. Mater. Sci. Eng. A 2016, 670, 335–341. [Google Scholar] [CrossRef]
- Ogawa, Y.; Singh, A.; Somekawa, H. Damping property of phases of Mg-Sc measured by nano-DMA. MRS Commun. 2022, 12, 1220–1224. [Google Scholar] [CrossRef]
- Mordike, B.L. Creep-resistant magnesium alloys. Mater. Sci. Eng. A 2002, 324, 103–112. [Google Scholar] [CrossRef]
- Rokhlin, L.L. Dependence of the rare earth metal solubility in solid magnesium on its atomic number. J. Phase Equilibria 1998, 19, 142–145. [Google Scholar] [CrossRef]
- Kula, A.; Jia, X.; Mishra, R.K.; Niewczas, M. Mechanical Properties of Mg-Gd and Mg-Y Solid Solutions. Metall. Mater. Trans. B 2016, 47, 3333–3342. [Google Scholar] [CrossRef]
- Yasi, J.A.; Hector, L.G.; Trinkle, D.R. First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties. Acta Mater. 2010, 58, 5704–5713. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, C.; Jiang, S.; Wan, Y.; Chen, Z. Microstructure, mechanical properties and damping capacity of as-extruded Mg-1.5Gd alloys containing rare-earth textures. Mater. Charact. 2022, 189, 111969. [Google Scholar] [CrossRef]
- Su, C.; Wang, J.; Hu, H.; Wen, Y.; Liu, S.; Ma, K. Enhanced strength and corrosion resistant of Mg-Gd-Y-Al alloys by LPSO phases with different Al content. J. Alloys Compd. 2021, 885, 160557. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, C.; Jiang, S.; Gao, Y.; Wan, Y.; Chen, Z. A study of high damping capacities and mechanical properties of cast Mg-Gd binary alloys. Mater. Lett. 2022, 320, 132363. [Google Scholar] [CrossRef]
- Sabat, R.K.; Brahme, A.P.; Mishra, R.K.; Inal, K.; Suwas, S. Ductility enhancement in Mg-0.2%Ce alloys. Acta Mater. 2018, 161, 246–257. [Google Scholar] [CrossRef]
- Hadorn, J.P.; Mulay, R.P.; Hantzsche, K.; Yi, S.; Bohlen, J.; Letzig, D.; Agnew, S.R. Texture Weakening Effects in Ce-Containing Mg Alloys. Metall. Mater. Trans. A 2013, 44, 1566–1576. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, J.; Wang, H.; Ma, S.; Huang, S.; Li, S.; Pan, F. Enhanced Damping Capacities of Mg-Ce Alloy by the Special Microstructure with Parallel Second Phase. J. Mater. Sci. Technol. 2017, 33, 941–946. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Wu, Z.; Wang, H.; Gao, S.; Pan, F. Microstructure evolution, damping capacities and mechanical properties of novel Mg-xAl-0.5Ce (wt%) damping alloys. J. Alloys Compd. 2017, 729, 545–555. [Google Scholar] [CrossRef]
- Hu, X.S.; Wu, K.; Zheng, M.Y. Effect of heat treatment on the stability of damping capacity in hypoeutectic Mg-Si alloy. Scr. Mater. 2006, 54, 1639–1643. [Google Scholar] [CrossRef]
- Ajith Kumar, K.K.; Srinivasan, A.; Pillai, U.T.S.; Pai, B.C.; Chakraborty, M. Microstructure and Mechanical Property Correlation of Mg-Si Alloys. Silicon 2022, 14, 9499–9515. [Google Scholar] [CrossRef]
- Hadian, R.; Emamy, M.; Campbell, J. Modification of Cast Al-Mg2Si Metal Matrix Composite by Li. Metall. Mater. Trans. B 2009, 40, 822–832. [Google Scholar] [CrossRef]
- Yamashita, A.; Horita, Z.; Langdon, T.G. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater. Sci. Eng. A 2001, 300, 142–147. [Google Scholar] [CrossRef]
- Mabuchi, M.; Higashi, K. Strengthening mechanisms of Mg Si alloys. Acta Mater. 1996, 44, 4611–4618. [Google Scholar] [CrossRef]
- Hu, X.S.; Wu, K.; Zheng, M.Y.; Gan, W.M.; Wang, X.J. Low frequency damping capacities and mechanical properties of Mg-Si alloys. Mater. Sci. Eng. A 2007, 452–453, 374–379. [Google Scholar] [CrossRef]
- Diqing, W.; Jincheng, W.; Gaifang, W.; Gencang, Y. High damping properties of Mg-Si binary hypoeutectic alloys. Mater. Lett. 2009, 63, 391–393. [Google Scholar] [CrossRef]
- Shaw, D. Evaluating electronic workshops through analysing the ‘brainstormed’ ideas. J. Oper. Res. Soc. 2003, 54, 692–705. [Google Scholar] [CrossRef]
- Tamura, Y.; Haitani, T.; Kono, N. Liquid Solubility of Manganese and Its Influence on Grain Size of Mg-Al Alloys. Mater. Trans. 2006, 47, 1968–1974. [Google Scholar] [CrossRef]
- Kainer, K.U.; Kaiser, F. Magnesium Alloys and Technology; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Housh, S.; Mikucki, B.; Stevenson, A. Properties of Magnesium Alloys. In Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; Committee, A.S.M.H., Ed.; ASM International: Almere, The Netherlands, 1990; Volume 2. [Google Scholar]
- Patel, S.; Rao, V. Microstructure, mechanical properties and corrosion behaviour of Mg-Cu and Mg-Cu-Mn alloys. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Peng, L.-M.; Zeng, X.-Q.; Ding, W.-J. Effects of Cu and Mn on mechanical properties and damping capacity of Mg-Cu-Mn alloy. Trans. Nonferrous Met. Soc. China 2008, 18, s55–s58. [Google Scholar] [CrossRef]
- Chen, S.; Dong, X.; Ma, R.; Zhang, L.; Wang, H.; Fan, Z. Effects of Cu on microstructure, mechanical properties and damping capacity of high damping Mg-1%Mn based alloy. Mater. Sci. Eng. A 2012, 551, 87–94. [Google Scholar] [CrossRef]
- Zheng, M.-Y.; Fan, G.-D.; Tong, L.-B.; Hu, X.-S.; Wu, K. Damping behavior and mechanical properties of Mg-Cu-Mn alloy processed by equal channel angular pressing. Trans. Nonferrous Met. Soc. China 2008, 18, s33–s38. [Google Scholar] [CrossRef]
- Wang, J.-F.; Wei, W.-W.; Li, L.; Liang, H.; Pan, F.-S. Effects of Y and Zn on mechanical properties and damping capacity of Mg-Cu-Mn alloy. Trans. Nonferrous Met. Soc. China 2010, 20, 1846–1850. [Google Scholar] [CrossRef]
- Wang, J.; Lu, R.; Wei, W.; Huang, X.; Pan, F. Effect of long period stacking ordered (LPSO) structure on the damping capacities of Mg-Cu-Mn-Zn-Y alloys. J. Alloys Compd. 2012, 537, 1–5. [Google Scholar] [CrossRef]
- Ha, C.S.; Choi, I.D.; Cho, K.M.; Park, A. Damping and mechanical properties of (graphite + 9Al2O3•2B2O3)/Mg metal matrix composites. In Proceedings of the 4th Pacific Rim International Conference on Advanced Materials and Processing (PRICM4), Honolulu, Hi, USA, 11–15 December 2001; pp. 1587–1590. [Google Scholar]
- Crawley, E.F.; Van Schoor, M.C. Material Damping in Aluminum and Metal Matrix Composites. J. Compos. Mater. 1987, 21, 553–568. [Google Scholar] [CrossRef]
- Goddard, D.M.; Whitman, W.R.; Pumphrey, R. Graphite/Magnesium Composites for Advanced Lightweight Rotary Engines. SAE Trans. 1986, 95, 598–604. [Google Scholar]
- Ganguly, S.; Mondal, A.K. Improved damping behavior of squeeze-cast AZ91-Ca-Sb magnesium alloy with nano-SiC particles additions. Mater. Today Commun. 2023, 37, 106904. [Google Scholar] [CrossRef]
- Liao, L.-H.; Wang, H.-W.; Li, X.-F.; Ma, N.-H. Research on the dislocation damping of Mg2Si/Mg-9Al composite materials. Mater. Lett. 2007, 61, 2518–2522. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, C.; Fan, T.; Zhang, D. In situ synthesis and damping capacities of TiC reinforced magnesium matrix composites. Mater. Sci. Eng. A 2008, 496, 242–246. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, L.; Ma, N.; Wang, H. Mechanical properties and damping capacity of magnesium matrix composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 2011–2016. [Google Scholar] [CrossRef]
- Yu, W.; Li, X.; Vallet, M.; Tian, L. High temperature damping behavior and dynamic Young’s modulus of magnesium matrix composite reinforced by Ti2AlC MAX phase particles. Mech. Mater. 2019, 129, 246–253. [Google Scholar] [CrossRef]
- Yu, L.; Ma, Y.; Zhou, C.; Xu, H. Damping efficiency of the coating structure. Int. J. Solids Struct. 2005, 42, 3045–3058. [Google Scholar] [CrossRef]
- Yu, L.; Ma, Y.; Zhou, C.; Xu, H. Damping capacity and dynamic mechanical characteristics of the plasma-sprayed coatings. Mater. Sci. Eng. A 2005, 407, 174–179. [Google Scholar] [CrossRef]
- Catania, G.; Strozzi, M. Damping Oriented Design of Thin-Walled Mechanical Components by Means of Multi-Layer Coating Technology. Coatings 2018, 8, 73. [Google Scholar] [CrossRef]
- Wu, Y.W.; Wu, K.; Deng, K.K.; Nie, K.B.; Wang, X.J.; Hu, X.S.; Zheng, M.Y. Damping capacities and tensile properties of magnesium matrix composites reinforced by graphite particles. Mater. Sci. Eng. A 2010, 527, 6816–6821. [Google Scholar] [CrossRef]
- Wu, Y.W.; Wu, K.; Nie, K.B.; Deng, K.K.; Hu, X.S.; Wang, X.J.; Zheng, M.Y. Damping capacities and tensile properties in Grp/AZ91 and SiCp/Grp/AZ91 magnesium matrix composites. Mater. Sci. Eng. A 2010, 527, 7873–7877. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, X.; Qiu, Y.; Gu, M. Damping behaviors of magnesium matrix composites reinforced with Cu-coated and uncoated SiC particulates. Compos. Sci. Technol. 2005, 65, 1736–1742. [Google Scholar] [CrossRef]
- Banhart, J. Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 2001, 46, 559–632. [Google Scholar] [CrossRef]
- Davies, G.J.; Zhen, S. Metallic foams: Their production, properties and applications. J. Mater. Sci. 1983, 18, 1899–1911. [Google Scholar] [CrossRef]
- Köhl, M.; Bram, M.; Moser, A.; Buchkremer, H.P.; Beck, T.; Stöver, D. Characterization of porous, net-shaped NiTi alloy regarding its damping and energy-absorbing capacity. Mater. Sci. Eng. A 2011, 528, 2454–2462. [Google Scholar] [CrossRef]
- Guangyu, D.; Zhen, T.; Dechun, B.; Kun, L.; Wei, S.; Qingkai, H. Damping properties of a novel porous Mg-Al alloy coating prepared by arc ion plating. Surf. Coat. Technol. 2014, 238, 139–142. [Google Scholar] [CrossRef]
- Xie, Z.-K.; Tane, M.; Hyun, S.-K.; Okuda, Y.; Nakajima, H. Vibration–damping capacity of lotus-type porous magnesium. Mater. Sci. Eng. A 2006, 417, 129–133. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, G.; Dong, J.; Hou, J.; He, G. Damping behavior and energy absorption capability of porous magnesium. J. Alloys Compd. 2016, 680, 522–530. [Google Scholar] [CrossRef]
- Huang, W.; Luo, H.; Lin, H.; Mu, Y.; Ye, B. Compressive Behavior and Damping Property of Mg Alloy/SiCp Composite Foams. J. Mater. Eng. Perform. 2016, 25, 587–593. [Google Scholar] [CrossRef]
- Hao, G.L.; Xu, Q.P.; Han, F.-S. Low-Frequency Damping Behavior of Porous Magnesium. Adv. Mater. Res. 2011, 415–417, 2002–2007. [Google Scholar] [CrossRef]
Properties | Cast Mg Alloys | Cast Al Alloys | Titanium Alloys | Stainless Steel |
---|---|---|---|---|
Density(g/cm3) a | 1.75–1.87 | 2.5–2.9 (33%) | 4.4–4.8 (61%) | 7.6–8.1(77%) |
Price (SGD/kg) | 4.71–5.17 | 2.71–2.98 | 28.7–31.6 | 7.04–7.75 |
Melting point (°C) | 447–649 | 475–667 | 1480–1680 | 1370–1450 |
Elastic modulus (GPa) | 72–89 | 110–120 | 189–210 | |
Specific stiffness | 22–27 | 25–36 | 23–27 | 23–28 |
Yield strength (MPa) | 70–215 | 50–330 | 750–120 | 170–1000 |
Specific strength | 37–123 | 17–132 | 156–273 | 21–132 |
Elongation (% strain) | 1–10 | 0.4–10 | 5–10 | 5–70 |
Alloy Type | Mechanical Properties | Damping Capacity (Q−1) | Development Year | Ref. |
---|---|---|---|---|
K1X1-F | σB = 175 MPa, σ0.2 = 60 MPa | / | 1960s | [49] |
K1-a | / | / | 1960s | [49] |
Mg-0.6Zr | σB = 190 MPa, σ0.2 = 72 MPa | >0.01 | 2015 | [54] |
As-quenched K1 | / | 0.01724 | 2011 | [57] |
Mg-0.6Zr-0.5Zn | σb = 171 MPa, σ0.2 = 77 MPa | >0.01 | 2019 | [50] |
Alloy Type | Mechanical Properties | Damping Capacity (Q−1) | Development Year | Ref. |
---|---|---|---|---|
Mg-3Al-xLa | TYS = 160 MPa, EL = 22% | / | 2017 | [61] |
Mg-1Al-xY | / | >0.01 | 2021 | [62] |
AZ91-0.5%Ca | / | >0.01 | 2015 | [62] |
Stretching-state Mg-1Al | / | >0.01 | 2010 | [64] |
Alloy Type | Mechanical Properties | Damping Capacity (Q−1) | Development Year | Ref. |
---|---|---|---|---|
Mg-0.1%Ni | Improved by a trace of Ni | / | 1970s | [32] |
Mg-3Ni-xMn | / | Improved by Mn in certain circumstances | 2008 | [71] |
Mg-Ni binary alloy | / | Two damping peaks existed | 2005 | [72] |
Mg-3Ni, Mg-6Ni | / | Several damping plateaus | 2009 | [73] |
Mg-10%Ni, Mg-15%Ni | Comparable to AZ63 | 30 times that of AZ63 | 2003 | [74] |
Mg95.34Ni2Y2.66, Mg95.34Zn1Ni1Y2.66 | / | >0.01 | 2022 | [78] |
Alloy Type | Mechanical Properties | Damping Capacity (Q−1) | Development Year | Ref. |
---|---|---|---|---|
Mg-Li binary alloy | / | / | 1910s | [79] |
Mg-8.4Li, Mg-9Li | CYS = 192 MPa, UCS = 2312 MPa | Decrease | 2022 | [14] |
Mg-5Li-4Al | high specific strength of 145 kNm/kg | >0.01 | 2018 | [84] |
Mg-4Li-3Al-0.3Mn | Its yield strength, tensile strength, and elongation were 248 MPa, 332 MPa, and 14.3%, respectively | 0.022 | 2022 | [48] |
Mg-Li-Zn | Strength increases, plasticity decreases | >0.01 | 2022 | [91] |
Mg-Li binary alloy | / | New damping mechanism | 2014 | [86] |
Mg-13Li-3Al-3Zn | Tensile strength and elongation are 184 MPa and 32%, respectively | >0.01 | 2023 | [92] |
Mg-8Li-4Y-2Er-2Zn-0.6Zr | The elastic modulus is 48.9 Gpa; tensile strength is 221 MPa | 0.02 | 2021 | [93] |
Mg-8Li-6Y-2Zn | The tensile strength is 210 MPa | 0.018 | 2022 | [94] |
Solubility of RE in Solid Mg and the Possible Compounds Formed with Mg | ||
---|---|---|
RE Element | Solid Solubility (%) | Compound Coexisting with Solid Solutions |
Sc | 25.9 | MgSc |
Y | 12.0 | Mg24Y₅ |
La | 0.79 | Mg12La |
Ce | 1.6 | Mg12Ce |
Pr | 1.7 | Mg12Pr |
Nd | 3.6 | Mg12Nd |
Pm | / | / |
Sm | 5.8 | Mg41Sm5 |
Eu | / | Mg17Eu2 |
Gd | 23.5 | Mg5Gd |
Tb | 24.0 | Mg5Tb |
Dy | 25.8 | Mg24Dy5 |
Ho | 28.0 | Mg24Ho5 |
Er | 32.7 | Mg24Er5 |
Tm | 31.8 | Mg24Tm5 |
Yb | 33 | Mg2Yb |
Lu | 41.0 | Mg24Lu5 |
Alloy Type | Mechanical Properties | Damping Capacity (Q−1) | Development Year | Refs. |
---|---|---|---|---|
Mg-xY | At 325 °C, the yield strength in the extruded state is close to three times that of pure magnesium | Decrease from 0.037 to 0.015 when Y added | 2019 | [99] |
Mg-4Y-2Er-2Zn-0.6Zr | The tensile strength of the rolled alloy reached 362 ± 5 MPa, and the elongation reached 7.8 ± 0.4% | 0.018 | 2022 | [101,102] |
Mg-Sc | / | Martensitic phase has high damping capacity | 2022 | [107] |
Mg-1.5Gd | / | 0.086 | 2022 | [112] |
Mg-8.5Gd-5Y-xAl | The tensile strength is 376 MPa, the yield strength is 263 MPa, and the elongation is 13% | 0.0132 | 2021 | [113] |
Mg-1Gd | Yield strength is 30 MPa | 0.16 | 2022 | [114] |
Mg-6Gd | Yield strength is 84 MPa | 0.05 | 2022 | [114] |
Mg-2Ce | Tensile strength and elongation are 184 MPa and 32%, respectively. | 0.018 | 2017 | [117] |
Mg-1Al-0.5Ce | Tensile yield strength is 169 MPa | 0.035 | 2017 | [118] |
Alloy Type | Mechanical Properties | Damping Capacity (Q−1) | Development Year | Ref. |
---|---|---|---|---|
CM31 | tensile strength is 290 MPa | specific damping value is 60% | 2003 | [10] |
Mg-2.5Cu-0.8Mn | yield strength is 43 MPa, ultimate tensile strength is 131 MPa, elongation is 6.81%, | >0.01 | 2008 | [131] |
Mg-3Cu-1Mn-1Y-2Zn | the tensile strength and yield strength of the alloy were 71 MPa and 47 MPa, respectively | >0.01 | 2010 | [134] |
Mg-Cu-Mn-Zn-Y | / | >0.01, and a new frequency-dependent damping mechanism was found | 2012 | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zou, Y.; Dang, C.; Wan, Z.; Wang, J.; Pan, F. Research Progress and the Prospect of Damping Magnesium Alloys. Materials 2024, 17, 1285. https://doi.org/10.3390/ma17061285
Wang J, Zou Y, Dang C, Wan Z, Wang J, Pan F. Research Progress and the Prospect of Damping Magnesium Alloys. Materials. 2024; 17(6):1285. https://doi.org/10.3390/ma17061285
Chicago/Turabian StyleWang, Jinxing, Yi Zou, Cong Dang, Zhicheng Wan, Jingfeng Wang, and Fusheng Pan. 2024. "Research Progress and the Prospect of Damping Magnesium Alloys" Materials 17, no. 6: 1285. https://doi.org/10.3390/ma17061285
APA StyleWang, J., Zou, Y., Dang, C., Wan, Z., Wang, J., & Pan, F. (2024). Research Progress and the Prospect of Damping Magnesium Alloys. Materials, 17(6), 1285. https://doi.org/10.3390/ma17061285