
Citation: Huang, T.; Cui, X.; Zhou, X.;

He, X.; Guo, M.; Li, J. The Application

of Bilayer Heterogeneous MOFs in pH

and Heat-Triggered Systems for

Controllable Fragrance Release.

Materials 2024, 17, 1310. https://

doi.org/10.3390/ma17061310

Academic Editor: Raphaël Schneider

Received: 11 February 2024

Revised: 7 March 2024

Accepted: 8 March 2024

Published: 12 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

The Application of Bilayer Heterogeneous MOFs in pH and
Heat-Triggered Systems for Controllable Fragrance Release
Tianci Huang 1,†, Xinjiao Cui 1,†, Xiaoyu Zhou 1, Xiaolong He 2, Min Guo 3,* and Junsheng Li 1,*

1 School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology,
Wuhan 430070, China; 17807305139@163.com (T.H.); 304805@whut.edu.cn (X.C.); 318517@whut.edu.cn (X.Z.)

2 Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4,
9747 AG Groningen, The Netherlands; xiaolong.he@rug.nl

3 School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
* Correspondence: minguo@whut.edu.cn (M.G.); li_j@whut.edu.cn (J.L.)
† These authors contribute equally to this work.

Abstract: To facilitate the integration of a fragrance encapsulation system into different products
to achieve effective releases, a dual-responsive release system with pH and thermal trigger control
is designed in this work. A series of ZIF-8 (M) and bilayer ZIF-8-on-ZIF-8 (MM) materials are
synthesized by a solvent method at room temperature. The fragrance is encapsulated into the
ZIFs by dynamic adsorption or in situ encapsulation combined dynamic adsorption. The fragrance
loading contributed by dynamic adsorption was as high as 80%. The fragrance loaded in the double-
layer MM host was almost twice that of the monolayer host M due to the stronger electrostatic
interaction between MM and vanillin. In the pH and thermal trigger response release experiments,
the second MOF layer in the MM host, as a controlled entity, greatly improved the load and kinetic
equilibrium time of vanillin, and realized the controlled release of guest molecules. The developed
dual-responsive release system in this work exhibits great potential in daily chemical products.

Keywords: MOFs; bilayers; controllable release; fragrance; adsorption

1. Introduction

In the formulation of any fragrance product or food, flavorings can be some of the
most valuable ingredients. However, because of their inherent instability, preserving
them is often a major concern for manufacturers [1]. To minimize degradation or loss
of aroma during processing and storage, it is beneficial and necessary to encapsulate
volatile compounds in food or other fragrance products. Encapsulation is a common
technique used to protect and preserve biologically active, volatile, and easily degradable
compounds, shielding them from degradation and helping to mask undesirable odors [2].
Approximately 60 years ago, encapsulation technology was first developed, with coatings
that can control the release of compounds at specific rates under specific conditions [3,4].

So far, most commercially available fragrance capsules are prepared using physical
methods, such as spray drying and freeze drying. However, it has been proven that
capsules prepared by these methods have poor stability, which limits their broader appli-
cations. Additionally, the coating materials used in physical encapsulation processes are
mostly organic materials such as polymers, cyclodextrins, liposomes, and carbohydrates.
While these organic materials possess characteristics such as biodegradability, low toxicity,
and chemical modifiability [5], they often have limitations in controlling the release of
encapsulated molecules. Physical–chemical adsorption methods for preparing fragrance
encapsulation systems involve simply embedding or mixing the guest molecules within the
pores of porous materials. These systems, known as physical–chemical adsorption-based
encapsulation, offer advantages such as simplicity, low cost, high loading capacity, high
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stability, and controlled release, making them a promising approach to fragrance encapsula-
tion (Table S1). However, the relatively low biocompatibility of traditional porous materials
is often a concern [6].

In comparison to traditional materials, metal–organic frameworks (MOFs, Table S2 for
abbreviations) possess many unique properties [7,8]. Their large pore volume, high porosity,
and high surface area not only facilitate the higher loading of fragrances or guest molecules
but also offer advantages such as high biocompatibility, good biodegradability, ease of
functionalization, and higher water solubility. Additionally, fragrance molecules can be
chemically bound or physically encapsulated within carriers through various interactions.
They can form bio-MOFs (metal–bioorganic frameworks) through methods such as surface
attachment, covalent bonding, pore encapsulation, and in situ encapsulation. MOFs have
been extensively applied in biomedical applications, such as Zr-MOF-loaded naproxen as a
carrier for specific intestinal delivery [9], Mg-MOF to facilitate rapid drug metabolism [10],
and Ca-Sr-MOF-loaded tetracycline for antimicrobial use [11]. The excellent encapsulation
properties of MOF materials make them a unique encapsulation system.

ZIF-8, as a zeolitic imidazole framework material, is self-assembled from physiological
system components, Zn2+, and 2-methylimidazole, and has excellent biocompatibility [12].
Meanwhile, ZIF-8 exhibits good thermal stability due to the strong interaction between the
core metal ions and the nitrogen atoms in the coordination ligand [13]. ZIF-8 has a high
specific surface area, high porosity, and controllable size, and it is easy to synthesis, making
it highly capable of loading functional materials [14]. In addition, ZIF-8 has excellent acid
responsiveness and can be stabilized in physiological aqueous environments, while the
zeolite imidazolium ester skeleton collapses when the pH is weakly acidic (pH 5–6), which
facilitates the control of the release of the functional materials by adjusting the pH [15].
On the basis of the above characteristics, ZIF-8 is widely used in the biomedical field to
encapsulate various functional materials, such as 5-fluorouracil [16], gentiopicroside [17],
riboflavin-5-phosphate [18], 6-mercaptopurine [19], and metformin [20]. On the basis of
these advantages of ZIFs and aiming to further increase fragrance loading and achieve
controlled release, a series of ZIF-8 materials with single-layer and double-layer core–shell
structures were synthesized as carriers for encapsulating vanillin using a simple room
temperature solvent method. The double-layer core–shell structure of ZIF-8-on-ZIF-8
was confirmed through structural characterization and morphology analysis. The optimal
adsorption conditions were determined by varying the initial concentration of vanillin. This
study found that the dynamic adsorption method contributed to 80% of the loading capacity
and that the double-layer carrier had a higher vanillin loading capacity, almost twice that
of the single-layer carrier. In pH and thermally triggered release experiments, it was
found that the second layer of MOF in the double-layer carrier significantly improved the
vanillin loading and the kinetic equilibrium time for controlling vanillin release, enabling
the effective release of the guest molecule. The double-layer ZIF-8-on-ZIF-8 carrier shows
great potential in pH and thermally triggered dual-responsive release systems.

2. Materials and Methods
2.1. Materials and Chemicals

Fe(NO3)3·9H2O, 2-methylimidazole (2-MIm), and vanillin (99.9%) were provided by
Aladdin. ZnNO3·6H2O, methanol (CH3OH), hydrochloric acid (HCl), and sodium hydrox-
ide (NaOH) were bought from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Preparation of Samples

(1) Preparation of ZIF-8/Fe-ZIF-8/ZIF-8-on-ZIF-8/Fe-ZIF-8-on-ZIF-8:

According to the synthesis method reported in Reference [21], ZIF-8 was synthesized.
A total of 1.7 g of hexa-aqueous zinc nitrate and 3.6 g of dimethylimidazole were used.
Dimethylimidazole and hexa-aqueous zinc nitrate were slowly added to a 160 mL methanol
solution under stirring at room temperature and continuously stirred for 24 h. After
centrifugation, washing, and drying, ZIF-8 was obtained. Fe-ZIF-8 was synthesized using
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the same method, with a molar ratio of Zn to Fe of 10:0.5. The preparation of ZIF-8-on-ZIF-8
involved using the synthesized ZIF-8 as a template. After centrifugation and washing
without drying, it was dispersed in a 160 mL methanol solution. Dimethylimidazole and
hexa-aqueous zinc nitrate were taken in corresponding masses according to the feeding
ratio of primary growth to secondary growth of 1:0.5, 1:1, 1:2, and 1:4, and slowly added to
the methanol solution under stirring at room temperature for 24 h. After centrifugation,
washing, and drying, the core–shell structure of ZIF-8-on-ZIF-8 material was obtained.
The preparation of Fe-ZIF-8-on-ZIF-8 used Fe-ZIF-8 as a template and followed the same
method as ZIF-8-on-ZIF-8.

(2) Preparation of vanillin@ZIF-8 (VM)/vanillin@ZIF-8-on-ZIF-8 (VMM)/vanillin@ZIF-8-
on-vanillin@ZIF-8 (VMVM):

Approximately 80 mg of vanillin, 1.7 g of hexa-aqueous zinc nitrate, and 3.6 g of
dimethylimidazole were used. The vanillin was added to a 160 mL methanol solution and
stirred at room temperature for 5 min until the it was completely dissolved. Dimethylimi-
dazole and hexa-aqueous zinc nitrate were then slowly added to the solution under stirring
at room temperature for 24 h. After centrifugation, vanillin@ZIF-8 (VM) was obtained.
Using the ZIF-8 obtained in step (1) as a substrate, after centrifugation and washing without
drying, it was dispersed in a 160 mL methanol solution. Following the same method as
the preparation of VM, the feeding ratio of primary growth to secondary growth was 1:2,
which was used to obtain vanillin@ZIF-8-on-ZIF-8 (VMM). Using the same method as
for the VMM, vanillin@ZIF-8 (VM) was used as a substrate to obtain vanillin@ZIF-8-on-
vanillin@ZIF-8 (VMVM).

2.3. Characterizations

XRD data were collected using an D8 Advance X-ray diffractometer with a Cu K
radiation wavelength of 1.5406 Å (40 kV, 50 mA), and the scanning range was 5–80◦

(10 min−1). A Zeiss Ultra Plus scanning electron microscope (SEM) was used to perform
the measurements. The accelerating voltage was 20.0 kv. The internal structure of the
double-layer Fe-ZIF-8-on-ZIF-8 was observed by a transmission electron microscope (TEM,
JSM-2100F) from Nippon Electronics Co., Ltd. (Tokyo, Japan). The specific surface area
analyzer ASAP2460 from the Micromeritics company was selected to test the ZIF-8 and the
double-layer ZIF-8-on-ZIF-8 prepared with different feed ratios. The thermal stability of the
single-layer ZIF-8 and double-layer ZIF-8-on-ZIF-8 before and after vanillin adsorption was
analyzed by an STA449F3 integrated thermal analyzer. The American AVATAR FTIR-370
Fourier transform infrared spectrometer was selected to observe the interaction between
ZIF-8 and ZIF-8-on-ZIF-8 and vanillin. The new Mastersizer 2000 laser particle size analyzer
from the Malvern Company was selected to test ZIF-8 and double-layer ZIF-8-on-ZIF-8
prepared with different feed ratios, and the sizes and particle size distributions of different
samples were observed. The zeta potential of vanillin, ZIF-8, and ZIF-8-on-ZIF-8 before
and after vanillin adsorption was determined by a Zetasizer Nano ZS90 Zeta potentiometer
from Malvern Co., Ltd. (WR14 1XZ., Fareham, UK).

2.4. Theoretical Calculations

To perform the structural optimization and density functional theory calculations,
VASP software was used. The generalized gradient approximation (GGA) with the
Perdew–Burke–Ernzerhof (PBE) functional was selected to calculate the exchange–correlation
energy. The projector augmented-wave (PAW) pseudopotential method was used to de-
scribe the interaction between electrons and atomic nuclei, with the plane wave cut-off
energy set to 500 eV. The convergence criteria for energy and atomic forces were set to
1 × 10−5 eV and 0.02 eV Å−1, respectively. The Monkhorst–Pack method was used to sam-
ple the first Brillouin zone, with k points set to 1 × 1 × 1. The van der Waals interactions
were considered in the calculations. The binding energy was calculated using the formula:

∆E = Etotal + Eads + Emat
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Here, Etotal , Emat, and Eads represent the energy of the system after adsorption, the
energy of the optimized adsorbent material, and the energy of the adsorbate, respectively.

2.5. Encapsulation Performance Testing

A certain mass of vanillin was added to 20 mL of anhydrous ethanol to prepare vanillin
solutions with concentrations of 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 2.5, and 3.0 mg mL−1. The solutions
were stirred at room temperature for 10 min until the vanillin was completely dissolved.
Then, 20 mg of ZIF-8 was added to each of the above solutions and stirred continuously at
room temperature for 24 h. Each solution was divided into two equal portions. One portion
was centrifuged and digested with hydrochloric acid, and the UV-visible absorption spectra
at 280 nm were measured to determine the total adsorption capacity (TAC) of vanillin. The
other portion was centrifuged, washed three times with ethanol, digested with hydrochloric
acid, and the UV-visible absorption spectra were measured to determine the inner surface
adsorption capacity (ISAC) of vanillin.

A total of 20 mg of ZIF-8 (denoted as M) and ZIF-8-on-ZIF-8 with different core–shell
ratios (denoted as MM0.5, MM1, MM2, and MM4) were weighed and added to a vanillin
solution (1 mg mL−1) and stirred continuously at room temperature for 24 h. The total
adsorption capacity and inner surface adsorption capacity of each carrier were measured
using UV-visible absorption spectroscopy.

The synthesized VM, VMM, and VMVM samples were digested with hydrochloric
acid, and the UV-visible absorption spectra were measured. The measured total adsorption
capacity is denoted as TAC-1, and the inner surface adsorption capacity is denoted as
ISAC-1. The vanillin adsorption process was repeated using the same method to measure
the total adsorption capacity (TAC-2) and inner surface adsorption capacity (ISAC-2) of
vanillin. The encapsulation efficiency of vanillin was calculated using Equation (1):

wt% =
m
M

× 100% (1)

where m (mg) is the mass of vanillin encapsulated in the sample, and M (mg) is the mass of
the carrier.

2.6. Release Performance Testing

The pH-responsive release behavior of vanillin in V@M, V@MM2, V@VM, and V@VMM
was investigated by placing 40 mg of each sample in 40 mL water solutions with different
pH values (7.0, 6.5, 5, and 3). After certain intervals, 1 mL of the supernatant was collected
by centrifugation, and 1 mL of the corresponding pH water solution was used as a re-
placement. The amount of released vanillin over time was determined by measuring the
absorbance of the collected supernatant.

The temperature-responsive release behavior of vanillin in V@M, V@MM2, V@VM,
and V@VMM was investigated by placing 40 mg of each sample in 40 mL of deionized
water at different temperatures (heating temperature (60 ◦C), room temperature, and
refrigeration temperature (−4 ◦C)). At regular intervals, 1 mL of the supernatant was
collected by centrifugation, and 1 mL of deionized water was used as a replacement. The
released amount of vanillin was determined by measuring the absorbance of the collected
supernatant. The cumulative release percentage (CR%) of vanillin was calculated using
Equation (2):

CR% =
Mr

Ml
× 100% (2)

where Mr is the cumulative release amount of vanillin, and Ml is the loaded amount
of vanillin.

3. Results and Discussion

ZIF-8 (M) and the secondary growth of ZIF-8-on-ZIF-8 (MM) were synthesized at
room temperature following the methods reported previously in the literature. MM was
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synthesized using the as-synthesized ZIF-8 (M) as a template. To investigate the effect of
different feed ratios on the growth of MM, M and different MM samples were prepared
by controlling the feed ratios during synthesis. The feed ratios for the primary growth to
secondary growth were set as 1:0.5, 1:1, 1:2, and 1:4, and they were named MM0.5, MM1,
MM2, and MM4, respectively. The scanning electron microscopy (SEM) images showed
that both the primary growth of ZIF-8 and the secondary growth of MM0.5 exhibited
regular dodecahedral morphologies with smooth surfaces (Figure 1(a1,a2)). The particle
size of M was approximately 100 nm, and MM0.5 had a slightly larger particle size than
that of M. When the feed ratio was 1:2, MM2 also exhibited a dodecahedral structure.
However, compared to M and MM0.5, MM2 had a less regular particle shape, with uneven
sizes and slightly rougher surfaces (Figure 1(a3)). The particle size and morphology can
affect the loading capacity of fragrance in the encapsulation system, system stability, and
release performance of the fragrance. Figure 1b shows the particle size distribution of M
and all MM samples. The primary growth of M had a narrow and uniform particle size
distribution, with an average size of approximately 100 ± 50 nm. Interestingly, after the
secondary growth of ZIF-8 using the MOF-on-MOF strategy, the particle size distribution
of MM became wider. Moreover, as the core–shell feed ratio increased, the average particle
size of MM gradually increased, indicating the formation of an additional layer of ZIF-8 on
the surface of the primary ZIF-8 (M).
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Figure 2 illustrates the X-ray diffraction (XRD) patterns of M and all MM samples.
Since both the primary and secondary growths in MM involve the formation of ZIF-8,
they exhibit the same topology and crystal parameters. Therefore, the XRD patterns of
M and all MM samples are consistent and match the simulated XRD pattern of ZIF-8,
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indicating the successful synthesis of M and MM. To investigate the contribution of the
specific surface area and pore structure of the carriers to the encapsulation of vanillin,
nitrogen adsorption–desorption experiments were conducted on different carriers, and
the isotherms are shown in Figure 3a. The results indicate that both M and MM samples
with different feed ratios exhibit typical Type I isotherm characteristics, indicating the
presence of predominantly microporous structures in the synthesized carriers. This is
further confirmed by the pore size distribution plot (Figure 3b). As the feed ratio increased,
the specific surface area and pore volume of the materials gradually decreased, which may
be attributed to the increase in the particle sizes of the different carriers with the increasing
feed ratio. The specific surface areas, micropore areas, and pore volumes of the different
carriers are shown in Table 1. The specific surface area of M was 1473.9 m2 g−1, and the
micropore volume was 0.710 m2 g−1. However, the specific surface area of MM2 decreased
to 1237.9 m2 g−1, and the micropore volume decreased to 0.596 m2 g−1. The pore size
distribution plot shows that the pore size distribution trend of the different MM carriers was
similar to that of M, with two types of micropores distributed in the ranges of 4–6 nm and
8–9 nm. This confirms that the MM samples synthesized using this experimental method
maintained the same pore structure as ZIF-8, suggesting the possibility of a double-layer
core–shell structure in the prepared MM.
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Table 1. BET data analysis of different vanillin encapsulation carriers.

Sample BET Surface Area (m2 g−1) Micropore Area (m2 g−1) Micropore Volume (cm3 g−1)

M 1473.9 1353.80 0.71
MM0.5 1430.5 1344.00 0.70
MM1 1327.9 1142.56 0.60
MM2 1237.9 1136.36 0.60
MM4 1227.1 1144.63 0.60

To verify the hypothesis that the secondary growth of the carrier MM forms another
layer of ZIF-8 on the surface of ZIF-8, TEM characterization was performed on the different
carriers, and the results are shown in Figure 4. The TEM images of M and MM0.5 show
a regular hexagonal shape, which is a typical morphology of ZIF-8. Compared to the
single-layer, regular dodecahedral structure of M (Figure 4a), the TEM image of MM0.5
clearly shows a double-layer structure. Combined with the SEM image of MM0.5, it
can be concluded that MM0.5 has a regular double-layer core–shell structure (Figure 4b).
Further observation of the morphology of MM2 using high-resolution transmission electron
microscopy (HRTEM) (Figure 4c) reveals a decrease in regularity, consistent with the SEM
results. In the high-resolution TEM image of MM2, a clear contour line can be observed,
confirming the double-layer core–shell structure of MM2. To observe the structure of MM2
more intuitively, Fe was doped into the primary ZIF-8 at a ratio of 10:0.5 to synthesize
the Fe-ZIF-8-on-ZIF-8 structure, and the distribution of elements in MM2 was observed.
As shown in Figure 4d, Zn elements are uniformly dispersed throughout the entire MOF
structure, while Fe elements, because of the low doping ratio, do not appear as distinct
shapes. However, it can be seen that the density of Fe in the middle part of MM2 is
higher than the edge part, which is sufficient to prove the double-layer core–shell structure
of MM2.

The dynamic adsorption method was used to encapsulate vanillin in the pores of the
single-layer M and double-layer MM, with MM2 as the representative of the double-layer
ZIF-8-on-ZIF-8 structure, hereinafter referred to as MM. Vanillin was soaked into the pores
of M and MM using ethanol as the solvent. Figure 5a shows the XRD spectra of M and MM
after adsorption of vanillin. The results show that the XRD patterns of M and MM remained
unchanged after the encapsulation of vanillin, indicating that the structures of M and MM
did not change during the adsorption process. M and MM both exhibited stable rigid struc-
tures with strong structural stability. The effective encapsulation of vanillin was confirmed
by infrared analysis. The infrared spectrum, shown in Figure 5b, reveals characteristic
peaks of vanillin, carrier M, and the vanillin-adsorbed MM sample (V@MM). In the infrared
spectrum of V@MM, peaks corresponding to the hydroxyl stretching vibration of vanillin
(3180 cm−1), C=O stretching vibration (2840, 1670 cm−1), benzene-ring stretching vibration
(1508 cm−1), and the 1,2,4-substituted peaks of the benzene ring (857, 815 cm−1) could be
observed, confirming the successful encapsulation of vanillin in the carrier. Compared to
the characteristic peaks of vanillin itself, such as the hydroxyl stretching vibration peak
(3190 cm−1) and C=O stretching vibration peak (2860, 1660 cm−1), there is a shift in the
peak position when vanillin was adsorbed in the carrier MM. This shift may be due to
interactions between vanillin and the imidazole ring in MM, which effectively load vanillin
into the pores of MM.

An electrostatic interaction is a common mechanism in solution adsorption. To observe
the electrostatic interaction between vanillin and carriers M and MM, the zeta potentials
of the carrier materials before and after the adsorption of vanillin were measured under
neutral conditions, as shown in Figure 5c. The results show that the zeta potential of vanillin
in ethanol solution was negative (−1.83 mV), while the zeta potentials of M (10.67 mV)
and MM (13.43 mV) were positive, laying the foundation for the electrostatic interaction
between vanillin and the carrier. Furthermore, vanillin contains electron-withdrawing
groups (-OH), while ZIF-8 contains electron-donating groups (-CH3), further confirming the
occurrence of electrostatic interaction between vanillin and ZIF-8. The absolute value of the
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zeta potential of MM was higher than that of M, indicating that compared to the M system,
the MM system has greater stability, which is more favorable for the encapsulation and
controlled release of vanillin. After the adsorption of vanillin, the zeta potential of V@M
decreased to 8.57 mV, while the zeta potential of V@MM decreased to 8.08 mV. The higher
potential difference indicates that the double-layer carrier MM has stronger electrostatic
interaction with vanillin than the single-layer carrier M, which may be the main reason for
the higher encapsulation capacity of double-layer MM compared to single-layer M.
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The changes in thermal stability of the carrier and adsorbed fragrance before and after
adsorption were studied by thermogravimetric analysis. Figure 5d shows that the V@MM
sample had a greater weight loss at 1000 ◦C compared to pure ZIF-8. This behavior is due
to the combination of the decomposition of vanillin and carrier MM during the analysis
of the V@MM sample. Vanillin melts at 80 ◦C and decomposes at 160 ◦C, with almost
complete evaporation at 240 ◦C. When heated to 1000 ◦C under nitrogen at the same rate,
the carrier M started to decompose at approximately 375 ◦C, and the remaining mass at
1000 ◦C was approximately 51 wt% of the initial mass. On the other hand, the remaining
mass of the V@MM sample was approximately 40 wt% of the initial mass. The difference
in the remaining mass between the V@MM sample and pure M was 9 wt%, lower than
the expected mass, which may be due to interactions between vanillin and the carrier. At
the same time, the weight loss curve of V@MM was almost synchronized with M until
about 550 ◦C, and then the weight loss of the carrier MM was significantly higher than that
of the pure carrier M. It is speculated that the loss of vanillin in the V@MM sample may
occur at around 550 ◦C, indicating that the presence of carrier MM greatly improves the
thermal stability of vanillin. To observe the morphological changes in MM after adsorption
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of vanillin, SEM characterization was performed on the V@MM sample. The SEM image
shown in Figure 5e reveals that the morphology of MM remained unchanged after the
adsorption of vanillin, indicating that the encapsulation process did not cause significant
morphological changes in the carrier.
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Overall, the dynamic adsorption method successfully encapsulated vanillin in the
pores of the single-layer M and double-layer MM. The encapsulation of vanillin was
confirmed by XRD and infrared analysis. The electrostatic interaction between vanillin and
the carrier was observed through zeta potential measurements. The thermal stability of
vanillin was improved by the presence of the carrier MM. The morphology of MM remained
unchanged after the adsorption of vanillin. These results demonstrate the effectiveness of
the dynamic adsorption method for encapsulating fragrances in metal–organic frameworks.

The stability of the fragrance carrier is crucial for the encapsulation and protection of
fragrances. The thermodynamic stability of the V@ZIF-8 system was studied using DFT
calculations. The optimized model and computational results are shown in Figure 6a. The
adsorption energy of vanillin in the ZIF-8 was −0.64 eV, indicating a strong interaction
between vanillin and the ZIF-8 carrier. This interaction suggests that the adsorption of
vanillin in ZIF-8 is thermodynamically stable. Additionally, the charge density analysis
(Figure 6b) shows that there may be electron transfer between the O atom in vanillin and
the H atom on the imidazole ring of ZIF-8. This further confirms the interaction between
vanillin and ZIF-8.
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To investigate the effect of the initial concentration of vanillin on its encapsulation
capacity, a monolayer of ZIF-8 was used as the carrier. Vanillin solutions of different
concentrations were adsorbed for the same duration, and the vanillin loading at different
concentrations was compared. Considering that vanillin contains aromatic rings and double
bonds, the concentration of vanillin in the carrier can be quickly and conveniently measured
using UV absorption spectroscopy. Figure 7a shows the UV absorption spectra of vanillin,
carrier M, and digested MM and V@MM samples. The results indicate that vanillin exhibits
the strongest UV absorption peak at 280 nm. No peak was observed at this wavelength for
the carrier MM before and after digestion with hydrochloric acid, while a UV absorption
peak appeared at 280 nm for the digested V@MM sample, confirming the rationality of
using UV absorption spectroscopy at 280 nm to determine the encapsulation of vanillin
in the V@MM system. To accurately quantify the analysis, the absorbance at 280 nm was
measured for vanillin solutions of different concentrations. Figure 7b shows a good linear
relationship. The total adsorption and internal surface adsorption of the monolayer carrier
M for vanillin at different initial concentrations were measured (Figure 7c). The adsorption
results show that the total adsorption increased with the increase in the initial concentration
of vanillin. However, the internal surface adsorption reached a maximum when the initial
concentration of vanillin reached 1 mg L−1. When the initial concentration of vanillin
continued to increase, the internal surface adsorption remained almost constant. This
suggests that when the initial concentration of vanillin is 1 mg L−1, adsorption saturation
is achieved. Higher concentrations are not conducive to the competitive adsorption of
vanillin with the solvent ethanol. Most of the vanillin was more easily adsorbed on the
external surface of carrier M, with only about 6 wt% of the vanillin loaded in the pores and
internal surface of carrier M.

To investigate the encapsulation capacity of different carriers for vanillin, different
carriers prepared in this experiment were added to a vanillin–ethanol solution with an
initial concentration of 1 mg L−1 for adsorption and encapsulation. Figure 8 shows a
comparison of the vanillin loading by the different carriers. The results indicate that under
the same conditions, MM2 achieved the highest vanillin loading (both total adsorption
and internal surface adsorption). As the feed ratio of the core–shell increased, the vanillin
loading showed an increasing trend. The internal surface adsorption of MM2 for vanillin
was 10.89 wt%, nearly twice that of the monolayer M (6.17 wt%). This is mainly attributed
to the strong electrostatic interaction between the carrier MM2 and the guest molecule
vanillin. However, the encapsulation capacity of MM4 for vanillin decreased. This may be
because the particle size is larger, resulting in a decrease in the surface free energy, which
reduces the adsorption affinity and makes it less favorable for adsorption.
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To further increase the loading of vanillin, the in situ encapsulation + adsorption
(secondary encapsulation) method was used with the monolayer M and double-layer MM
for the encapsulation of vanillin. In situ encapsulation refers to the addition of a certain
concentration of vanillin during the synthesis of the carrier, allowing it to be encapsulated
in the pores and closed pores of the carrier along with the formation of the coordination
structure of the carrier. The total adsorption and internal surface adsorption of vanillin
obtained in this way are denoted as TA-1 and ISA-1, respectively. The samples obtained
after in situ encapsulation were further subjected to dynamic adsorption for secondary
encapsulation, and the final total adsorption and internal surface adsorption of vanillin are
denoted as TA-2 and ISA-2, respectively.

The results of the encapsulation of vanillin using different methods are shown in
Figure 9. The vanillin loading obtained through in situ encapsulation was relatively low
for all three different carriers, VM, VMM, and VMVM. This may be because encapsulation
occurs before the carrier has fully formed a specific coordination structure, so a large
amount of vanillin cannot be securely trapped in the pores. Among them, VMM achieved
the highest TA-1 and ISA-1, which were 6.35 wt% and 2.07 wt%, respectively, almost twice
that of VM (TA-1: 3.40 wt%; ISA-1: 1.46 wt%). The reason for this result may be that in
the VMM, vanillin was not only encapsulated in the pores of the ZIF-8 but also trapped
between the core and shell of the double-layer ZIF-8. The vanillin loading in VMM was
also higher than that in the VMVM, with TA-1 and ISA-1 of the VMVM being 3.64 wt%
and 1.80 wt%, respectively. A possible reason is that for VMM, in situ encapsulation
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mainly occurs during the formation of the shell, and at this time, a complete monolayer
ZIF-8 has been formed. This means that before in situ encapsulation occurs, the core
structure can adsorb a portion of vanillin inside the pores and on the surface of ZIF-8,
which increases the loading of vanillin in VMM (TA-1 and ISA-1). However, for VMVM,
the encapsulation of vanillin occurs during the formation of both the core and shell. At
this time, the carrier has not fully formed a stable coordination structure, resulting in a
significant decrease in the encapsulation capacity. When the carriers obtained after in situ
encapsulation were subjected to secondary adsorption, they had already formed stable
porous materials, resulting in a significant increase in the loading of vanillin. The TA-2
and ISA-2 of VMM reached 30.09 wt% and 11.26 wt%, respectively, which were higher
than the loading achieved through adsorption only (Table S3). The VM and VMVM also
showed a significant increase in loading after secondary adsorption. This is because in
situ encapsulation can trap vanillin in regions that are not easily accessible by adsorption
methods, such as between the core and shell, as well as in the closed pores of the carrier. It
is worth noting that the vanillin loading achieved through adsorption methods reached
nearly 80% in different encapsulation methods.
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Figure 9. Comparison of vanillin loads in different encapsulation modes (the total adsorption amount
and surface adsorption amount was differentiated by different colors in the figure).

ZIF-8 has been proven to be an ideal pH-responsive drug delivery carrier. Under
neutral or alkaline conditions, the N atoms in the ligand 2-methylimidazole become neg-
atively charged due to deprotonation, and they coordinate with positively charged zinc
ions to form the ZIF-8 structure. However, under acidic conditions, 2-methylimidazole
is protonated and forms weak coordination with zinc ions, accelerating the collapse of
the ZIF-8 structure and leading to the release of guest molecules [22]. The pH-responsive
release performance of the vanillin encapsulation systems prepared using different carriers
and encapsulation methods was tested, and the results are shown in Figure 10. Figure 10a,b
show the release behavior of vanillin encapsulated by the carrier M and MM through
adsorption under different pH conditions. A secondary kinetic model was used to fit the
raw data. From Table S4, it can be seen that the secondary kinetic model can better describe
the release behavior of vanillin, indicating that vanillin mainly chemically interacted with
ZIF-8, which is consistent with the DFT calculations. The results show that M exhibited s
burst release behavior within the first 4 h, and the release rate of vanillin increased with
decreasing pH. This is because the structure of the ZIF-8 carrier collapses to varying de-
grees under different pH conditions, and the stronger the acidity, the higher the degree of
collapse, leading to faster release of vanillin from the encapsulation system. Under pH 3
conditions, the released amount of vanillin reaches 95 wt% after 4 h, while under neutral
conditions, the released amount is only 43 wt% after 4 h and reaches only 60 wt% after 48 h.
For the carrier MM, the presence of the second layer of ZIF-8 as a controlled entity may
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extend the kinetic equilibrium’s duration for the release of vanillin from 4 h (M) to 24 h
(MM), greatly improving the burst release behavior of vanillin. Under neutral conditions,
MM released 48 wt% of the vanillin after 48 h, but the absolute amount of vanillin released
by MM under the same conditions was significantly higher than that of M, corresponding to
the relatively higher vanillin loading of MM. Figure 10c,d show the kinetic release behavior
of the encapsulation systems prepared using the in situ encapsulation + adsorption method
for VM and VMM, respectively. VM exhibits the same burst release behavior as M, while
VMM shows a similar sustained release behavior to MM. The double-layer ZIF-8-on-ZIF-8
had an excellent encapsulation amount, as well as delayed-release, compared to other
systems (Table S5). This further demonstrates that the second layer of MOF as a controlled
entity in the double-layer carrier greatly improves the loading and kinetic equilibrium time
of vanillin, achieving controlled release of guest molecules.

qt =
kq2

e t
1 + kqet

× 100% (3)

where qt and qe are the vanillin cumulative release amount and equilibrium release amount
at time t, respectively, and k is the rate constant.
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dynamic adsorption.

Thermal-responsive release is a common mechanism for the release of guest molecules,
where the interaction between the main and guest molecules weakens at high tempera-
tures, leading to an accelerated release rate of the guest molecules. Figure 9 shows the
release behavior of vanillin encapsulated by different carriers using different methods at
various temperatures. Considering the temperature of commonly used fragrance products,
refrigerated temperature (−4 ◦C), room temperature (RT), and heating temperature (60 ◦C)
were chosen as the release temperatures for vanillin in this experiment. The results show
that in the system in which the fragrance is encapsulated using the dynamic adsorption
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method (Figure 11a,b), the release of vanillin from M and MM followed a similar pattern
(Table S6), indicating that the change in temperature did not affect the carrier structure,
and the carrier had good thermal stability, which is consistent with the thermogravimetric
results. At 60 ◦C, the release rate of vanillin was the fastest, mainly because at higher
temperatures, molecular motion becomes more active, weakening the interaction between
vanillin molecules and the carrier, allowing vanillin molecules to escape from the carrier
and enter the solution. However, compared to the single-layer M, MM still exhibited lower
release rates. After 48 h of continuous release, the released amounts of MM at −4 ◦C,
room temperature, and 60 ◦C were 43 wt%, 48 wt%, and 69 wt%, respectively, while for
M, the released amounts were 54 wt%, 60 wt%, and 90 wt% at the same temperatures.
Nevertheless, the absolute released amount of MM was still higher than that of M. These
results demonstrate that in a temperature-responsive release system, the outer layer of MM
improves the release rate of vanillin. Figure 11c,d show the release behavior of vanillin
encapsulated by the VM and VMM carriers using the in situ encapsulation + dynamic
adsorption method at different temperatures. The results show that the release pattern of
VM was similar to that of M at different temperatures, while the release pattern of VMM
was almost the same as that of MM. Interestingly, the released amount of VM was slightly
lower than that of M after 48 h at each temperature, especially at low temperatures. The
released amounts at −4 ◦C, room temperature, and 60 ◦C were 33 wt%, 49 wt%, and 88 wt%
for VM, and it was 36 wt% for VMM at −4 ◦C, which is lower than the released amount of
MM under the same conditions. This may be related to a small amount of vanillin being
encapsulated in closed pores of the carrier material or in narrow areas that are not easily
diffused during the in situ encapsulation process.
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4. Conclusions

In this work, we synthesized single-layer ZIF-8 and double-layer ZIF-8-on-ZIF-8
structures through a simple room-temperature solvent method. The core–shell structure
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of ZIF-8-on-ZIF-8 was confirmed by characterization techniques such as SEM and TEM.
Vanillin encapsulation was performed in both carriers using dynamic adsorption and in
situ encapsulation + dynamic adsorption methods. The double-layer ZIF-8-on-ZIF-8 carrier
exhibited a higher vanillin loading (25.68 wt%) compared to the single-layer carrier (10.89
wt%), which was nearly twice as high. This was mainly due to the strong electrostatic
interaction between the double-layer carrier and vanillin. The pH-responsive and thermal-
responsive release performances of vanillin in different encapsulation systems was tested.
In the pH-responsive release experiments, at pH 3, 95 wt% of the vanillin was released
in M after 4 h, while only 29.34 wt% was released in MM. In the thermally triggered
experiments, at 60 ◦C for 48 h, the amount of vanillin released was 90.5 wt% in M, while
69.5 wt% was released in MM. In the double-layer carrier, the second layer of the MOF,
as a controlled entity, greatly improved the vanillin loading and kinetic equilibrium time,
reducing the release rate of vanillin and achieving the controlled release of guest molecules.
In future work, the controlled release of various fragrances can be achieved by designing
the MOF structure with a specific morphology and pore structures in different parts,
encapsulating different fragrances accordingly. This can be achieved by regulating the
interactions between different parts of the MOF and the fragrance molecules.
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ondary kinetic fitting parameters for different samples at different temperatures.
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