MOP−18−Derived CuO Fiber for Hybrid Supercapacitor Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. MOP−18 Synthesis
2.3. Electrospinning
2.4. Instrumentation
3. Results and Discussion
3.1. Material Characterization
3.2. Electrochemical Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simon, P.; Gogotsi, Y. Perspectives for Electrochemical Capacitors and Related Devices. Nat. Mater. 2020, 19, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Muzaffar, A.; Ahamed, M.B.; Deshmukh, K.; Thirumalai, J. A Review on Recent Advances in Hybrid Supercapacitors: Design, Fabrication and Applications. Renew. Sustain. Energy Rev. 2019, 101, 123–145. [Google Scholar] [CrossRef]
- Campbell, P.G.; Merrill, M.D.; Wood, B.C.; Montalvo, E.; Worsley, M.A.; Baumann, T.F.; Biener, J. Battery/Supercapacitor Hybrid via Non-Covalent Functionalization of Graphene Macro-Assemblies. J. Mater. Chem. A 2014, 2, 17764–17770. [Google Scholar] [CrossRef]
- Yu, H.; Fan, L.; Wu, J.; Lin, Y.; Huang, M.; Lin, J.; Lan, Z. Redox-Active Alkaline Electrolyte for Carbon-Based Supercapacitor with Pseudocapacitive Performance and Excellent Cyclability. Rsc Adv. 2012, 2, 6736–6740. [Google Scholar] [CrossRef]
- Liew, C.-W.; Ramesh, S. Comparing Triflate and Hexafluorophosphate Anions of Ionic Liquids in Polymer Electrolytes for Supercapacitor Applications. Materials 2014, 7, 4019–4033. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? Science 2014, 343, 1210–1211. [Google Scholar] [CrossRef] [PubMed]
- Dubal, D.P.; Ayyad, O.; Ruiz, V.; Gómez-Romero, P. Hybrid Energy Storage: The Merging of Battery and Supercapacitor Chemistries. Chem. Soc. Rev. 2015, 44, 1777–1790. [Google Scholar] [CrossRef]
- Tian, Y.; Abbas, M.; Haque, S.F.B.; Zhu, X.; Ferraris, J.P.; Balkus, K.J., Jr. RuxV2− XO5 Nanowire/Templated Carbon Composite Electrodes for Supercapacitors. Next Mater. 2024, 3, 100112. [Google Scholar] [CrossRef]
- Yu, F.; Zhou, L.; You, T.; Zhu, L.; Liu, X.; Wen, Z. Preparation of Zn0. 65Ni0. 35O Composite from Metal-Organic Framework as Electrode Material for Supercapacitor. Mater. Lett. 2017, 194, 185–188. [Google Scholar] [CrossRef]
- Yu, F.; Wang, Y.; Liu, Y.; Hui, H.-Y.; Wang, F.-X.; Li, J.-F.; Wang, Q. An Aqueous Rechargeable Zinc-Ion Battery on Basis of an Organic Pigment. Rare Met. 2022, 41, 2230–2236. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Meng, J.; Shen, N.; Liu, H.; Guo, C.; Bao, W.; Li, J.; Yao, D.; Yu, F. Boosting the Capacitance of MOF-Derived Carbon-Based Supercapacitors by Redox-Active Bromide Ions. Chem. Eng. J. Adv. 2023, 14, 100484. [Google Scholar] [CrossRef]
- Zakharov, A.; Tukesheva, A.; Haque, S.F.B.; Ferraris, J.; Zakhidov, A.; Tazhibayeva, T.; Bazarbayeva, T.; Pavlenko, V. Review of the Current State of Technology for Capacitive Deionization of Aqueous Salt Solutions. Bull. Karaganda Univ. Phys. Ser. 2023, 111, 16–33. [Google Scholar] [CrossRef]
- Ayaganov, Z.; Pavlenko, V.; Haque, S.F.B.; Tanybayeva, A.; Ferraris, J.; Zakhidov, A.; Mansurov, Z.; Bakenov, Z.; Ng, A. A Comprehensive Study on Effect of Carbon Nanomaterials as Conductive Additives in EDLCs. J. Energy Storage 2024, 78, 110035. [Google Scholar] [CrossRef]
- Shi, P.; Li, L.; Hua, L.; Qian, Q.; Wang, P.; Zhou, J.; Sun, G.; Huang, W. Design of Amorphous Manganese Oxide@ Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor. ACS Nano 2017, 11, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.J.; Chodankar, N.R.; Pujari, R.B.; Han, Y.-K.; Lee, D.W. Core-Shell Hetero-Nanostructured 1D Transition Metal Polyphosphates Decorated 2D Bimetallic Layered Double Hydroxide for Sustainable Hybrid Supercapacitor. J. Power Sources 2020, 466, 228286. [Google Scholar] [CrossRef]
- Bhoyate, S.; Kahol, P.K.; Gupta, R.K. Broadening the Horizon for Supercapacitor Research via 2D Material Systems. In Nanoscience; Royal Science of Chemistry: London, UK, 2020. [Google Scholar]
- Hu, B.; Li, H.; Liu, A.; Yue, C.; Guo, Z.; Mu, J.; Zhang, X.; Che, H. Construction of 2D–2D Plate-on-Sheet Cobalt Sulfide–Reduced Graphene Oxide Nanocomposites for Enhanced Energy Storage Properties in Supercapacitors. ACS Appl. Energy Mater. 2020, 4, 88–97. [Google Scholar] [CrossRef]
- Yang, C.-H.; Hsiao, Y.-C.; Lin, L.-Y. Novel In Situ Synthesis of Freestanding Carbonized ZIF67/Polymer Nanofiber Electrodes for Supercapacitors via Electrospinning and Pyrolysis Techniques. ACS Appl. Mater. Interfaces 2021, 13, 41637–41648. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, B.-B.; Zheng, H.; Ma, W.-Q.; Li, Q.; Xu, C.-X. One-Step Construction of Strongly Coupled Co3V2O8/Co3O4/MXene Heterostructure via in-Situ Co-F Bonds for High Performance All-Solid-State Asymmetric Supercapacitors. Rare Met. 2024, 43, 682–691. [Google Scholar] [CrossRef]
- Peng, M.; Wang, L.; Li, L.; Peng, Z.; Tang, X.; Hu, T.; Yuan, K.; Chen, Y. Molecular Crowding Agents Engineered to Make Bioinspired Electrolytes for High-Voltage Aqueous Supercapacitors. EScience 2021, 1, 83–90. [Google Scholar] [CrossRef]
- Wang, T.; Xiong, C.; Zhang, Y.; Wang, B.; Xiong, Q.; Zhao, M.; Ni, Y. Multi-Layer Hierarchical Cellulose Nanofibers/Carbon Nanotubes/Vinasse Activated Carbon Composite Materials for Supercapacitors and Electromagnetic Interference Shielding. Nano Res. 2023, 17, 904–912. [Google Scholar] [CrossRef]
- Xiong, C.; Wang, T.; Zhou, L.; Zhang, Y.; Dai, L.; Zhou, Q.; Ni, Y. Fabrication of Dual-Function Conductive Cellulose-Based Composites with Layered Conductive Network Structures for Supercapacitors and Electromagnetic Shielding. Chem. Eng. J. 2023, 472, 144958. [Google Scholar] [CrossRef]
- Furukawa, H.; Kim, J.; Plass, K.E.; Yaghi, O.M. Crystal Structure, Dissolution, and Deposition of a 5 Nm Functionalized Metal-Organic Great Rhombicuboctahedron. J. Am. Chem. Soc. 2006, 128, 8398–8399. [Google Scholar] [CrossRef]
- Tajik, M.; Bin Haque, S.F.; Perez, E.V.; Vizuet, J.P.; Firouzi, H.R.; Balkus, K.J., Jr.; Musselman, I.H.; Ferraris, J.P. Pillared Carbon Membranes Derived from Cardo Polymers. Nanomaterials 2023, 13, 2291. [Google Scholar] [CrossRef]
- Samuel, E.; Aldalbahi, A.; El-Newehy, M.; El-Hamshary, H.; Yoon, S.S. Flexible and Freestanding Manganese/Iron Oxide Carbon Nanofibers for Supercapacitor Electrodes. Ceram. Int. 2022, 48, 18374–18383. [Google Scholar] [CrossRef]
- Anand, S.; Choudhury, A. MnMoS4 Anchored at Carbon Nanofiber as a Flexible Electrode for Solid-State Asymmetric Supercapacitor Device. Mater. Chem. Phys. 2023, 299, 127517. [Google Scholar] [CrossRef]
- Rashad, M.; Rüsing, M.; Berth, G.; Lischka, K.; Pawlis, A. CuO and Co3O4 Nanoparticles: Synthesis, Characterizations, and Raman Spectroscopy. J. Nanomater. 2013, 2013, 82. [Google Scholar] [CrossRef]
- Al Baroot, A.; Alheshibri, M.; Drmosh, Q.A.; Akhtar, S.; Kotb, E.; Elsayed, K.A. A Novel Approach for Fabrication ZnO/CuO Nanocomposite via Laser Ablation in Liquid and Its Antibacterial Activity. Arab. J. Chem. 2022, 15, 103606. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Davaria, S.; Ramezanpoura, S. Rapid Synthesis of a Nano-Sized Copper (II) Oxide by Calcination of the Cu (II) Schiff Base Complex. Chem. Methodol. 2018, 2, 47–55. [Google Scholar]
- Yang, C.; Xu, H.; Shi, J.; Liu, Z.; Zhao, L. Preparation and Photocatalysis of CuO/Bentonite Based on Adsorption and Photocatalytic Activity. Materials 2021, 14, 5803. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Shi, Z.; Reddy, R.G. Mechanism Study of Cu-Zn Alloys Electrodeposition in Deep Eutectic Solvents. Ionics 2020, 26, 3161–3172. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, D.; Zhang, W.; Chen, M. Controlled Synthesis of Cuprous Oxide Nanospheres and Copper Sulfide Hollow Nanospheres. J. Phys. Chem. Solids 2009, 70, 840–846. [Google Scholar] [CrossRef]
- Stickle, W.; Stickle, T. Propylene Carbonate-XPS Reference Spectra. Surf. Sci. Spectra 2014, 21, 28–34. [Google Scholar] [CrossRef]
- Leiro, J.A.; Heinonen, M.H.; Laiho, T.; Batirev, I.G. Core-Level XPS Spectra of Fullerene, Highly Oriented Pyrolitic Graphite, and Glassy Carbon. J. Electron Spectros. Relat. Phenomena 2003, 128, 205–213. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, J.-J.; Yang, M.-P.; Meng, W.-J.; Wang, H.; Lu, J.-X. CuO Nanoparticles Supported on TiO2 with High Efficiency for CO2 Electrochemical Reduction to Ethanol. Catalysts 2018, 8, 171. [Google Scholar] [CrossRef]
- Ibupoto, Z.H.; Tahira, A.; Raza, H.; Ali, G.; Khand, A.A.; Jilani, N.S.; Mallah, A.B.; Yu, C.; Willander, M. Synthesis of Heart/Dumbbell-like CuO Functional Nanostructures for the Development of Uric Acid Biosensor. Materials 2018, 11, 1378. [Google Scholar] [CrossRef]
- Sakai, Y.; Ninomiya, S.; Hiraoka, K. XPS Depth Analysis of CuO by Electrospray Droplet Impact. Surf. interface Anal. 2012, 44, 938–941. [Google Scholar] [CrossRef]
- Chang, S.-S.; Lee, H.-J.; Park, H.J. Photoluminescence Properties of Spark-Processed CuO. Ceram. Int. 2005, 31, 411–415. [Google Scholar] [CrossRef]
- Malik, M.A.; Surepally, R.; Akula, N.; Cheedarala, R.K.; Alshehri, A.A.; Alzahrani, K.A. Oxidation of Alcohols into Carbonyl Compounds Using a CuO@ GO Nano Catalyst in Oxygen Atmospheres. Catalysts 2022, 13, 55. [Google Scholar] [CrossRef]
- Frikha, K.; Limousy, L.; Bouaziz, J.; Chaari, K.; Bennici, S. Synthesis, Characterization and Catalytic Activity of Ternary Oxide Catalysts Using the Microwave-Assisted Solution Combustion Method. Materials 2020, 13, 4607. [Google Scholar] [CrossRef]
- Perez, E.V.; Balkus, K.J., Jr.; Ferraris, J.P.; Musselman, I.H. Metal-Organic Polyhedra 18 Mixed-Matrix Membranes for Gas Separation. J. Memb. Sci. 2014, 463, 82–93. [Google Scholar] [CrossRef]
- Abeykoon, N.C.; Bonso, J.S.; Ferraris, J.P. Supercapacitor Performance of Carbon Nanofiber Electrodes Derived from Immiscible PAN/PMMA Polymer Blends. Rsc Adv. 2015, 5, 19865–19873. [Google Scholar] [CrossRef]
- He, D.; Xing, S.; Sun, B.; Cai, H.; Suo, H.; Zhao, C. Design and Construction of Three-Dimensional Flower-like CuO Hierarchical Nanostructures on Copper Foam for High Performance Supercapacitor. Electrochim. Acta 2016, 210, 639–645. [Google Scholar] [CrossRef]
- Indumathi, N.; Sridevi, C.; Gowdhaman, A.; Ramesh, R. Synthesis, Structural Analysis, and Electrochemical Performance of Chitosan Incorporated CuO Nanomaterial for Supercapacitor Applications. Inorg. Chem. Commun. 2023, 156, 111222. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, X.; Jiang, D.; Jia, D.; Liu, J. Hierarchical CuO Nanorod Arrays in Situ Generated on Three-Dimensional Copper Foam via Cyclic Voltammetry Oxidation for High-Performance Supercapacitors. J. Mater. Chem. A 2018, 6, 10474–10483. [Google Scholar] [CrossRef]
- Sayyed, S.G.; Shaikh, A.V.; Shinde, U.P.; Hiremath, P.; Naik, N. Copper Oxide-Based High-Performance Symmetric Flexible Supercapacitor: Potentiodynamic Deposition. J. Mater. Sci. Mater. Electron. 2023, 34, 1361. [Google Scholar] [CrossRef]
- Chen, J.; Xu, J.; Zhou, S.; Zhao, N.; Wong, C.-P. Facile and Scalable Fabrication of Three-Dimensional Cu(OH)2 Nanoporous Nanorods for Solid-State Supercapacitors. J. Mater. Chem. A 2015, 3, 17385–17391. [Google Scholar] [CrossRef]
- Zhan, Y.; Bai, J.; Guo, F.; Zhou, H.; Shu, R.; Yu, Y.; Qian, L. Facile Synthesis of Biomass-Derived Porous Carbons Incorporated with CuO Nanoparticles as Promising Electrode Materials for High-Performance Supercapacitor Applications. J. Alloys Compd. 2021, 885, 161014. [Google Scholar] [CrossRef]
- Zhu, Z.; Wei, C.; Jiang, D.; Wu, X.; Lu, M. Design and Synthesis of MOF-Derived CuO/g-C3N4composites with Octahedral Structures as Advanced Anode Materials for Asymmetric Supercapacitors with High Energy and Power Densities. Mater. Adv. 2022, 3, 672–681. [Google Scholar] [CrossRef]
- Li, X.; Hector, A.L.; Owen, J.R. Evaluation of Cu3N and CuO as Negative Electrode Materials for Sodium Batteries. J. Phys. Chem. C 2014, 118, 29568–29573. [Google Scholar] [CrossRef]
- Vidyadharan, B.; Misnon, I.I.; Ismail, J.; Yusoff, M.M.; Jose, R. High Performance Asymmetric Supercapacitors Using Electrospun Copper Oxide Nanowires Anode. J. Alloys Compd. 2015, 633, 22–30. [Google Scholar] [CrossRef]
- He, X.; Mao, X.; Zhang, C.; Yang, W.; Zhou, Y.; Yang, Y.; Xu, J. Flexible Binder-Free Hierarchical Copper Sulfide/Carbon Cloth Hybrid Supercapacitor Electrodes and the Application as Negative Electrodes in Asymmetric Supercapacitor. J. Mater. Sci. Mater. Electron. 2020, 31, 2145–2152. [Google Scholar] [CrossRef]
- Marroquin, J.B.; Rhee, K.Y.; Park, S.J. Chitosan Nanocomposite Films: Enhanced Electrical Conductivity, Thermal Stability, and Mechanical Properties. Carbohydr. Polym. 2013, 92, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Haque, S.F.B.; Tian, Y.; Ferraris, J.P.; Balkus, K.J., Jr. Organic–Inorganic Nanohybrids in Supercapacitors. In Hybrid Nanomaterials: Biomedical, Environmental and Energy Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 359–383. [Google Scholar]
- Yadav, M.S.; Sinha, A.K.; Singh, M.N.; Kumar, A. Electrochemical Study of Copper Oxide and Activated Charcoal Based Nanocomposite Electrode for Supercapacitor. Mater. Today Proc. 2021, 46, 5722–5729. [Google Scholar] [CrossRef]
- Yadav, M.S. Metal Oxides Nanostructure-Based Electrode Materials for Supercapacitor Application. J. Nanoparticle Res. 2020, 22, 1–18. [Google Scholar] [CrossRef]
- Ramesh, S.; Kathalingam, A.; Karuppasamy, K.; Kim, H.-S.; Kim, H.S. Nanostructured CuO/Co2O4@ Nitrogen Doped MWCNT Hybrid Composite Electrode for High-Performance Supercapacitors. Compos. Part B Eng. 2019, 166, 74–85. [Google Scholar] [CrossRef]
- Yadav, M.S. Fabrication and Characterization of Supercapacitor Electrodes Using Chemically Synthesized CuO Nanostructure and Activated Charcoal (AC) Based Nanocomposite. J. Nanoparticle Res. 2020, 22, 1–20. [Google Scholar] [CrossRef]
- Chatterjee, S.; Ray, A.; Mandal, M.; Das, S.; Bhattacharya, S.K. Synthesis and Characterization of CuO-NiO Nanocomposites for Electrochemical Supercapacitors. J. Mater. Eng. Perform. 2020, 29, 8036–8048. [Google Scholar] [CrossRef]
- Liu, Y.; Ying, Y.; Mao, Y.; Gu, L.; Wang, Y.; Peng, X. CuO Nanosheets/RGO Hybrid Lamellar Films with Enhanced Capacitance. Nanoscale 2013, 5, 9134–9140. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Abbas, M.; Haque, S.F.B.; Tian, S.; Zhu, X.; Xiong, G.; Ferraris, J.P.; Balkus, K.J., Jr. Vanadium Sesquioxide/Nitride Nanostructures in Electrospun Carbon Fibers for High Energy Density Supercapacitors. ACS Appl. Nano Mater. 2023, 6, 22720–22729. [Google Scholar] [CrossRef]
- Mei, B.A.; Lau, J.; Lin, T.; Tolbert, S.H.; Dunn, B.S.; Pilon, L. Physical Interpretations of Electrochemical Impedance Spectroscopy of Redox Active Electrodes for Electrical Energy Storage. J. Phys. Chem. C 2018, 122, 24499–24511. [Google Scholar] [CrossRef]
- Shinde, S.K.; Mohite, S.M.; Kadam, A.A.; Yadav, H.M.; Ghodake, G.S.; Rajpure, K.Y.; Lee, D.S.; Kim, D.Y. Effect of Deposition Parameters on Spray Pyrolysis Synthesized CuO Nanoparticle Thin Films for Higher Supercapacitor Performance. J. Electroanal. Chem. 2019, 850, 113433. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, R.; Dong, Z.; Lin, H.; Han, S. An Illumination-Assisted Supercapacitor of Rice-like CuO Nanosheet Coated Flexible Carbon Fiber. Electrochim. Acta 2022, 430, 140789. [Google Scholar] [CrossRef]
- Bu, I.Y.Y.; Huang, R. Fabrication of CuO-Decorated Reduced Graphene Oxide Nanosheets for Supercapacitor Applications. Ceram. Int. 2017, 43, 45–50. [Google Scholar] [CrossRef]
- Sudhakar, Y.N.; Hemant, H.; Nitinkumar, S.S.; Poornesh, P.; Selvakumar, M. Green Synthesis and Electrochemical Characterization of RGO–CuO Nanocomposites for Supercapacitor Applications. Ionics 2017, 23, 1267–1276. [Google Scholar] [CrossRef]
- Wang, R.; Xu, C.; Lee, J.-M. High Performance Asymmetric Supercapacitors: New NiOOH Nanosheet/Graphene Hydrogels and Pure Graphene Hydrogels. Nano Energy 2016, 19, 210–221. [Google Scholar] [CrossRef]
- Purushothaman, K.K.; Saravanakumar, B.; Babu, I.M.; Sethuraman, B.; Muralidharan, G. Nanostructured CuO/Reduced Graphene Oxide Composite for Hybrid Supercapacitors. RSC Adv. 2014, 4, 23485–23491. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Kim, S.-J. Growth, Characterization and Electrochemical Properties of Hierarchical CuO Nanostructures for Supercapacitor Applications. Mater. Res. Bull. 2013, 48, 3136–3139. [Google Scholar] [CrossRef]
- Dubal, D.P.; Gund, G.S.; Lokhande, C.D.; Holze, R. CuO Cauliflowers for Supercapacitor Application: Novel Potentiodynamic Deposition. Mater. Res. Bull. 2013, 48, 923–928. [Google Scholar] [CrossRef]
- Moosavifard, S.E.; El-Kady, M.F.; Rahmanifar, M.S.; Kaner, R.B.; Mousavi, M.F. Designing 3D Highly Ordered Nanoporous CuO Electrodes for High-Performance Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 4851–4860. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Dai, S.; Liu, G.; Xi, Y.; Hu, C.; Wang, X. CuO Nanoflowers Growing on Carbon Fiber Fabric for Flexible High-Performance Supercapacitors. Electrochim. Acta 2016, 203, 1–8. [Google Scholar] [CrossRef]
Current Density (A/g) | Specific Capacitance (F/g) | Energy Density (Wh/kg) | Power Density (W/kg) |
---|---|---|---|
1 | 206.2 | 10.3 | 600 |
2 | 148.2 | 7.4 | 1200 |
3 | 124.5 | 6.2 | 1800 |
4 | 101.0 | 5.0 | 2400 |
5 | 77.5 | 3.9 | 3000 |
6 | 61.9 | 3.1 | 3600 |
7 | 49.2 | 2.5 | 4200 |
8 | 39.7 | 2.0 | 4800 |
9 | 34.2 | 1.7 | 5400 |
10 | 29.5 | 1.5 | 6000 |
Material | Electrolyte | Energy Density (W h kg −1) | Power Density (kW kg −1) | Ref. |
---|---|---|---|---|
CuO−activated charcoal | 1.0 M NaOH | 2.28 | 0.62 | [56] |
CuO nanosheet/AC | 6.0 M KOH | 5.59 | 0.84 | [57] |
CuO/Co3O4 MWCNT | 5.0 M KOH | 7.54 | 0.25 | [58] |
Activated charcoal–CuO (1:1) | 6.0 M KOH | 4.15 | 0.65 | [59] |
CuO−NiO nanocomposites | 1.0 M H2SO4 | 3.14 | 0.51 | [60] |
CuO nanosheet/rGO | 6 M KOH | 3.5 | 0.2 | [61] |
This work | 6 M KOH | 10.3 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haque, S.F.B.; Balkus, K.J., Jr.; Ferraris, J.P. MOP−18−Derived CuO Fiber for Hybrid Supercapacitor Electrodes. Materials 2024, 17, 1444. https://doi.org/10.3390/ma17061444
Haque SFB, Balkus KJ Jr., Ferraris JP. MOP−18−Derived CuO Fiber for Hybrid Supercapacitor Electrodes. Materials. 2024; 17(6):1444. https://doi.org/10.3390/ma17061444
Chicago/Turabian StyleHaque, Syed Fahad Bin, Kenneth J. Balkus, Jr., and John P. Ferraris. 2024. "MOP−18−Derived CuO Fiber for Hybrid Supercapacitor Electrodes" Materials 17, no. 6: 1444. https://doi.org/10.3390/ma17061444
APA StyleHaque, S. F. B., Balkus, K. J., Jr., & Ferraris, J. P. (2024). MOP−18−Derived CuO Fiber for Hybrid Supercapacitor Electrodes. Materials, 17(6), 1444. https://doi.org/10.3390/ma17061444