The {332}<113> Twinning Behavior of a Ti-15Mo Medical Alloy during Cyclic Deformation and Its Effect on Microstructure and Performance
Abstract
:1. Introduction
2. Experimental
2.1. Specimen Preparation
2.2. In Situ Tensile and Tension–Compression Cyclic Deformation and Heat Treatment
2.3. Hardness and Tribological Tests
3. Results and Discussion
3.1. In Situ EBSD Tensile Cyclic Deformation with a 2% Strain Amplitude
3.2. Cyclic Tension–Compression Tests with 1%, 2%, and 3% Strain Amplitude
3.3. Effect of Heat Treatment on the Hardness and Tribological Properties of the Alloy
4. Conclusions
- Cyclical tensile strain is beneficial to refining grains and improving the microstructure of the Ti-15Mo alloy. The TWIP effect induced by {332}<113> twins is the primary mechanism for grain refinement.
- In contrast to the alloy produced with 1% and 2% tension–compression cyclic deformation, the alloy deformed with a 3% strain amplitude had the optimal microstructure due to abundant and crossed twins.
- The hardness and friction properties of Ti-15Mo alloys in variable forms after undergoing different heat treatments show large differences, and the selection of a suitable heat treatment regime can further optimize the properties of the alloy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.C.; Xu, T.W.; Sun, B.Q.; Lv, B.J.; Wang, H. Effect of strontium-doped coating prepared by microarc oxidation and hydrothermal treatment on apatite induction ability of Ti13Nb13Zr alloy in vitro. J. Mater. Res. 2022, 37, 2675–2685. [Google Scholar] [CrossRef]
- Liu, Y.C.; Xu, T.W.; Zhang, S.S.; Ji, H.; Lv, B.J.; Cui, N. Effect of Microstructural and Textural Anisotropy on the Tensile Properties of Selective Laser Melted and Annealed Ti6Al4VE Alloy. Adv. Eng. Mater. 2022, 25, 2201552. [Google Scholar] [CrossRef]
- Zhang, L.; Ouyang, W.; Wu, D.; Sheng, L.; Guo, C.; Ma, L.; Chen, Z.; Zhu, Z.; Du, Y.; Cui, P.; et al. Effect of Synchronized Laser Shock Peening on Decreasing Defects and Improving Microstructures of Ti-6Al-4V Laser Joint. Materials 2023, 16, 4570. [Google Scholar] [CrossRef] [PubMed]
- Abdellah, M.; Alharthi, H. Fracture Toughness and Fatigue Crack Growth Analyses on a Biomedical Ti-27Nb Alloy under Constant Amplitude Loading Using Extended Finite Element Modelling. Materials 2023, 16, 4467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.S.; Xu, T.W.; Sun, M.X.; Lv, B.J.; Ma, X.H. Effects of microstructure and texture evolution during the industrial ECAE and recrystallization on tensile properties of pure niobium. Mater. Sci. Eng. A 2021, 807, 140896. [Google Scholar] [CrossRef]
- Haase, F.; Siemers, C.; Rösler, J. Two novel titanium alloys for medical applications: Thermo-mechanical treatment, mechanical properties, and fracture analysis. J. Mater. Res. 2022, 37, 2589–2603. [Google Scholar] [CrossRef]
- Lee, Y.S.; Niinomi, M.; Nakai, M.; Narita, K.; Liu, H. Effect of Solute Oxygen on Compressive Fatigue Strength of Spinal Fixation Rods Made of Ti–29Nb–13Ta–4.6Zr Alloys. Mater. Trans. 2016, 57, 1993–1997. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Chen, G.F.; Zhang, S.; Zhao, C.C.; Chen, Z.; Shen, B.L. Research Progress on Composition Design, Deformation Mechanism and Mechanical Properties of Metastable β Titanium Alloy. Rare Metal Mat. Eng. 2020, 49, 370–376. [Google Scholar]
- Hu, C.Q.; Liu, C.X.; Chen, B.; Zhao, Z.; Huang, Z.K.; Sun, W. Study on {332}<113> deformtion twinning of Ti-25 Nb-25 Ta alloy during tensile deformation by EBSD. Electron Microsc. 2016, 35, 386–392. [Google Scholar]
- Zhang, J.R.; Zhang, Y.W.; Hao, Y.L.; Li, S.J.; Yang, R. Plastic Deformation Behavior of Biomedical Ti-24Nb-4Zr-8Sn Single Crystal Alloy. Acta Metall. Sin. 2017, 53, 1385–1392. [Google Scholar]
- Ovcharenko, V.E.; Psaknye, S.G.; Ivanov, Y.F.; Mokhovikov, A.A.; Baohai, Y.; Yanhui, Z.; Ignat’ev, A.S. Effect of Nanosize Structures on Physical Characteristics of Hard Metal Subsurface. Rare Metal Mat. Eng. 2015, 44, 1–6. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, J.Y.; Marteleur, M.; Gloriant, T.; Vermaut, P.; Laillé, D.; Prima, F. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects. Acta Mater. 2013, 61, 6406–6417. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Xin, R.; Xin, S.; Liu, Q. Understanding cross boundary {332}<113> twins in a Ti-15Mo alloy by composite Schmid factor. Mater. Charact. 2022, 193, 112310. [Google Scholar]
- Zhang, J.Y.; Li, J.S.; Chen, Z.; Meng, Q.K.; Sun, F.; Shen, B.L. Microstructural evolution of a ductile metastable β titanium alloy with combined TRIP/TWIP effects. J. Alloys Compd. 2017, 699, 775–782. [Google Scholar] [CrossRef]
- Gao, J.; Huang, Y.; Guan, D.; Knowles, A.J.; Ma, L.; Dye, D.; Rainforth, W.M. Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate. Acta Mater. 2018, 152, 301–314. [Google Scholar] [CrossRef]
- Reck, A.; Pilz, S.; Kuczyk, M.; Gebert, A.; Zimmermann, M. Cyclic deformation characteristics of the metastable β-type Ti–40Nb alloy. Mater. Sci. Eng. A 2019, 761, 137966. [Google Scholar] [CrossRef]
- Banerjee, D.; Williams, J.C. Perspectives on Titanium Science and Technology. Acta Mater. 2013, 61, 844–879. [Google Scholar] [CrossRef]
- Lilensten, L.; Danard, Y.; Brozek, C.; Mantri, S.; Castany, P.; Gloriant, T.; Prima, F. On the heterogeneous nature of deformation in a strain-transformable beta metastable Ti-V-Cr-Al alloy. Acta Mater. 2019, 162, 268–276. [Google Scholar] [CrossRef]
- Li, P.R.; Fan, Q.B.; Zhu, X.J.; Gong, H.C. Study of high-speed-impact-induced conoidal fracture of Ti alloy layer in composite armor plate composed of Ti- and Al-alloy layers. Def. Technol. 2021, 17, 1434–1443. [Google Scholar] [CrossRef]
- Cho, K.; Morioka, R.; Harjo, S.; Kawasaki, T.; Yasuda, H.Y. Study on formation mechanism of {332}<113> deformation twinning in metastable β-type Ti alloy focusing on stress-induced α″ martensite phase. Scr. Mater. 2020, 177, 106–111. [Google Scholar]
- Castany, P.; Yang, Y.; Bertrand, E.; Gloriant, T. Reversion of a Parent {130}<310> α″Martensitic Twinning System at the Origin of {332}<113> β Twins Observed in Metastable β Titanium Alloys. Phys. Rev. Lett. 2016, 117, 245501. [Google Scholar] [PubMed]
- Tobe, H.; Kim, H.Y.; Inamura, T.; Hosoda, H.; Miyazaki, S. Origin of {332} twinning in metastable β-Ti alloys. Acta Mater. 2014, 64, 345–355. [Google Scholar] [CrossRef]
- Liu, X.; Sun, L.; Zhu, L.; Liu, J.; Lu, K.; Lu, J. High-order hierarchical nanotwins with superior strength and ductility. Acta Mater. 2018, 149, 397–406. [Google Scholar] [CrossRef]
- Fang, T.H.; Li, W.L.; Tao, N.R.; Lu, K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 2011, 331, 1587–1590. [Google Scholar] [CrossRef]
- Deng, L.; Cui, K.; Wang, B.; Xiang, H.; Li, Q. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature. Acta Metall. Sin. 2019, 55, 976–986. [Google Scholar]
- Hagihara, K.; Nakano, T. Experimental clarification of the cyclic deformation mechanisms of β-type Ti–Nb–Ta–Zr-alloy single crystals developed for the single-crystalline implant. Int. J. Plast. 2017, 98, 27–44. [Google Scholar] [CrossRef]
- Lilensten, L.; Sun, F.; Hocini, A.; Dirras, G.; Vermaut, P.; Prima, F. {332} mechanical detwinning as a deformation mechanism in the β-metastable Ti-15Mo alloy during cyclic loading. Scr. Mater. 2023, 232, 115503. [Google Scholar] [CrossRef]
- Kümmel, D.; Hamann-Schroer, M.; Hetzner, H.; Schneider, J. Tribological behavior of nanosecond-laser surface textured Ti6Al4V. Wear 2019, 422–423, 261–268. [Google Scholar] [CrossRef]
- Castany, P.; Ramarolahy, A.; Prima, F.; Laheurte, P.; Curfs, C.; Gloriant, T. In situ synchrotron X-ray diffraction study of the martensitic transformation in superelastic Ti-24Nb-0.5N and Ti-24Nb-0.5O alloys. Acta Mater. 2015, 88, 102–111. [Google Scholar] [CrossRef]
- Brozek, C.; Sun, F.; Vermaut, P.; Millet, Y.; Lenain, A.; Embury, D.; Prima, F. A β-titanium alloy with extra high strain-hardening rate: Design and mechanical properties. Scr. Mater. 2016, 114, 60–64. [Google Scholar] [CrossRef]
- Wang, C.H.; Liu, M.; Hu, P.F.; Peng, J.C.; Wang, J.A.; Ren, Z.M.; Cao, G.H. The effects of α″ and ω phases on the superelasticity and shape memory effect of binary Ti-Mo alloys. J. Alloys Compd. 2017, 720, 488–496. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, B.; Meng, Z.; Qu, L.; Wang, H.; Cao, S.; Huang, A. {332}<113> Twinning transfer behavior and its effect on the twin shape in a beta-type Ti-23.1Nb-2.0Zr-1.0O alloy. J. Mater. Sci. Technol. 2021, 91, 58–66. [Google Scholar]
- Min, X.H.; Emura, S.; Chen, X.; Zhou, X.; Tsuzaki, K.; Tsuchiya, K. Deformation microstructural evolution and strain hardening of differently oriented grains in twinning-induced plasticity β titanium alloy. Mater. Sci. Eng. A 2016, 659, 1–11. [Google Scholar] [CrossRef]
- Min, X.H.; Tsuzaki, K.; Emura, S.; Sawaguchi, T.; Ii, S.; Tsuchiya, K. {332}<113> Twinning system selection in a β-type Ti–15Mo–5Zr polycrystalline alloy. Mater. Sci. Eng. A 2013, 579, 164–169. [Google Scholar]
- Bertrand, E.; Castany, P.; Péron, I.; Gloriant, T. Twinning system selection in a metastable β-titanium alloy by Schmid factor analysis. Scr. Mater. 2011, 64, 1110–1113. [Google Scholar] [CrossRef]
- Lin, F.; Marteleur, M.; Jacques, P.J.; Delannay, L. Transmission of {332}<113> twins across grain boundaries in a metastable β-titanium alloy. Int. J. Plast. 2018, 105, 195–210. [Google Scholar]
- Deng, C.; Liu, S.F.; Fan, H.Y.; Hao, X.B.; Ji, J.L.; Zhang, Z.Q.; Liu, Q. Elimination of Elongated Bands by Clock Rolling in High-Purity Tantalum. Metall. Mater. Trans. A 2015, 46, 5477–5481. [Google Scholar] [CrossRef]
- Chai, L.; Xia, J.; Zhi, Y.; Chen, K.; Wang, T.; Song, B.; Guo, N. Strengthening or weakening texture intensity of Zr alloy by modifying cooling rates from α+β region. Mater. Chem. Phys. 2018, 213, 414–421. [Google Scholar] [CrossRef]
- Allain, S.; Chateau, J.P.; Bouaziz, O.; Migot, S.; Guelton, N. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater. Sci. Eng. A 2004, 387–389, 143–147. [Google Scholar] [CrossRef]
- Bouaziz, O.; Guelton, N. Modelling of TWIP effect on work-hardening. Mater. Sci. Eng. A 2001, 319–321, 246–249. [Google Scholar] [CrossRef]
- Dai, J.; Min, X.; Wang, L. Dynamic response and adiabatic shear behavior of β-type Ti–Mo alloys with different deformation modes. Mater. Sci. Eng. A 2022, 857, 144108. [Google Scholar] [CrossRef]
- Sidhu, S.S.; Singh, H.; Gepreel, M.A.H. A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 121, 111661. [Google Scholar] [CrossRef] [PubMed]
- He, Z.M.; Jiang, Q.C.; Fu, S.B.; Xie, J.P. Improved work-hardening ability and wear resistance of austenitic manganese steel under non-severe impact-loading conditions. Wear 1987, 120, 305–319. [Google Scholar] [CrossRef]
- Jha, A.K.; Prasad, B.K.; Modi, O.P.; Das, S.; Yegneswaran, A.H. Correlating microstructural features and mechanical properties with abrasion resistance of a high strength low alloy steel. Wear 2003, 254, 120–128. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Han, Z.; Wang, K.; Lu, K. Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear 2006, 260, 942–948. [Google Scholar] [CrossRef]
- Wang, Z.B.; Tao, N.R.; Li, S.; Wang, W.; Liu, G.; Lu, J.; Lu, K. Effect of surface nanocrystallization on friction and wear properties in low carbon steel. Mater. Sci. Eng. A 2003, 352, 144–149. [Google Scholar] [CrossRef]
- Li, G.B.; Chen, J.; Guan, D.L. Study on mechanical properties of nano-Fe3O4 reinforced nitrile butadiene rubber. Tribol. Int. 2010, 43, 2216–2221. [Google Scholar] [CrossRef]
Element | Ti | Mo | O |
---|---|---|---|
Mass fraction/% | 85.22 | 14.7 | 0.08 |
Temperature, Af/°C | 755 |
G3 | −0.4965 | 0.1641 | 0.0533 | 0.2257 | 0 | 0.3693 | −0.3734 | 0.3939 | −0.0369 | 0.0657 | 0.1723 | 0.1641 |
G8 | −0.4154 | −0.1929 | 0.3709 | 0.4153 | −0.1926 | 0.3709 | 0 | 0.2225 | 0.0148 | 0 | 0.2225 | 0.0148 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Sun, B.; Zhang, S.; Liu, Y.; Sun, W.; Cui, N.; Lv, B. The {332}<113> Twinning Behavior of a Ti-15Mo Medical Alloy during Cyclic Deformation and Its Effect on Microstructure and Performance. Materials 2024, 17, 1462. https://doi.org/10.3390/ma17071462
Xu T, Sun B, Zhang S, Liu Y, Sun W, Cui N, Lv B. The {332}<113> Twinning Behavior of a Ti-15Mo Medical Alloy during Cyclic Deformation and Its Effect on Microstructure and Performance. Materials. 2024; 17(7):1462. https://doi.org/10.3390/ma17071462
Chicago/Turabian StyleXu, Tiewei, Bingqing Sun, Shanshan Zhang, Yuancai Liu, Wei Sun, Ning Cui, and Binjiang Lv. 2024. "The {332}<113> Twinning Behavior of a Ti-15Mo Medical Alloy during Cyclic Deformation and Its Effect on Microstructure and Performance" Materials 17, no. 7: 1462. https://doi.org/10.3390/ma17071462
APA StyleXu, T., Sun, B., Zhang, S., Liu, Y., Sun, W., Cui, N., & Lv, B. (2024). The {332}<113> Twinning Behavior of a Ti-15Mo Medical Alloy during Cyclic Deformation and Its Effect on Microstructure and Performance. Materials, 17(7), 1462. https://doi.org/10.3390/ma17071462