Experimental and Simulation Investigation on Fatigue Performance of H13 Steel Tools in Friction Stir Welding of Aluminum Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tool Material and Geometry
2.2. FSW Experimental Procedure
2.3. Numerical Modelling
2.3.1. FSW ALE Model
- The convective heat exchange coefficient of the workpiece and the welding tool with the surroundings is set to 20 Wm−2K−1.
- The thermal conductivity coefficient at the contact regions between the workpiece and the welding tool is set to 11,000 Wm−2K−1.
2.3.2. Tool Stress Analysis Model
2.3.3. Tool Fatigue Model
3. Experimental Results
3.1. Fracture Failure Analysis of the Tool Fracture Surface
3.2. FSW Simulation Model Verification
4. Simulation Results and Discussions
4.1. Temperature Field of the Welding Tool
4.2. Material Flow Behavior
4.3. Stress Analysis of the Welding Tool
4.4. Fatigue Life Prediction of the Welding Tool
4.5. Further Analysis of Fatigue Failure Mechanism of Welding Tool
4.6. Impact on the the Technological Design
5. Conclusions
- The primary failure mode of the welding tool in the FSW of low-melting point alloys, such as aluminum alloys, is fatigue fracture. This mainly occurs at the root of the tool pin. The maximum temperature fluctuations of the welding tool are within a small range of 360 °C to 375 °C, ruling out thermal fatigue as a significant mechanism.
- Numerical simulations indicate that the maximum equivalent stress is concentrated at the root of the tool pin and at local positions of the tool shoulder with scroll concave grooves. This aligns with experimental results of fracture surface analysis, highlighting that structural changes can lead to stress concentration and crack initiation.
- At the root of the tool pin, the maximum principal stress alternates cyclically between tension and compression, with the maximum tensile stress exceeding the maximum compressive stress. The fatigue mechanism primarily involves high-cycle mechanical fatigue due to alternating mechanical tensile and compressive stresses. Multidirectional stresses, such as bending, tension, compression, and torsion, contribute to compound mechanical fatigue, with cyclic bending stress having the most significant influence.
- Increasing rotational speed reduces average stress and stress amplitude at the root of the tool pin, enhancing the fatigue life of the welding tool. Conversely, increasing welding speed results in higher average stress and stress amplitude, thereby reducing the fatigue life. A rotational speed of 1200 rpm is found to be more favorable for enhancing fatigue life, while a welding speed of 600 mm/min has a significant negative impact.
- The fatigue life prediction, which was conducted using the Tool Life module in DEFORM, aligns with experimental results to some extent, demonstrating the reliability of the prediction model. However, due to the limitation of collecting experimental data for the S-N curve of the welding tool, the accuracy of the fatigue life prediction model still needs further research and improvement in future work.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prabhakar, D.A.P.; Shettigar, A.K.; Herbert, M.A.; Manjunath, P.G.C.; Pimenov, D.Y.; Giasin, K.; Prakash, C. A comprehensive review of friction stir techniques in structural materials and alloys: Challenges and trends. J. Mater. Res. Technol. 2022, 20, 3025–3060. [Google Scholar] [CrossRef]
- Johnsen, M.R. Friction stir welding takes off at Boeing. Weld. J. 1999, 78, 35–39. [Google Scholar]
- Anand, R.; Sridhar, V.G. Studies on process parameters and tool geometry selecting aspects of friction stir welding—A review. Mater. Today Proc. 2020, 27, 576–583. [Google Scholar] [CrossRef]
- Maji, P.; Karmakar, R.; Nath, R.K.; Paul, P. An overview on friction stir welding/processing tools. Mater. Today Proc. 2022, 58, 57–64. [Google Scholar] [CrossRef]
- Kuritsyn, D.N.; Denisov, L.V.; Siluyanova, M.V.; Kuritsyna, V.V. Tool for Friction Stir Welding in the Aerospace Industry. Russ. Eng. Res. 2020, 40, 245–248. [Google Scholar] [CrossRef]
- Nathan, S.R.; Malarvizhi, S.; Balasubramanian, V.; Rao, A.G. Failure analysis of tungsten based tool materials used in friction stir welding of high strength low alloy steels. Eng. Fail. Anal. 2016, 66, 88–98. [Google Scholar] [CrossRef]
- Arora, A.; Mehta, M.; De, A.; DebRoy, T. Load bearing capacity of tool pin during friction stir welding. Int. J. Adv. Manuf. Technol. 2012, 61, 911–920. [Google Scholar] [CrossRef]
- Rai, R.; De, A.; Bhadeshia, H.K.D.H.; DebRoy, T. Review: Friction Stir Welding Tools. Sci. Technol. Weld. Join. 2011, 16, 325–342. [Google Scholar] [CrossRef]
- Sahlot, P.; Jha, K.; Dey, G.K.; Arora, A. Quantitative wear analysis of H13 steel tool during friction stir welding of Cu-0.8%Cr-0.1%Zr alloy. Wear 2017, 378–379, 82–89. [Google Scholar] [CrossRef]
- Prado, R.A.; Murr, L.E.; Shindo, D.J.; Soto, K.F. Tool wear in the friction-stir welding of aluminum alloy 6061+20% Al2O3: A preliminary study. Scr. Mater. 2001, 45, 75–80. [Google Scholar] [CrossRef]
- Michael, H.; Felix, W.; Michael, G.; James, A.L.; Sebastian, M.; Jean, P.B. A systematic analysis of maximum tolerable tool wear in friction stir welding. Weld. World 2023, 67, 325–339. [Google Scholar]
- Mishra, R.S.; Ma, Z.Y. Friction stir welding and processing. Mater. Sci. Eng. R Rep. 2005, 50, 1–78. [Google Scholar] [CrossRef]
- Liu, F.C.; Hovanski, Y.; Miles, M.P.; Sorensen, C.D.; Nelson, T.W. A review of friction stir welding of steels: Tool, material flow, microstructure, and properties. J. Mater. Sci. Technol. 2018, 34, 39–57. [Google Scholar] [CrossRef]
- Wang, J.Y.; Su, J.Q.; Mishra, R.S.; Xu, R.; Baumann, J.A. Tool wear mechanisms in friction stir welding of Ti–6Al–4V alloy. Wear 2014, 321, 25–32. [Google Scholar] [CrossRef]
- Emamian, S.S.; Awang, M.; Yusof, F.; Sheikholeslam, M.; Mehrpouya, M. Improving the friction stir welding tool life for joining the metal matrix composites. Int. J. Adv. Manuf. Technol. 2020, 106, 3217–3227. [Google Scholar] [CrossRef]
- Sato, Y.S.; Urata, M.; Kokawa, H. Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063. Metall. Mater. Trans. A 2002, 33, 625–635. [Google Scholar] [CrossRef]
- Colegrove, P.A.; Shercliff, H.R. Experimental and numerical analysis of aluminium alloy 7075-T7351 friction stir welds. Sci. Technol. Weld. Join. 2003, 8, 360–368. [Google Scholar] [CrossRef]
- Su, H.; Wu, C.S.; Pittner, A.; Rethmeier, M. Simultaneous measurement of tool torque, traverse force and axial force in friction stir welding. J. Manuf. Process. 2013, 15, 495–500. [Google Scholar] [CrossRef]
- Huang, Y.X.; Xie, Y.M.; Meng, X.C.; Lv, Z.L.; Cao, J. Numerical design of high depth-to-width ratio friction stir welding. J. Mater. Process. Technol. 2018, 252, 233–241. [Google Scholar] [CrossRef]
- Bradley, V.J. Temperature and Stress Effect Modeling in Fatigue of H13 Tool Steel at Elevated Temperatures with Applications in Friction Stir Welding. Master’s Thesis, Brigham Young University, Provo, UT, USA, 2015. [Google Scholar]
- Buchibabu, V.; Reddy, G.M.; De, A. Probing Torque, Traverse Force and Tool Durability in Friction Stir Welding of Aluminum Alloys. J. Mater. Process. Technol. 2017, 241, 86–92. [Google Scholar] [CrossRef]
- Moshwan, R.; Yusof, F.; Hassan, M.A.; Rahmat, S.M. Effect of tool rotational speed on force generation, microstructure and mechanical properties of friction stir welded Al-Mg-Cr-Mn(AA5052-O) alloy. Mater. Des. 2015, 66, 118–128. [Google Scholar] [CrossRef]
- Astarita, A.; Squillace, A.; Carrino, L. Experimental Study of the Forces Acting on the Tool in the Friction-Stir Welding of AA2024 T3 Sheets. J. Mater. Eng. Perform. 2014, 23, 3754–3761. [Google Scholar] [CrossRef]
- Mehta, M.; Reddy, G.M.; Rao, A.V.; De, A. Numerical modeling of friction stir welding using the tools with polygonal pins. Def. Technol. 2015, 11, 229–236. [Google Scholar] [CrossRef]
- Amini, S.; Amiri, M.R. Pin axis effects on forces in friction stir welding process. Int. J. Adv. Manuf. Technol. 2015, 78, 1795–1801. [Google Scholar] [CrossRef]
- Jain, R.; Pal, S.K.; Singh, S.B. Finite element simulation of pin shape influence on material flow, forces in friction stir welding. Int. J. Adv. Manuf. Technol. 2017, 94, 1781–1797. [Google Scholar] [CrossRef]
- Dialami, N.; Cervera, M.; Chiumenti, M.; Agelet de Saracibar, C. A fast and accurate two-stage strategy to evaluate the effect of the pin tool profile on metal flow, torque and forces in friction stir welding. Int. J. Mech. Sci. 2017, 122, 215–227. [Google Scholar] [CrossRef]
- Stephen, L.; Bharathiraja, G.; Jayakumar, V. Durability Map for The Friction Stir Welding Tools with Flat Faced Pins. Int. J. Integr. Eng. 2020, 12, 83–96. [Google Scholar]
- Zhang, Z.; Wu, Q.; Zhang, H.W. Prediction of fatigue life of welding tool in friction stir welding of AA6061-T6. Int. Manuf. Technol. 2016, 86, 3407–3415. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Q. Analytical and numerical studies of fatigue stresses in friction stir welding. Int. J. Adv. Manuf. Technol. 2015, 78, 1371–1380. [Google Scholar] [CrossRef]
- Lakshminarayanan, A.K.; Malarvizhi, S.; Balasubramanian, V. Developing friction stir welding window for AA2219 aluminium alloy. Trans. Nonferrous Met. Soc. China 2011, 21, 2339–2347. [Google Scholar] [CrossRef]
- Anderson-Wedge, K.; Stubblefield, G.; Zhu, N.; Long, B.; Daniewicz, S.R.; Allison, P.; Sowards, J.; Rodriguez, O.; Amaro, R. Characterization of the evolution of 2219-T87 aluminum as a function of the friction stir welding process. Int. J. Fatigue 2021, 142, 105954. [Google Scholar] [CrossRef]
- Li, S.S.; Yue, X.; Li, Q.Y.; Peng, H.L.; Dong, B.X.; Liu, T.S.; Yang, H.Y.; Fan, J.; Shu, S.L.; Qiu, F.; et al. Development and applications of aluminum alloys for aerospace industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar] [CrossRef]
- Chen, Y.C.; Liu, H.J.; Feng, J.C. Friction stir welding characteristics of different heat-treated-state 2219 aluminum alloy plates. Mater. Sci. Eng. A 2006, 420, 21–25. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, B.L.; Ma, Z.Y. Effect of welding parameters on microstructure and mechanical properties of friction stir welded 2219Al-T6 joints. J. Mater. Sci. 2012, 47, 4075–4086. [Google Scholar] [CrossRef]
- Kamal Babu, K.; Panneerselvam, K.; Sathiya, P.; Noorul Haq, A.; Sundarrajan, S.; Mastanaiah, P.; Srinivasa Murthy, C.V. Parameter optimization of friction stir welding of cryorolled AA2219 alloy using artificial neural network modeling with genetic algorithm. Int. J. Adv. Manuf. Technol. 2018, 94, 3117–3129. [Google Scholar] [CrossRef]
- SFTC. Deform Manual, Version 13.1; Software for Technical Computation; SFTC: Columbus, OH, USA, 2023. [Google Scholar]
- Suhuddin, U.F.H.; Fischer, V.; Santos, J.F. The thermal cycle during the dissimilar friction spot welding of aluminum and magnesium alloy. Scr. Mater. 2013, 68, 87–90. [Google Scholar] [CrossRef]
- Long, L.; Chen, G.G.; Zhang, S.; Liu, T.; Shi, Q.Y. Finite-element analysis of the tool tilt angle effect on the formation of friction stir welds. J. Manuf. Process. 2017, 30, 562–569. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.W. Numerical studies on effect of axial pressure in friction stir welding. Sci. Technol. Weld. Join. 2007, 12, 226–248. [Google Scholar] [CrossRef]
- Rathee, S.; Maheshwari, S.; Siddiquee, A.N.; Srivastava, M.; Sharma, S.K. Process parameters optimization for enhanced microhardness of AA 6061/SiC surface composites fabricated via Friction Stir Processing (FSP). Mater Today Proc. 2016, 3, 4151–4156. [Google Scholar] [CrossRef]
- Khandkar, M.Z.H.; Khan, J.A.; Reynolds, A.P. Prediction of temperature distribution and thermal history during friction stir welding: Input torque based model. Sci. Technol. Weld. Join. 2003, 8, 165–174. [Google Scholar] [CrossRef]
- Zhang, Z.; Wan, Z.Y. Predictions of tool forces in friction stir welding of AZ91 magnesium alloy. Sci. Technol. Weld. Join. 2009, 17, 495–500. [Google Scholar] [CrossRef]
- Asadi, P.; Mahdavinejad, R.A.; Tutunchilar, S. Simulation and experimental investigation of FSP of AZ91 magnesium alloy. Mater. Sci. Eng. A 2011, 528, 6469–6477. [Google Scholar] [CrossRef]
- Baxter, W.J.; Wang, P.C. Finite element prediction of high cycle fatigue life of aluminum alloys. Metall. Trans. A 1990, 21, 1151–1159. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, F.S.; Huang, T.; Song, K.X.; Zuo, P.P. Study on wear law and model of H13 hot working die steel based on high-temperature wear. J. Plast. Eng. 2018, 25, 187–193. [Google Scholar]
- Gronostajski, Z.; Kaszuba, M.; Polak, S.; Zwierzchowski, M.; Niechajowicz, A.; Hawryluk, M. The failure mechanisms of hot forging dies. Mater. Sci. Eng. A 2016, 657, 147–160. [Google Scholar] [CrossRef]
- Mehta, M.; Arora, A.; De, A.; DebRoy, T. Tool Geometry for Friction Stir Welding—Optimum Shoulder Diameter. Metall. Mater. Trans. A 2011, 42, 2716–2722. [Google Scholar] [CrossRef]
- Manuel, N.; Beltrão, D.; Galvão, I.; Leal, R.M.; Costa, J.D.; Loureiro, A. Influence of Tool Geometry and Process Parameters on Torque, Temperature, and Quality of Friction Stir Welds in Dissimilar Al Alloys. Materials 2021, 14, 6020. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Xue, L.; Wu, C. Optimizing the tool pin with three flats in friction stir welding of aluminum alloy. Int. J. Adv. Manuf. Technol. 2020, 108, 721–733. [Google Scholar] [CrossRef]
- Wehner, T.; Fatemi, A. Effect of mean stress on fatigue behavior of a hardened carbon steel. Int. J. Fatigue 1991, 13, 241–248. [Google Scholar] [CrossRef]
Thermal Expansion Coefficient (10−6 K) | Thermal Conductivity (W/(m∙K)) | Yield Strength (MPa) | Hardness (HRC) | ||||
---|---|---|---|---|---|---|---|
20~100 °C | 10.4 | 215 °C | 28.6 | 20~250 °C | 1455 | 20 °C | 50.2 |
100~200 °C | 11.5 | 350 °C | 28.4 | 250~425 °C | 1180 | 400 °C | 48.7 |
200~425 °C | 12.2 | 475 °C | 28.4 | 425~600 °C | 820 | 540 °C | 45.8 |
425~540 °C | 12.4 | 605 °C | 28.7 | 600~650 °C | 380 | 600 °C | 29.0 |
540~650 °C | 13.1 | 650 °C | 22.7 |
Chemical Composition (wt%) | Mechanical Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Al | Si | Mn | Mg | Fe | Zr | CU | Ti | V | Tensile Strength (MPa) | Extension Rate (%) |
REM | 0.08 | 0.26 | 0.005 | 0.12 | 0.15 | 6.18 | 0.42 | 0.07 | 315 | 8 |
Young’s Modulus (GPa) | Density (kg/m²) | Poisson’s Ratio ν | Thermal Conductivity (W/m/°C) | Heat Capacity (J/kg/°C) |
---|---|---|---|---|
68.9 | 2840 | 0.33 | 180 | 2.43 |
Direction | Min Stress (MPa) | (MPa) | (MPa) | |
---|---|---|---|---|
X | 695 | −509 | 602 | 93 |
Y | 395 | −241 | 318 | 154 |
Z | 569 | −671 | 620 | −51 |
XY shear plane | 171 | −171 | 171 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, L.; Zhang, X.; Gu, S.; Li, X.; Cheng, X.; Chen, G. Experimental and Simulation Investigation on Fatigue Performance of H13 Steel Tools in Friction Stir Welding of Aluminum Alloys. Materials 2024, 17, 1535. https://doi.org/10.3390/ma17071535
Long L, Zhang X, Gu S, Li X, Cheng X, Chen G. Experimental and Simulation Investigation on Fatigue Performance of H13 Steel Tools in Friction Stir Welding of Aluminum Alloys. Materials. 2024; 17(7):1535. https://doi.org/10.3390/ma17071535
Chicago/Turabian StyleLong, Ling, Xiaohong Zhang, Song Gu, Xiuxin Li, Xuefeng Cheng, and Gaoqiang Chen. 2024. "Experimental and Simulation Investigation on Fatigue Performance of H13 Steel Tools in Friction Stir Welding of Aluminum Alloys" Materials 17, no. 7: 1535. https://doi.org/10.3390/ma17071535
APA StyleLong, L., Zhang, X., Gu, S., Li, X., Cheng, X., & Chen, G. (2024). Experimental and Simulation Investigation on Fatigue Performance of H13 Steel Tools in Friction Stir Welding of Aluminum Alloys. Materials, 17(7), 1535. https://doi.org/10.3390/ma17071535