Structural Causes of Brittleness Changes in Aluminosilicate Glasses with Different Cooling Rates
Abstract
:1. Introduction
2. Simulation Details
2.1. Glass Preparation
2.2. Fracture Simulations
2.3. Enthalpy and Void Volume
2.4. Structural Characterization
3. Results and Discussion
3.1. Features of Samples with Different Cooling Rates
3.2. Structural Changes of the Sample during Stretching
3.3. Mechanism of Annealing Rate on Brittleness
- A.
- Influence of short- and medium-range structures (MRO)
- B.
- Influence of voids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Januchta, K.; Smedskjaer, M.M. Indentation Deformation in Oxide Glasses: Quantification, Structural Changes, and Relation to Cracking. J. Non-Cryst. Solids X 2018, 1, 100007. [Google Scholar] [CrossRef]
- Varshneya, A.K. Stronger Glass Products: Lessons Learned and yet to Be Learned. Int. J. Appl. Glass Sci. 2018, 9, 140–155. [Google Scholar] [CrossRef]
- Rouxel, T.; Yoshida, S. The Fracture Toughness of Inorganic Glasses. J. Am. Ceram. Soc. 2017, 100, 4374–4396. [Google Scholar] [CrossRef]
- Wondraczek, L.; Mauro, J.C.; Eckert, J.; Kühn, U.; Horbach, J.; Deubener, J.; Rouxel, T. Towards Ultrastrong Glasses. Adv. Mater. 2011, 23, 4578–4586. [Google Scholar] [CrossRef]
- Joy, A.; Bouchbinder, E.; Procaccia, I. Cooling-Rate Dependence of the Shear Modulus of Amorphous Solids. Phys. Rev. E 2013, 87, 042310. [Google Scholar] [CrossRef]
- Lee, B.M.; Baik, H.K.; Seong, B.S.; Munetoh, S.; Motooka, T. Generation of Glass SiO2 Structures by Various Cooling Rates: A Molecular-Dynamics Study. Comput. Mater. Sci. 2006, 37, 203–208. [Google Scholar] [CrossRef]
- Tilocca, A. Cooling Rate and Size Effects on the Medium-Range Structure of Multicomponent Oxide Glasses Simulated by Molecular Dynamics. J. Chem. Phys. 2013, 139, 114501. [Google Scholar] [CrossRef]
- Hoang, V.V.; Odagaki, T. Cooling-Rate Effects in Simple Monatomic Amorphous Nanoparticles. Philos. Mag. 2008, 88, 1461–1475. [Google Scholar] [CrossRef]
- Rouxel, T. Driving Force for Indentation Cracking in Glass: Composition, Pressure and Temperature Dependence. Phil. Trans. R. Soc. A 2015, 373, 20140140. [Google Scholar] [CrossRef]
- Malchow, P.; Johanns, K.E.; Möncke, D.; Korte-Kerzel, S.; Wondraczek, L.; Durst, K. Composition and Cooling-Rate Dependence of Plastic Deformation, Densification, and Cracking in Sodium Borosilicate Glasses during Pyramidal Indentation. J. Non-Cryst. Solids 2015, 419, 97–109. [Google Scholar] [CrossRef]
- Li, H.; Agarwal, A.; Tomozawa, M. Effect of Fictive Temperature on Dynamic Fatigue Behavior of Silica and Soda-Lime Glasses. J. Am. Ceram. Soc. 1995, 78, 1393–1396. [Google Scholar] [CrossRef]
- Varughese, B.; Lee, Y.-K.; Tomozawa, M. Effect of Fctive Temperature on Mechanical Strength of Soda-Lime Glasses. J. Non-Cryst. Solids 1998, 241, 134–139. [Google Scholar] [CrossRef]
- Smedskjaer, M.M.; Jensen, M.; Yue, Y. Effect of Thermal History and Chemical Composition on Hardness of Silicate Glasses. J. Non-Cryst. Solids 2010, 356, 893–897. [Google Scholar] [CrossRef]
- Tong, L.; Liu, S.; Sun, Y.; Gu, J.; Xu, S. Simulation and Measurement of Ultrathin Glass Residual Stress. Int. J. Appl. Glass Sci. 2023, 14, 279–287. [Google Scholar] [CrossRef]
- Ito, S.; Taniguchi, T. Effect of Cooling Rate on Structure and Mechanical Behavior of Glass by MD Simulation. J. Non-Cryst. Solids 2004, 349, 173–179. [Google Scholar] [CrossRef]
- Li, X.; Song, W.; Yang, K.; Krishnan, N.M.A.; Wang, B.; Smedskjaer, M.M.; Mauro, J.C.; Sant, G.; Balonis, M.; Bauchy, M. Cooling Rate Effects in Sodium Silicate Glasses: Bridging the Gap between Molecular Dynamics Simulations and Experiments. J. Chem. Phys. 2017, 147, 074501. [Google Scholar] [CrossRef]
- Deng, L.; Du, J. Effects of System Size and Cooling Rate on the Structure and Properties of Sodium Borosilicate Glasses from Molecular Dynamics Simulations. J. Chem. Phys. 2018, 148, 024504. [Google Scholar] [CrossRef]
- Lu, X.; Deng, L.; Huntley, C.; Ren, M.; Kuo, P.-H.; Thomas, T.; Chen, J.; Du, J. Mixed Network Former Effect on Structure, Physical Properties, and Bioactivity of 45S5 Bioactive Glasses: An Integrated Experimental and Molecular Dynamics Simulation Study. J. Phys. Chem. B 2018, 122, 2564–2577. [Google Scholar] [CrossRef]
- Vollmayr, K.; Kob, W.; Binder, K. Cooling-Rate Effects in Amorphous Silica: A Computer-Simulation Study. Phys. Rev. B 1996, 54, 15808–15827. [Google Scholar] [CrossRef]
- Lane, J.M.D. Cooling Rate and Stress Relaxation in Silica Melts and Glasses via Microsecond Molecular Dynamics. Phys. Rev. E 2015, 92, 012320. [Google Scholar] [CrossRef]
- Zhang, Z.; Ispas, S.; Kob, W. Origin of the Non-Linear Elastic Behavior of Silicate Glasses. Acta Mater. 2022, 231, 117855. [Google Scholar] [CrossRef]
- Tang, L.; Smedskjaer, M.M.; Bauchy, M. The Brittle-to-Ductile Transition in Aluminosilicate Glasses Is Driven by Topological and Dynamical Heterogeneity. Acta Mater. 2023, 247, 118740. [Google Scholar] [CrossRef]
- Tang, L.; Liu, H.; Ma, G.; Du, T.; Mousseau, N.; Zhou, W.; Bauchy, M. The Energy Landscape Governs Ductility in Disordered Materials. Mater. Horiz. 2021, 8, 124–1252. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yu, Y.; Lee, Y.J.; Bauchy, M. Intrinsic Nano-Ductility of Glasses: The Critical Role of Composition. Front. Mater. 2015, 2, 11. [Google Scholar] [CrossRef]
- Shi, Y.; Luo, J.; Yuan, F.; Huang, L. Intrinsic Ductility of Glassy Solids. J. Appl. Phys. 2014, 115, 043528. [Google Scholar] [CrossRef]
- Sundararaman, S.; Huang, L.; Ispas, S.; Kob, W. New Interaction Potentials for Alkali and Alkaline-Earth Aluminosilicate Glasses. J. Chem. Phys. 2019, 150, 154505. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ispas, S.; Kob, W. The Critical Role of the Interaction Potential and Simulation Protocol for the Structural and Mechanical Properties of Sodosilicate Glasses. J. Non-Cryst. Solids 2020, 532, 119895. [Google Scholar] [CrossRef]
- Zhang, Z.; Ispas, S.; Kob, W. Structure and Vibrational Properties of Sodium Silicate Glass Surfaces. J. Chem. Phys. 2020, 153, 124503. [Google Scholar] [CrossRef] [PubMed]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Evans, D.J.; Morriss, G.P. Comment on “Extensions of the Molecular Dynamics Simulation Method. II. Isothermal Systems”. J. Chem. Phys. 1984, 81, 3749–3750. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [PubMed]
- Hoover, W.G. Constant-Pressure Equations of Motion. Phys. Rev. A 1986, 34, 2499–2500. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.P.; Plimpton, S.J.; Mattson, W. General Formulation of Pressure and Stress Tensor for Arbitrary Many-Body Interaction Potentials under Periodic Boundary Conditions. J. Chem. Phys. 2009, 131, 154107. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Malavasi, G.; Menziani, M.C.; Pedone, A.; Segre, U. Void Size Distribution in MD-Modelled Silica Glass Structures. J. Non-Cryst. Solids 2006, 352, 285–296. [Google Scholar] [CrossRef]
- Vinh, L.T.; Hung, P.K.; Hong, N.V.; Tu, T.T. Local Microstructure of Silica Glass. J. Non-Cryst. Solids 2009, 35, 1215–1220. [Google Scholar] [CrossRef]
- Muralidharan, K.; Simmons, J.H.; Deymier, P.A.; Runge, K. Molecular Dynamics Studies of Brittle Fracture in Vitreous Silica: Review and Recent Progress. J. Non-Cryst. Solids 2005, 351, 1532–1542. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, J.; Qiao, X.; Cao, X.; Zhang, C.; Xu, G.; Liu, Y.; Peng, S.; Han, G. Ionic Self-Diffusion of Na2O–Al2O3–SiO2 Glasses from Molecular Dynamics Simulations. J. Non-Cryst. Solids 2020, 527, 119734. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Y.; Leng, Y.; Si, Y.; Meng, F.; Ren, H.; Lin, H. Molecular Dynamics Simulations to Structure-Properties Relationship of MgO−BaO−CaO−Al2O3−B2O3−SiO2 Glass-Ceramic for Intermediate Temperature Solid Oxide Fuel Cell. J. Non-Cryst. Solids 2023, 602, 122078. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, M.; Zhang, D.; Wang, B.; Sant, G.; Bauchy, M. Stretched Exponential Relaxation of Glasses at Low Temperature. Phys. Rev. Lett. 2015, 115, 165901. [Google Scholar] [CrossRef]
- Ruta, B.; Baldi, G.; Chushkin, Y.; Rufflé, B.; Cristofolini, L.; Fontana, A.; Zanatta, M.; Nazzani, F. Revealing the Fast Atomic Motion of Network Glasses. Nat. Commun. 2014, 5, 3939. [Google Scholar] [CrossRef] [PubMed]
- Bechgaard, T.K.; Goel, A.; Youngman, R.E.; Mauro, J.C.; Rzoska, S.J.; Bockowski, M.; Jensen, L.R.; Smedskjaer, M.M. Structure and Mechanical Properties of Compressed Sodium Aluminosilicate Glasses: Role of Non-Bridging Oxygens. J. Non-Cryst. Solids 2016, 441, 49–57. [Google Scholar] [CrossRef]
- Moynihan, C.T.; Easteal, A.J.; Bolt, M.A.; Tucker, J. Dependence of the Fictive Temperature of Glass on Cooling Rate. J. Am. Ceram. Soc. 1976, 59, 12–16. [Google Scholar] [CrossRef]
- Pedone, A.; Malavasi, G.; Menziani, M.C.; Cormack, A.N.; Segre, U. A New Self-Consistent Empirical Interatomic Potential Model for Oxides, Silicates, and Silica-Based Glasses. J. Phys. Chem. B 2006, 110, 11780–11795. [Google Scholar] [CrossRef] [PubMed]
- Smedskjaer, M.M.; Bauchy, M.; Mauro, J.C.; Rzoska, S.J.; Bockowski, M. Unique Effects of Thermal and Pressure Histories on Glass Hardness: Structural and Topological Origin. J. Chem. Phys. 2015, 143, 164505. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, B.; Bechgaard, T.K.; Mauro, J.C.; Rzoska, S.J.; Bockowski, M.; Smedskjaer, M.M.; Bauchy, M. Crucial Effect of Angular Flexibility on the Fracture Toughness and Nano-Ductility of Aluminosilicate Glasses. J. Non-Cryst. Solids 2016, 454, 46–51. [Google Scholar] [CrossRef]
- Gere, G. Mechanics of Materials. Glob. Eng. 2008, 49, 211–291. [Google Scholar]
- Bauchy, M. Structural, Vibrational, and Elastic Properties of a Calcium Aluminosilicate Glass from Molecular Dynamics Simulations: The Role of the Potential. J. Chem. Phys. 2014, 141, 024507. [Google Scholar] [CrossRef] [PubMed]
- Willems, T.F.; Rycroft, C.H.; Kazi, M.; Meza, J.C.; Haranczyk, M. Algorithms and Tools for High-Throughput Geometry-Based Analysis of Crystalline Porous Materials. Microporous Mesoporous Mater. 2012, 149, 134–141. [Google Scholar] [CrossRef]
- To, T.; Sørensen, S.S.; Christensen, J.F.S.; Christensen, R.; Jensen, L.R.; Bockowski, M.; Bauchy, M.; Smedskjaer, M.M. Bond Switching in Densified Oxide Glass Enables Record-High Fracture Toughness. ACS Appl. Mater. Interfaces 2021, 13, 17753–17765. [Google Scholar] [CrossRef]
- Pedone, A.; Malavasi, G.; Menziani, M.C.; Segre, U.; Cormack, A.N. Molecular Dynamics Studies of Stress−Strain Behavior of Silica Glass under a Tensile Load. Chem. Mater. 2008, 20, 4356–4366. [Google Scholar] [CrossRef]
- Yuan, F.; Huang, L. Molecular Dynamics Simulation of Amorphous Silica under Uniaxial Tension: From Bulk to Nanowire. J. Non-Cryst. Solids 2012, 358, 3481–3487. [Google Scholar] [CrossRef]
- Griffith, A.A., VI. The Phenomena of Rupture and Flow in Solids. Phil. Trans. R. Soc. Lond. A 1921, 221, 163–198. [Google Scholar] [CrossRef]
- Cohen, M.H.; Turnbull, D. Molecular Transport in Liquids and Glasses. J. Chem. Phys. 1959, 31, 1164–1169. [Google Scholar] [CrossRef]
- Ebrahem, F.; Bamer, F.; Markert, B. The Influence of the Network Topology on the Deformation and Fracture Behaviour of Silica Glass: A Molecular Dynamics Study. Comput. Mater. Sci. 2018, 149, 162–169. [Google Scholar] [CrossRef]
- Bamer, F.; Ebrahem, F.; Markert, B. Plasticity in Vitreous Silica Induced by Cyclic Tension Considering Rate-Dependence: Role of the Network Topology. J. Non-Cryst. Solids 2019, 503–504, 176–181. [Google Scholar] [CrossRef]
- Ebrahem, F.; Bamer, F.; Markert, B. Vitreous 2D Silica under Tension: From Brittle to Ductile Behaviour. Mater. Sci. Eng. A 2020, 780, 139189. [Google Scholar] [CrossRef]
- Argon, A.S. Plastic Deformation in Metallic Glasses. Acta Metall. 1979, 27, 47–58. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Liu, S.; Ji, F.; Tong, L.; Xu, S. Structural Causes of Brittleness Changes in Aluminosilicate Glasses with Different Cooling Rates. Materials 2024, 17, 1595. https://doi.org/10.3390/ma17071595
Zheng L, Liu S, Ji F, Tong L, Xu S. Structural Causes of Brittleness Changes in Aluminosilicate Glasses with Different Cooling Rates. Materials. 2024; 17(7):1595. https://doi.org/10.3390/ma17071595
Chicago/Turabian StyleZheng, Liqiang, Shimin Liu, Fushun Ji, Lianjie Tong, and Shiqing Xu. 2024. "Structural Causes of Brittleness Changes in Aluminosilicate Glasses with Different Cooling Rates" Materials 17, no. 7: 1595. https://doi.org/10.3390/ma17071595
APA StyleZheng, L., Liu, S., Ji, F., Tong, L., & Xu, S. (2024). Structural Causes of Brittleness Changes in Aluminosilicate Glasses with Different Cooling Rates. Materials, 17(7), 1595. https://doi.org/10.3390/ma17071595