Exploring the Influence of Nanocrystalline Structure and Aluminum Content on High-Temperature Oxidation Behavior of Fe-Cr-Al Alloys
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Synthesis of Nanocrystalline (NC) and Microcrystalline (MC) Fe-10Cr-(3,5) Al Alloys
2.2. Characterization of NC and MC Pellets before and after Oxidation
3. Results
3.1. Oxidation Kinetics
3.2. Oxide Morphology
3.3. Phase Composition for Oxide Scale
3.4. TOF-SIMS Depth Profile of Oxide Scale
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eklund, J.; Hanif, I.; Bigdeli, S.; Jonsson, T. High temperature corrosion behavior of FeCrAlSi model alloys in the presence of water vapor and KCl at 600 °C—The influence of Cr content. Corros. Sci. 2022, 198, 110114. [Google Scholar] [CrossRef]
- Gunduz, K.O.; Visibile, A.; Sattari, M.; Fedorova, I.; Saleem, S.; Stiller, K.; Halvarsson, M.; Froitzheim, J. The effect of additive manufacturing on the initial High temperature oxidation properties of RE-containing FeCrAl alloys. Corros. Sci. 2021, 188, 109553. [Google Scholar] [CrossRef]
- Chen, H.; Kim, S.H.; Long, C.; Kim, C.; Jang, C. Oxidation behavior of high-strength FeCrAl alloys in a high-temperature supercritical carbon dioxide environment. Prog. Nat. Sci. Mater. Int. 2018, 28, 731–739. [Google Scholar] [CrossRef]
- Tang, C.; Jianu, A.; Steinbrueck, M.; Grosse, M.; Weisenburger, A.; Seifert, H.J. Influence of composition and heating schedules on compatibility of FeCrAl alloys with high-temperature steam. J. Nucl. Mater. 2018, 511, 496–507. [Google Scholar] [CrossRef]
- Airiskallio, E.; Nurmi, E.; Heinonen, M.H.; Väyrynen, I.J.; Kokko, K.; Ropo, M.; Punkkinen, M.P.J.; Pitkänen, H.; Alatalo, M.; Kollár, J.; et al. High temperature oxidation of Fe–Al and Fe–Cr–Al alloys: The role of Cr as a chemically active element. Corros. Sci. 2010, 52, 3394–3404. [Google Scholar] [CrossRef]
- Asteman, H.; Spiegel, M. A comparison of the oxidation behaviours of Al2O3 formers and Cr2O3 formers at 700 °C—Oxide solid solutions acting as a template for nucleation. Corros. Sci. 2008, 50, 1734–1743. [Google Scholar] [CrossRef]
- Engkvist, J.; Canovic, S.; Hellström, K.; Järdnäs, A.; Svensson, J.E.; Johansson, L.G.; Olsson, M.; Halvarsson, M. Alumina scale formation on a powder metallurgical FeCrAl alloy (Kanthal APMT) at 900–1100 °C in dry O2 and in O2 + H2O. Oxid. Met. 2010, 73, 233–253. [Google Scholar] [CrossRef]
- Moseley, P.T.; Hyde, K.R.; Bellamy, B.A.; Tappin, G. The microstucture of the scale formed during the high temperature oxidation of a Fe-Cr alloy steel. Corros. Sci. 1984, 24, 547–565. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, S.; Gao, F.; Zhang, Z.G.; Gesmundo, F. The nature of the third-element effect in the oxidation of Fe-xCr-3 at.% Al alloys in 1 atm O2 at 1000 °C. Corros. Sci. 2008, 50, 345–356. [Google Scholar] [CrossRef]
- Quadakkers, W.J.; Naumenko, D.; Wessel, E.; Kochubey, V. Growth rates of alumina scales on Fe-Cr-Al alloys. Oxid. Met. 2004, 61, 17–37. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Gesmundo, F.; Hou, P.Y.; Niu, Y. Criteria for the formation of protective Al2O3 scales on Fe–Al and Fe–Cr–Al alloys. Corros. Sci. 2006, 48, 741–765. [Google Scholar] [CrossRef]
- Liu, F.; Götlind, H.; Svensson, J.E.; Johansson, L.G.; Halvarsson, M. Early stages of the oxidation of a FeCrAlRE alloy (Kanthal AF) at 900 °C: A detailed microstructural investigation. Corros. Sci. 2008, 50, 2272–2281. [Google Scholar] [CrossRef]
- Prescott, R.; Graham, M.J. The formation of aluminum oxide scales on high-temperature alloys. Oxid. Met. 1992, 38, 233–254. [Google Scholar] [CrossRef]
- Tomaszewicz, P.; Wallwork, G.R. Iron-aluminium alloys: A review of their oxidation behaviour. Rev. High Temp. Mater. 1978, 4, 75–105. [Google Scholar]
- Zhang, Z.G.; Hou, P.Y.; Gesmundo, F.; Niu, Y. Effect of surface roughness on the development of protective Al2O3 on Fe–10Al (at.%) alloys containing 0–10at.% Cr. Appl. Surf. Sci. 2006, 253, 881–888. [Google Scholar] [CrossRef]
- Sadique, S.E.; Mollah, A.H.; Islam, M.S.; Ali, M.M.; Megat, M.H.H.; Basri, S. High-temperature oxidation behavior of iron-chromium-aluminum alloys. Oxid. Met. 2000, 54, 385–400. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Zhang, X.L.; Sheng, L.; Teng, X. The effect of the third element Cr on oxidation behavior of Fe-xCr-10Al (at.%) alloys at 900 °C. Open Corros. J. 2009, 2, 37–44. [Google Scholar] [CrossRef]
- Mahesh, B.V.; Singh Raman, R.K. Role of nanostructure in electrochemical corrosion and high temperature oxidation: A review. Metall. Mater. Trans. A 2014, 45, 5799–5822. [Google Scholar] [CrossRef]
- Kumar, R.; Raman, R.K.S.; Bakshi, S.R.; Raja, V.S.; Parida, S. Nanocrystalline structure remarkably enhances oxidation resistance of Fe-20Cr-5Al alloy. J. Alloys Compd. 2022, 900, 163568. [Google Scholar] [CrossRef]
- Kumar, R.; Singh Raman, R.K.; Bakshi, S.R.; Raja, V.S.; Parida, S. Effect of Nanocrystalline Structure on the Oxidation Behavior of Fe–20Cr–3Al Alloy at High Temperatures. Oxid. Met. 2022, 97, 307–321. [Google Scholar] [CrossRef]
- Gleiter, H. Diffusion in nanostructured metals. Phys. Status Solidi 1992, 172, 41–51. [Google Scholar] [CrossRef]
- Wang, Z.B.; Tao, N.R.; Tong, W.P.; Lu, J.; Lu, K. Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment. Acta Mater. 2003, 51, 4319–4329. [Google Scholar] [CrossRef]
- Echsler, H.; Martinez, E.A.; Singheiser, L.; Quadakkers, W.J. Residual stresses in alumina scales grown on different types of Fe–Cr–Al alloys: Effect of specimen geometry and cooling rate. Mater. Sci. Eng. A 2004, 384, 1–11. [Google Scholar] [CrossRef]
- Wang, F. The effect of nanocrystallization on the selective oxidation and adhesion of Al2O3 scales. Oxid. Met. 1997, 48, 215–224. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, X.; Zhou, D.; Wu, Q.; Li, C.; Song, L.; Liu, S. The Formation Mechanism of a Multilayer-Structure Oxide Film during the Oxidation of FeCrAl in Air at 700 °C. Metals 2023, 13, 305. [Google Scholar] [CrossRef]
- Wang, P.; Qi, W.; Yang, K.; Qiao, Y.; Wang, X.; Zheng, T.; Bai, C.; Liu, Z.; Zhang, X. Systematic investigation of the oxidation behavior of Fe-Cr-Al cladding alloys in high-temperature steam. Corros. Sci. 2022, 207, 110595. [Google Scholar] [CrossRef]
- Hoffman, A.K.; Umretiya, R.V.; Gupta, V.K.; Larsen, M.; Graff, C.; Perlee, C.; Brennan, P.; Rebak, R. Oxidation Resistance in 1200 °C Steam of a FeCrAl Alloy Fabricated by Three Metallurgical Processes. JOM 2022, 74, 1690–1697. [Google Scholar] [CrossRef]
- Kai, W.; Li, C.C.; Cheng, F.P.; Chu, K.P.; Huang, R.T.; Tsay, L.W.; Kai, J.J. Air-oxidation of FeCoNiCr-based quinary high-entropy alloys at 700–900 °C. Corros. Sci. 2017, 121, 116–125. [Google Scholar] [CrossRef]
- Kumar, R.; Bakshi, S.R.; Joardar, J.; Parida, S.; Raja, V.S.; Singh Raman, R.K. Structural evolution during milling, annealing, and rapid consolidation of nanocrystalline Fe-10Cr-3Al powder. Materials 2017, 10, 272. [Google Scholar] [CrossRef]
- Ungár, T.; Dragomir, I.; Révész, Á.; Borbély, A. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 1999, 32, 992–1002. [Google Scholar] [CrossRef]
- Kumar, R.; Joardar, J.; Singh Raman, R.K.; Raja, V.S.; Joshi, S.V.; Parida, S. Effect of chromium and aluminum addition on anisotropic and microstructural characteristics of ball milled nanocrystalline iron. J. Alloys Compd. 2016, 671, 164–169. [Google Scholar] [CrossRef]
- Bowen, A.W.; Leak, G.M. Solute diffusion in alpha- and gamma-iron. Metall. Trans. 1970, 1, 1695–1700. [Google Scholar] [CrossRef]
- Takada, J.; Yamamoto, S.; Kikuchi, S.; Adachi, M. Internal oxidation of Fe-Al alloys in the α-phase region. Oxid. Met. 1986, 25, 93–105. [Google Scholar] [CrossRef]
- Buffington, F.S.; Hirano, K.; Cohen, M. Self diffusion in iron. Acta Metall. 1961, 9, 434–439. [Google Scholar] [CrossRef]
Alloys | Temperature (°C) | Kinetic Law | Kinetic Constant |
---|---|---|---|
500 | Parabolic | Kp = 1.66 × 10−10 g2cm−4s−1 | |
NC Fe-10Cr-5Al | 700 | Parabolic | Kp = 5.67 × 10−10 g2cm−4s−1 |
800 | Cubic | Kc = 4.39 × 10−13 g3cm−6s−1 | |
500 | Parabolic | Kp = 3.90 × 10−10 g2cm−4s−1 | |
MC Fe-10Cr-5Al | 700 | Cubic | Kc = 1.55 × 10−14 g3cm−6s−1 |
800 | Parabolic | Kp = 1.42 × 10−8 g2cm−4s−1 | |
500 | Cubic | Kc = 1.42 × 10−13 g3cm−6s−1 | |
NC Fe-10Cr-3Al | 700 | Parabolic | Kp = 7.13 × 10−9 g2cm−4s−1 |
800 | Parabolic | Kp = 6.23 × 10−10 g2cm−4s−1 | |
500 | Parabolic | Kp = 2.19 × 10−10 g2cm−4s−1 | |
MC Fe-10Cr-3Al | 700 | Parabolic | Kp = 5.47 × 10−8 g2cm−4s−1 |
800 | Parabolic | Kp = 5.49 × 10−8 g2cm−4s−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Singh Raman, R.K.; Bakshi, S.R.; Raja, V.S.; Parida, S. Exploring the Influence of Nanocrystalline Structure and Aluminum Content on High-Temperature Oxidation Behavior of Fe-Cr-Al Alloys. Materials 2024, 17, 1700. https://doi.org/10.3390/ma17071700
Kumar R, Singh Raman RK, Bakshi SR, Raja VS, Parida S. Exploring the Influence of Nanocrystalline Structure and Aluminum Content on High-Temperature Oxidation Behavior of Fe-Cr-Al Alloys. Materials. 2024; 17(7):1700. https://doi.org/10.3390/ma17071700
Chicago/Turabian StyleKumar, Rajiv, R. K. Singh Raman, S. R. Bakshi, V. S. Raja, and S. Parida. 2024. "Exploring the Influence of Nanocrystalline Structure and Aluminum Content on High-Temperature Oxidation Behavior of Fe-Cr-Al Alloys" Materials 17, no. 7: 1700. https://doi.org/10.3390/ma17071700
APA StyleKumar, R., Singh Raman, R. K., Bakshi, S. R., Raja, V. S., & Parida, S. (2024). Exploring the Influence of Nanocrystalline Structure and Aluminum Content on High-Temperature Oxidation Behavior of Fe-Cr-Al Alloys. Materials, 17(7), 1700. https://doi.org/10.3390/ma17071700