Creep and Shrinkage Properties of Nano-SiO2-Modified Recycled Aggregate Concrete
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials
2.2. Modification Process of RCA
2.3. Mix Proportion and Details of Specimens
2.4. Specimen Preparation and Creep Test Setup
2.5. Strain Calculation
3. Results and Discussion
3.1. Creep and Shrinkage
3.2. Creep Coefficient
3.3. The Impact of Different SRCA Replacement Rates on Concrete Creep and Shrinkage Deformation
4. Numerical Simulation
4.1. Finite Element Modeling
4.2. ABAQUS Subroutines
4.3. Verification of the Model
5. Comparison of Results with Existing Predictive Models
6. Conclusions
- (a)
- Using NS-modified SRCA to replace unmodified RCA can reduce the creep of recycled aggregate concrete. Compared to RAC, the creep and shrinkage deformations of SRAC with substitution rates of 30%, 50%, 70%, and 100% are reduced by 7%, 18%, 23%, and 27%, respectively.
- (b)
- Based on the creep coefficient, it is possible to conclude that the deformation resistance of SRAC with a 30% substitution rate is comparable to that of NAC.
- (c)
- Based on the prediction model of CEB-FIP MC2010, the curves simulated in ABAQUS in this study generally match the experimental curves. However, before 28 days, the deformation values calculated by ABAQUS are smaller.
- (d)
- Comparing the experimental results with the predictions of four models, it was found that the results predicted by the empirical methods of CEB-FIP and ACI align very closely, while the predictions from the B3 and GL2000 models are larger, indicating that the calculations from these two models are overly conservative.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Liao, J.; Liu, Z. Service life prediction and environmental impact evaluation of recycled aggregate concrete with supplementary cementitious materials. Constr. Build. Mater. 2023, 395, 132270. [Google Scholar] [CrossRef]
- Visintin, P.; Dadd, L.; Ul Alam, M.; Xie, T.; Bennett, B. Flexural performance and life-cycle assessment of multi-generation recycled aggregate concrete beams. J. Clean. Prod. 2022, 360, 132214. [Google Scholar] [CrossRef]
- Oluleye, B.I.; Chan, D.W.M.; Saka, A.B.; Olawumi, T.O. Circular economy research on building construction and demolition waste: A review of current trends and future research directions. J. Clean. Prod. 2022, 357, 131927. [Google Scholar] [CrossRef]
- de Andrade Salgado, F.; de Andrade Silva, F. Recycled aggregates from construction and demolition waste towards an application on structural concrete: A review. J. Build. Eng. 2022, 52, 104452. [Google Scholar] [CrossRef]
- Pallewatta, S.; Weerasooriyagedara, M.; Bordoloi, S.; Sarmah, A.K.; Vithanage, M. Reprocessed construction and demolition waste as an adsorbent: An appraisal. Sci. Total Environ. 2023, 882, 163340. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Qing, Y.; Umer, Q.; Asmi, F. How construction and demolition waste management has addressed sustainable development goals: Exploring academic and industrial trends. J. Environ. Manag. 2023, 345, 118823. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Ning, Q.; Han, W.; Bai, L. Compressive strength and microstructural analysis of recycled coarse aggregate concrete treated with silica fume. Constr. Build. Mater. 2022, 334, 127453. [Google Scholar] [CrossRef]
- Kim, J. Influence of quality of recycled aggregates on the mechanical properties of recycled aggregate concretes: An overview. Constr. Build. Mater. 2022, 328, 127071. [Google Scholar] [CrossRef]
- Fathifazl, G.; Ghani Razaqpur, A.; Burkan Isgor, O.; Abbas, A.; Fournier, B.; Foo, S. Creep and drying shrinkage characteristics of concrete produced with coarse recycled concrete aggregate. Cem. Concr. Compos. 2011, 33, 1026–1037. [Google Scholar] [CrossRef]
- Domingo-Cabo, A.; Lázaro, C.; López-Gayarre, F.; Serrano-López, M.A.; Serna, P.; Castaño-Tabares, J.O. Creep and shrinkage of recycled aggregate concrete. Constr. Build. Mater. 2009, 23, 2545–2553. [Google Scholar] [CrossRef]
- Lye, C.-Q.; Dhir, R.K.; Ghataora, G.S.; Li, H. Creep strain of recycled aggregate concrete. Constr. Build. Mater. 2016, 102, 244–259. [Google Scholar] [CrossRef]
- Xiao, J.; Li, L.; Tam, V.W.Y.; Li, H. The state of the art regarding the long-term properties of recycled aggregate concrete. Struct. Concr. 2014, 15, 3–12. [Google Scholar] [CrossRef]
- Hansen, T.C. Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945–1985. Mater. Struct. 1986, 19, 201–246. [Google Scholar] [CrossRef]
- Kou, S.C.; Poon, C.S. Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Constr. Build. Mater. 2012, 35, 69–76. [Google Scholar] [CrossRef]
- Fathifazl, G.; Abbas, A.; Razaqpur, A.G.; Isgor, O.B.; Fournier, B.; Foo, S. New mixture proportioning method for concrete made with coarse recycled concrete aggregate. J. Mater. Civ. Eng. 2009, 21, 601–611. [Google Scholar] [CrossRef]
- Luo, J.; Xu, Z.; Xie, B. Shrinkage and creep properties of different grade recycled aggregate concretes. J. Cent. South Univ. Sci. Technol. 2013, 44, 3815–3822. [Google Scholar]
- Ye, H. Experimental study on mechanical properties of concrete made with high quality recycled aggregates. Sichuan Build. Sci. 2009, 35, 195–199. [Google Scholar]
- Dilbas, H.; Çakır, Ö.; Yıldırım, H. An experimental investigation on fracture parameters of recycled aggregate concrete with optimized ball milling method. Constr. Build. Mater. 2020, 252, 119118. [Google Scholar] [CrossRef]
- Wu, H.; Liang, C.; Zhang, Z.; Yao, P.; Wang, C.; Ma, Z. Utilizing heat treatment for making low-quality recycled aggregate into enhanced recycled aggregate, recycled cement and their fully recycled concrete. Constr. Build. Mater. 2023, 394, 132126. [Google Scholar] [CrossRef]
- Kazemian, F.; Rooholamini, H.; Hassani, A. Mechanical and fracture properties of concrete containing treated and untreated recycled concrete aggregates. Constr. Build. Mater. 2019, 209, 690–700. [Google Scholar] [CrossRef]
- Lei, B.; Li, W.; Tang, Z.; Li, Z.; Tam, V.W.Y. Effects of environmental actions, recycled aggregate quality and modification treatments on durability performance of recycled concrete. J. Mater. Res. Technol. 2020, 9, 13375–13389. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, J.; Guo, H.; Li, L. Effect of nano-SiO2 modified recycled coarse aggregate on the mechanical properties of recycled concrete. Constr. Build. Mater. 2023, 395, 132319. [Google Scholar] [CrossRef]
- Chen, X.-F.; Jiao, C.-J. Microstructure and physical properties of concrete containing recycled aggregates pre-treated by a nano-silica soaking method. J. Build. Eng. 2022, 51, 104363. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhuang, J.; Xu, W.; Lin, W.; Xing, F.; Hu, R. Study on mechanical performance and mesoscopic simulation of nano-SiO2 modified recycled aggregate concrete. Constr. Build. Mater. 2024, 425, 136053. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, F.; Hu, J.; Liang, H.; Huang, S. Creep and shrinkage monitoring and modelling of CFST columns in a super high-rise under-construction building. J. Build. Eng. 2023, 76, 107282. [Google Scholar] [CrossRef]
- ACI Committee 209. Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures (209R-92); Amrican Concrete Institute: Farmington Hills, MI, USA, 1992; pp. 31–37. [Google Scholar]
- Wyrzykowski, M. M&S highlight: Bažant and Baweja (1995), Creep and shrinkage prediction model for analysis and design of concrete structures—Model B3. Mater. Struct. 2022, 55, 48. [Google Scholar] [CrossRef]
- Gardner, N.J.; Lockman, M.J. Design Provisions for Drying Shrinkage and Creep of Normal-Strength Concrete. ACI Mater. J. 2001, 98, 159–167. [Google Scholar]
- GB/T 14685-2022; Pebble and crushed stone for construction. National Standard of the People’s Republic of China: Beijing, China, 2022.
- ASTM C33:2016; Standard Specification for Concrete Aggregates. ASTM: West Conshohocken, PA, USA, 2016.
- Serdar, M.; Staquet, S.; Schlicke, D.; Rozière, E.; Azenha, M.; Nanukuttan, S.; Gabrijel, I.; Cizer, Ö.; Bokan Bosiljkov, V.; Šajna, A. Practice on creating a common reference concrete for Round Robin Testing programmes based on the experience from COST Action TU1404. Constr. Build. Mater. 2020, 247, 118542. [Google Scholar] [CrossRef]
- Bendimerad, A.Z.; Roziere, E.; Loukili, A. Combined experimental methods to assess absorption rate of natural and recycled aggregates. Mater. Struct. 2015, 48, 3557–3569. [Google Scholar] [CrossRef]
- Cortas, R.; Rozière, E.; Staquet, S.; Hamami, A.; Loukili, A.; Delplancke-Ogletree, M.-P. Effect of the water saturation of aggregates on the shrinkage induced cracking risk of concrete at early age. Cem. Concr. Compos. 2014, 50, 1–9. [Google Scholar] [CrossRef]
- ASTM C512/C512M-15; Standard Test Method for Creep of Concrete in Compression. ASTM: West Conshohocken, PA, USA, 2024.
- GB 50010-2020; Code for Design of Concrete Structures. National Standard of the People’s Republic of China: Beijing, China, 2020.
- Shi, D.; Shi, Q. Study on Mechanical Properties and Mesoscopic Numerical Simulation of Recycled Concrete. Sustainability 2022, 14, 12125. [Google Scholar] [CrossRef]
- Genikomsou, A.S.; Polak, M.A. Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Eng. Struct. 2015, 98, 38–48. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Hu, S.; Wang, C. Parameters Verification of Concrete Damaged Plastic Model of ABAQUS. Build. Struct. 2008, 38, 127–130. [Google Scholar] [CrossRef]
- Xue, K. Shrinkage and Creep Analysis of High-Rise Structure Based on ABAQUS. Master’s Thesis, Hunan University, Changsha, China, 2014. [Google Scholar]
Aggregate Category | Apparent Density (kg/m3) | Water Absorption (%) | Crushing Index (%) |
---|---|---|---|
NA | 2652 | 1.40 | 11.28 |
RCA | 2564 | 6.27 | 15.42 |
SRCA | 2588 | 5.13 | 12.32 |
Particle Size (nm) | Color | Nano-SiO2 Content (%) | PH | Density (g/cm3) | NaO2 Content (%) |
---|---|---|---|---|---|
12 | White | >99.9 | 10.3 | 1.2 | 0.38 |
Specimen | SRCA Content (%) | NA | SRCA | RCA | Water | Cement | Sand | SP |
---|---|---|---|---|---|---|---|---|
C-N-100 | 0 | 1032.0 | 0 | 0 | 180.0 | 500.0 | 688.0 | 0.03 |
C-S-30 | 30 | 722.4 | 309.6 | 0 | 180.0 | 500.0 | 688.0 | 0.03 |
C-S-50 | 50 | 516.0 | 516.0 | 0 | 180.0 | 500.0 | 688.0 | 0.03 |
C-S-70 | 70 | 309.6 | 722.4 | 0 | 180.0 | 500.0 | 688.0 | 0.03 |
C-S-100 | 100 | 0 | 1032.0 | 0 | 180.0 | 500.0 | 688.0 | 0.03 |
C-R-100 | 0 | 0 | 0 | 1032.0 | 180.0 | 500.0 | 688.0 | 0.03 |
Properties | C-N-100 | C-S-30 | C-S-50 | C-S-70 | C-S-100 | C-R-100 |
---|---|---|---|---|---|---|
(MPa) | 50.06 | 46.86 | 44.10 | 42.92 | 41.59 | 33.18 |
Ε (Mpa) | 37,141 | 33,906 | 32,028 | 30,337 | 28,905 | 23,391 |
ԑe (μm/m) | 204.6 | 229.2 | 284.4 | 298.1 | 384.7 | 442.5 |
Parameter | C-N-100 | C-S-30 | C-S-50 | C-S-70 | C-S-100 | C-R-100 |
---|---|---|---|---|---|---|
fcm (mPa) | 50.06 | 46.86 | 44.10 | 42.92 | 41.59 | 33.18 |
Ε (mPa) | 37,141 | 33,906 | 32,028 | 30,337 | 28,905 | 23,391 |
ρ (g/cm3) | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 |
ν | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Model | Creep | Shrinkage |
---|---|---|
CEB-FIP MC2010 [25] | ||
ACI 209R-92 [26] | ||
B3 [27] | ||
GL2000 [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Zhuang, J.; Lin, W.; Xu, W.; Hu, R. Creep and Shrinkage Properties of Nano-SiO2-Modified Recycled Aggregate Concrete. Materials 2024, 17, 1904. https://doi.org/10.3390/ma17081904
Zhou Y, Zhuang J, Lin W, Xu W, Hu R. Creep and Shrinkage Properties of Nano-SiO2-Modified Recycled Aggregate Concrete. Materials. 2024; 17(8):1904. https://doi.org/10.3390/ma17081904
Chicago/Turabian StyleZhou, Yingwu, Jiahao Zhuang, Wenwei Lin, Wenzhuo Xu, and Rui Hu. 2024. "Creep and Shrinkage Properties of Nano-SiO2-Modified Recycled Aggregate Concrete" Materials 17, no. 8: 1904. https://doi.org/10.3390/ma17081904
APA StyleZhou, Y., Zhuang, J., Lin, W., Xu, W., & Hu, R. (2024). Creep and Shrinkage Properties of Nano-SiO2-Modified Recycled Aggregate Concrete. Materials, 17(8), 1904. https://doi.org/10.3390/ma17081904