Potential for Recycling Metakaolin/Slag-Based Geopolymer Concrete of Various Strength Levels in Freeze–Thaw Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.1.1. Metakaolin and Slag
2.1.2. Alkali Activator
2.1.3. Aggregate
2.2. Methods
2.2.1. Preparation of GPC and RGA
2.2.2. Test Methods
3. Results and Discussion
3.1. Compressive Strength of GPC
3.2. Splitting Tensile Strength of GPC
3.3. Frost Resistance of GPC
3.3.1. Visual Appearance
3.3.2. RDEM and Mass Loss
3.3.3. SEM Analysis
3.4. Properties of RGA
3.4.1. RGA Gradation
3.4.2. Physical Properties of RGA
3.5. Microstructure of RGA
3.5.1. Microhardness
3.5.2. SEM Analysis
3.5.3. XRD Analysis
4. Conclusions
- (1)
- A high-temperature (80 °C) curing and the addition of 40% slag accelerated the polymerization reaction, so that the 7-day compressive strengths of GPC-C100, GPC-C80, GPC-C60, and GPC-C40 attained 94.9%, 94.3%, 93.8%, and 94.6% of their respective 28-day compressive strengths. With the exception of GPC-C100, concretes of lower-strength grades generally achieve their designated strength targets more readily within 7 days. The development trend of splitting tensile strength is similar to compressive strength. The 7-day splitting tensile strength of GPC-C100, GPC-C80, GPC-C60, and GPC-C40 reached 87.2%, 94.3%, 93.8%, and 91.1% of their 28-day splitting tensile strength, respectively.
- (2)
- High-strength GPC exhibited superior frost-resistance durability. GPC-C100, GPC-C80, and GPC-C60 showed the capability to endure more than 350 freeze–thaw cycles, suggesting that their lifespan in cold regions extended beyond 50 years. By the 350th cycle, the RDEM had fallen to 75.2%, 68.4%, and 63.1%, respectively, and mass loss had increased to 1.3%, 2.16%, and 3.96%, respectively. In contrast, GPC-C40 experienced failure after 300 cycles. The SEM image shows that the GPC sample has a dense ITZ.
- (3)
- The apparent densities of RGA-C100, RGA-C80, and RGA-C60 are 2655 kg/m3, 2623 kg/m3, 2542 kg/m3, respectively, with water absorption rates of 3.54%, 3.88%, and 5.53%, and crushing indices of 13.95%, 16.4%, and 22.9%, respectively. The metrics for RGA-C100 and RGA-C80 aligned with Class II recycled aggregate standards, whereas RGA-C60 conformed to Class III criteria. The higher the strength grade, the better the physical properties of the RGAs, indicating a linear correlation between the strength grade of the parent concrete and the performance of the subsequent generation of recycled aggregates. The microhardness of the GPC’s ITZs corresponded to 79.8%, 76.3%, and 68.5% of the attached mortar’s, respectively. This indicated that the higher the strength of the parent GPC, the greater the strength of both the ITZs and attached mortar in the RGA, and the narrower the gap between the strength of the ITZs and the attached mortar.
- (4)
- The attached mortar and ITZ of RGA exhibited numerous microcracks and pores, which accounted for the deterioration of its physical properties. Moreover, a higher-strength grade of RGA corresponded to a narrower ITZ width, suggesting a more robust resistance to separation. The XRD results showed that the polymerization reaction generated C-S-H and C-A-S-H, which is one of the reasons for their great recycling potential.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghezelbash, A.; Khaligh, V.; Fahimifard, S.H.; Liu, J.J. A Comparative Perspective of the Effects of CO2 and Non-CO2 Greenhouse Gas Emissions on Global Solar, Wind, and Geothermal Energy Investment. Energies 2023, 16, 3025. [Google Scholar] [CrossRef]
- Adamolekun, G. Carbon Price and Firm Greenhouse Gas Emissions. J. Environ. Manag. 2024, 349, 119496. [Google Scholar] [CrossRef] [PubMed]
- Sousa, V.; Bogas, J.A. Comparison of Energy Consumption and Carbon Emissions from Clinker and Recycled Cement Production. J. Clean. Prod. 2021, 306, 127277. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, Z. Carbon Emissions in China’s Cement Industry: A Sector and Policy Analysis. Renew. Sustain. Energy Rev. 2016, 58, 1387–1394. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers: Inorganic Polymeric New Materials. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Lingyu, T.; Dongpo, H.; Jianing, Z.; Hongguang, W. Durability of Geopolymers and Geopolymer Concretes: A Review. Rev. Adv. Mater. Sci. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Zhuang, X.Y.; Chen, L.; Komarneni, S.; Zhou, C.H.; Tong, D.S.; Yang, H.M.; Yu, W.H.; Wang, H. Fly Ash-Based Geopolymer: Clean Production, Properties and Applications. J. Clean. Prod. 2016, 125, 253–267. [Google Scholar] [CrossRef]
- Hassan, A.; Arif, M.; Shariq, M. Influence of Microstructure of Geopolymer Concrete on Its Mechanical Properties—A Review. In Advances in Sustainable Construction Materials and Geotechnical Engineering; Shukla, S.K., Barai, S.V., Mehta, A., Eds.; Lecture Notes in Civil, Engineering; Springer: Singapore, 2020; Volume 35, pp. 119–129. [Google Scholar] [CrossRef]
- Teh, S.H.; Wiedmann, T.; Castel, A.; De Burgh, J. Hybrid Life Cycle Assessment of Greenhouse Gas Emissions from Cement, Concrete and Geopolymer Concrete in Australia. J. Clean. Prod. 2017, 152, 312–320. [Google Scholar] [CrossRef]
- Liu, X.; Yang, L.; Du, J.; Zhang, H.; Hu, J.; Chen, A.; Lv, W. Carbon and Air Pollutant Emissions Forecast of China’s Cement Industry from 2021 to 2035. Resour. Conserv. Recycl. 2024, 204, 107498. [Google Scholar] [CrossRef]
- Hu, Z.; Kuenzer, C.; Dietz, A.J.; Dech, S. The Potential of Earth Observation for the Analysis of Cold Region Land Surface Dynamics in Europe—A Review. Remote. Sens. 2017, 9, 1067. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Syvitski, J.P.M.; Zhang, T.; Crawford, R.M.M. Let Heroes Speak: Antarctic Explorers, 1772–1922, Dangerous Crossings: The First Modern Polar Expedition, 1925, Geocryology in China, Die Höhengrenze Der Gebirgswalder [The Altitudinal Limits of Mountain Forests]. Arct. Antarct. Alp. Res. 2001, 33, 244–247. [Google Scholar] [CrossRef]
- Chen, R.; Kang, E.; Ji, X.; Yang, J.; Yang, Y. Cold Regions in China. Cold Reg. Sci. Technol. 2006, 45, 95–102. [Google Scholar] [CrossRef]
- Nilimaa, J.; Zhaka, V. An Overview of Smart Materials and Technologies for Concrete Construction in Cold Weather. Eng 2023, 4, 1550–1580. [Google Scholar] [CrossRef]
- Nilimaa, J.; Zhaka, V. Material and Environmental Aspects of Concrete Flooring in Cold Climate. Constr. Mater. 2023, 3, 180–201. [Google Scholar] [CrossRef]
- Qin, Y.; Deng, S.; Zhang, X. Frost Resistance of Recycled Concrete. J. Central South Univ. Technol. 2007, 14, 409–413. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.; Wang, J.; Guo, M. Post-Evaluation of Frost Resistance of Cement Concrete Entities Based on Pore Spacing Factors of Hardened Concrete. Constr. Build. Mater. 2024, 411, 134342. [Google Scholar] [CrossRef]
- Zhang, Y.; Si, Z.; Huang, L.; Yang, C.; Du, X. Experimental Study on the Properties of Internal Cured Concrete Reinforced with Steel Fibre. Constr. Build. Mater. 2023, 393, 132046. [Google Scholar] [CrossRef]
- Zhi, D.; Gong, F.; Wang, Z.; Zhao, Y.; Ueda, T. RBSM-Based Mesoscale Study of Frost Deterioration for Recycled Concrete Considering Air-Entrainment in Old and New Mortar. J. Build. Eng. 2023, 68, 106210. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, A.-H.; Wu, Z.-G.; Xiao, P.; Gong, Y.-F.; Sun, H.-F. Investigation of the Basalt Fiber Type and Content on Performances of Cement Mortar and Concrete. Constr. Build. Mater. 2023, 408, 133720. [Google Scholar] [CrossRef]
- Jianxun, C.; Xizhong, Z.; Yanbin, L.; Xianghui, D.; Qin, L. Investigating Freeze-Proof Durability of C25 Shotcrete. Constr. Build. Mater. 2014, 61, 33–40. [Google Scholar] [CrossRef]
- González, D.C.; Mena, Á.; Mínguez, J.; Vicente, M.A. Influence of Air-Entraining Agent and Freeze-Thaw Action on Pore Structure in High-Strength Concrete by Using CT-Scan Technology. Cold Reg. Sci. Technol. 2021, 192, 103397. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.; Zhu, B.; Lyu, X.; Gao, X.; Liang, C. Mechanical Properties and Freeze–Thaw Durability of Basalt Fiber Reactive Powder Concrete. Appl. Sci. 2020, 10, 5682. [Google Scholar] [CrossRef]
- Yuan, X.; Dai, M.; Gao, Y.; Liu, F.; Zhang, M. Pore Morphology Based on Graphene Oxide Modified Steel Fibre Concrete for Freeze–Thaw Resistance. Constr. Build. Mater. 2023, 409, 133877. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, X.; Tang, A.; Zhao, N.; Li, L.; Jia, S. Axial Compressive Behavior of Basalt and Polyacrylonitrile Fibers Reinforced Lightweight Aggregate Concrete with Industrial Waste Ceramsite-Lytag after Freeze-Thaw Cycles. J. Build. Eng. 2023, 76, 107402. [Google Scholar] [CrossRef]
- Sun, P.; Wu, H.-C. Chemical and Freeze–Thaw Resistance of Fly Ash-Based Inorganic Mortars. Fuel 2013, 111, 740–745. [Google Scholar] [CrossRef]
- Brooks, R.; Bahadory, M.; Tovia, F.; Rostami, H. Properties of Alkali-Activated Fly Ash: High Performance to Lightweight. Int. J. Sustain. Eng. 2010, 3, 211–218. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, R.; Li, R.; Wang, Y.; Cheng, Z.; Li, F.; John Ma, Z. Frost Resistance of Fiber-Reinforced Blended Slag and Class F Fly Ash-Based Geopolymer Concrete under the Coupling Effect of Freeze-Thaw Cycling and Axial Compressive Loading. Constr. Build. Mater. 2020, 250, 118831. [Google Scholar] [CrossRef]
- Pilehvar, S.; Szczotok, A.M.; Rodríguez, J.F.; Valentini, L.; Lanzón, M.; Pamies, R.; Kjøniksen, A.-L. Effect of Freeze-Thaw Cycles on the Mechanical Behavior of Geopolymer Concrete and Portland Cement Concrete Containing Micro-Encapsulated Phase Change Materials. Constr. Build. Mater. 2018, 200, 94–103. [Google Scholar] [CrossRef]
- Aiken, T.A.; Kwasny, J.; Sha, W.; Tong, K.T. Mechanical and Durability Properties of Alkali-Activated Fly Ash Concrete with Increasing Slag Content. Constr. Build. Mater. 2021, 301, 124330. [Google Scholar] [CrossRef]
- Fu, Y.; Cai, L.; Yonggen, W. Freeze–Thaw Cycle Test and Damage Mechanics Models of Alkali-Activated Slag Concrete. Constr. Build. Mater. 2011, 25, 3144–3148. [Google Scholar] [CrossRef]
- Figiela, B.; Brudny, K.; Lin, W.-T.; Korniejenko, K. Investigation of Mechanical Properties and Microstructure of Construction- and Demolition-Waste-Based Geopolymers. J. Compos. Sci. 2022, 6, 191. [Google Scholar] [CrossRef]
- Korniejenko, K.; Figiela, B.; Pławecka, K.; Bulut, A.; Şahin, B.; Azizağaoğlu, G.; Łach, M. Characterization of a Coal Shale from Marcel Mining as Raw Material for Geopolymer Manufacturing. In Proceedings of the 10th MATBUD’s 2023 Scientific-Technical Conference, Cracow, Poland, 19–21 April 2023; p. 21. [Google Scholar] [CrossRef]
- Alhawat, M.; Ashour, A.; Yildirim, G.; Aldemir, A.; Sahmaran, M. Properties of Geopolymers Sourced from Construction and Demolition Waste: A Review. J. Build. Eng. 2022, 50, 104104. [Google Scholar] [CrossRef]
- Akbarnezhad, A.; Huan, M.; Mesgari, S.; Castel, A. Recycling of Geopolymer Concrete. Constr. Build. Mater. 2015, 101, 152–158. [Google Scholar] [CrossRef]
- Zhu, P.; Hua, M.; Liu, H.; Wang, X.; Chen, C. Interfacial Evaluation of Geopolymer Mortar Prepared with Recycled Geopolymer Fine Aggregates. Constr. Build. Mater. 2020, 259, 119849. [Google Scholar] [CrossRef]
- Mesgari, S.; Akbarnezhad, A.; Xiao, J.Z. Recycled Geopolymer Aggregates as Coarse Aggregates for Portland Cement Concrete and Geopolymer Concrete: Effects on Mechanical Properties. Constr. Build. Mater. 2019, 236, 117571. [Google Scholar] [CrossRef]
- Rashad, A.M. Metakaolin as Cementitious Material: History, Scours, Production and Composition–A Comprehensive Overview. Constr. Build. Mater. 2013, 41, 303–318. [Google Scholar] [CrossRef]
- Liu, W.; Pang, Z.; Zheng, J.; Yin, S.; Zuo, H. The Viscosity, Crystallization Behavior and Glass-Ceramics Preparation of Blast Furnace Slag: A Review. Ceram. Int. 2024, 50, 18090–18104. [Google Scholar] [CrossRef]
- Duxson, P.; Mallicoat, S.W.; Lukey, G.C.; Kriven, W.M.; Van Deventer, J.S.J. The Effect of Alkali and Si/Al Ratio on the Development of Mechanical Properties of Metakaolin-Based Geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007, 292, 8–20. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, H.; Kong, X.; Zhang, C.; Lu, H.; He, D. Study on the Influence Mechanism of Micro-Mechanical Properties of Heterogeneous Geopolymer Gels. J. Build. Eng. 2023, 76, 107164. [Google Scholar] [CrossRef]
- GB/T14684-2022; Standard for Sand for Construction. Standardization Administration of China: Beijing, China, 2022.
- GB/T14685-2022; Standard for Pebble and Crushed Stone for Construction. Standardization Administration of China: Beijing, China, 2022.
- ASTM C33/C33M-23; Standard Specification for Concrete Aggregates. American Society for Testing Materials: West Conshohocken, PA, USA, 2023.
- Luan, C.; Shi, X.; Zhang, K.; Utashev, N.; Yang, F.; Dai, J.; Wang, Q. A Mix Design Method of Fly Ash Geopolymer Concrete Based on Factors Analysis. Constr. Build. Mater. 2020, 272, 121612. [Google Scholar] [CrossRef]
- Albidah, A.; Alghannam, M.; Abbas, H.; Almusallam, T.; Al-Salloum, Y. Characteristics of Metakaolin-Based Geopolymer Concrete for Different Mix Design Parameters. J. Mater. Res. Technol. 2020, 10, 84–98. [Google Scholar] [CrossRef]
- Parveen, P.; Singhal, D. Development of Mix Design Method for Geopolymer Concrete. Adv. Concr. Constr. 2017, 5, 377–390. [Google Scholar] [CrossRef]
- Verma, M.; Dev, N. Effect of Ground Granulated Blast Furnace Slag and Fly Ash Ratio and the Curing Conditions on the Mechanical Properties of Geopolymer Concrete. Struct. Concr. 2021, 23, 2015–2029. [Google Scholar] [CrossRef]
- GB/T50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. Standardization Administration of China: Beijing, China, 2019.
- ASTM C39/C39M-23; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. American Society for Testing Materials: West Conshohocken, PA, USA, 2023.
- ASTM C496/C496M-17; Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. American Society for Testing Materials: West Conshohocken, PA, USA, 2017.
- GB/T50082-2009; Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete. Standardization Administration of China: Beijing, China, 2009.
- ASTM C666/C666M-15; Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing. American Society for Testing Materials: West Conshohocken, PA, USA, 2015.
- ASTM C127-15; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. American Society for Testing Materials: West Conshohocken, PA, USA, 2015.
- BS EN 1097-2:2020; Tests for Mechanical and Physical Properties of Aggregates Methods for the Determination of Resistance to Fragmentation. British Standards Institution: London, UK, 2020.
- Pepe, M.; Toledo Filho, R.D.; Koenders, E.A.B.; Martinelli, E. Alternative Processing Procedures for Recycled Aggregates in Structural Concrete. Constr. Build. Mater. 2014, 69, 124–132. [Google Scholar] [CrossRef]
- GB/T25177-2010; Standard for Recycled Coarse Aggregate for Concrete. Standardization Administration of China: Beijing, China, 2010.
- Bakharev, T. Geopolymeric Materials Prepared Using Class F Fly Ash and Elevated Temperature Curing. Cem. Concr. Res. 2005, 35, 1224–1232. [Google Scholar] [CrossRef]
- Castel, A.; Foster, S.J.; Ng, T.; Sanjayan, J.G.; Gilbert, R.I. Creep and Drying Shrinkage of a Blended Slag and Low Calcium Fly Ash Geopolymer Concrete. Mater. Struct. 2015, 49, 1619–1628. [Google Scholar] [CrossRef]
- Çetintaş, R.; Soyer-Uzun, S. Relations between Structural Characteristics and Compressive Strength in Volcanic Ash Based One–Part Geopolymer Systems. J. Build. Eng. 2018, 20, 130–136. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, Z.; Tian, X.; Wu, J.; Wang, L. Review on the Impact of Metakaolin-Based Geopolymer’s Reaction Chemistry, Nanostructure and Factors on Its Properties. Constr. Build. Mater. 2024, 412, 134760. [Google Scholar] [CrossRef]
- Allali, F.; Joussein, E.; Kandri, N.I.; Rossignol, S. The Influence of Calcium Content on the Performance of Metakaolin-Based Geomaterials Applied in Mortars Restoration. Mater. Des. 2016, 103, 1–9. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, J.; Kaur, M. Synthesis of Fly Ash Based Geopolymer Mortar Considering Different Concentrations and Combinations of Alkaline Activator Solution. Ceram. Int. 2018, 44, 1534–1537. [Google Scholar] [CrossRef]
- Görhan, G.; Kürklü, G. The Influence of the NaOH Solution on the Properties of the Fly Ash-Based Geopolymer Mortar Cured at Different Temperatures. Compos. Part B Eng. 2014, 58, 371–377. [Google Scholar] [CrossRef]
- Liew, Y.; Kamarudin, H.; Al Bakri, A.M.; Bnhussain, M.; Luqman, M.; Nizar, I.K.; Ruzaidi, C.; Heah, C. Optimization of solids-to-liquid and alkali activator ratios of calcined kaolin geopolymeric powder. Constr. Build. Mater. 2012, 37, 440–451. [Google Scholar] [CrossRef]
- Ranjbar, N.; Kuenzel, C.; Spangenberg, J.; Mehrali, M. Hardening Evolution of Geopolymers from Setting to Equilibrium: A Review. Cem. Concr. Compos. 2020, 114, 103729. [Google Scholar] [CrossRef]
- Liu, D.; Tu, Y.; Sas, G.; Elfgren, L. Freeze-Thaw Damage Evaluation and Model Creation for Concrete Exposed to Freeze–Thaw Cycles at Early-Age. Constr. Build. Mater. 2021, 312, 125352. [Google Scholar] [CrossRef]
- Taheri, B.M.; Ramezanianpour, A.M.; Sabokpa, S.; Gapele, M. Experimental Evaluation of Freeze-Thaw Durability of Pervious Concrete. J. Build. Eng. 2020, 33, 101617. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, P.; Garcia-Troncoso, N.; Mo, K.H.; Ling, T.-C. Roles of Enhanced ITZ in Improving the Mechanical Properties of Concrete Prepared with Different Types of Recycled Aggregates. J. Build. Eng. 2022, 60, 105197. [Google Scholar] [CrossRef]
- Gao, S.; Guo, X.; Ban, S.; Ma, Y.; Yu, Q.; Sui, S. Influence of Supplementary Cementitious Materials on ITZ Characteristics of Recycled Concrete. Constr. Build. Mater. 2023, 363, 129736. [Google Scholar] [CrossRef]
- Xu, H.; Van Deventer, J.S.J. The Geopolymerisation of Alumino-Silicate Minerals. Int. J. Miner. Process. 2000, 59, 247–266. [Google Scholar] [CrossRef]
- Yip, C.K.; Lukey, G.C.; Provis, J.L.; Van Deventer, J.S.J. Effect of Calcium Silicate Sources on Geopolymerisation. Cem. Concr. Res. 2008, 38, 554–564. [Google Scholar] [CrossRef]
- Temuujin, J.; Van Riessen, A.; Williams, R. Influence of Calcium Compounds on the Mechanical Properties of Fly Ash Geopolymer Pastes. J. Hazard. Mater. 2009, 167, 82–88. [Google Scholar] [CrossRef] [PubMed]
wt/% | SiO2 | Al2O3 | CaO | Fe2O3 | P2O5 | K2O | TiO2 | SO3 | MgO | Na2O |
---|---|---|---|---|---|---|---|---|---|---|
MK | 48.88 | 43.39 | 0.983 | 3.77 | 0.072 | 0.141 | 2.452 | 0.044 | - | - |
SL | 30.54 | 15.27 | 40.57 | 0.26 | - | 0.416 | 0.747 | 2.03 | 9.01 | 0.548 |
Grade | Metakaolin | Slag | Gravel | River Sand | Na2SiO3 Solution | NaOH Solution | Water |
---|---|---|---|---|---|---|---|
C100 | 270 | 180 | 1210 | 650 | 206 | 129 | 0 |
C80 | 270 | 180 | 1210 | 650 | 184 | 115 | 15 |
C60 | 270 | 180 | 1210 | 650 | 162 | 101 | 30 |
C40 | 270 | 180 | 1210 | 650 | 131 | 81 | 53 |
Apparent Density (kg/m3) | Water Absorption Rate (%) | Crushing Index (%) | |
---|---|---|---|
Class Ⅰ | >2450 | <3 | <12 |
Class Ⅱ | >2350 | <5 | <20 |
Class Ⅲ | >2250 | <8 | <30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Liu, H.; Hua, M.; Chen, C.; Wang, X.; Guo, X.; Ma, T. Potential for Recycling Metakaolin/Slag-Based Geopolymer Concrete of Various Strength Levels in Freeze–Thaw Conditions. Materials 2024, 17, 1944. https://doi.org/10.3390/ma17091944
Liu M, Liu H, Hua M, Chen C, Wang X, Guo X, Ma T. Potential for Recycling Metakaolin/Slag-Based Geopolymer Concrete of Various Strength Levels in Freeze–Thaw Conditions. Materials. 2024; 17(9):1944. https://doi.org/10.3390/ma17091944
Chicago/Turabian StyleLiu, Mengtong, Hui Liu, Minqi Hua, Chunhong Chen, Xinjie Wang, Xiang Guo, and Tianyu Ma. 2024. "Potential for Recycling Metakaolin/Slag-Based Geopolymer Concrete of Various Strength Levels in Freeze–Thaw Conditions" Materials 17, no. 9: 1944. https://doi.org/10.3390/ma17091944
APA StyleLiu, M., Liu, H., Hua, M., Chen, C., Wang, X., Guo, X., & Ma, T. (2024). Potential for Recycling Metakaolin/Slag-Based Geopolymer Concrete of Various Strength Levels in Freeze–Thaw Conditions. Materials, 17(9), 1944. https://doi.org/10.3390/ma17091944