The Impact of the Composition on the Properties of Simulated Lunar Mare Basalt Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Basalt Fibers
2.2. Methods
3. Results and Discussion
3.1. Crystalline Properties
3.2. Glass Network Structure
3.3. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benaroya, H.; Indyk, S.; Mottaghi, S. Advanced Systems Concept for Autonomous Construction and Self-Repair of Lunar Surface ISRU Structures. In Moon; Springer: Berlin/Heidelberg, Germany, 2010; pp. 614–660. [Google Scholar]
- Head, J.W.; Wilson, L. Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim. Cosmochim. Acta 1992, 56, 2155–2175. [Google Scholar] [CrossRef]
- Hiesinger, H.; Head, J.W., III; Wolf, U.; Jaumann, R.; Neukum, G. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J. Geophys. Res. 2003, 108, 5065. [Google Scholar] [CrossRef]
- Taylor, G.J.; Martel, L.M.V. Lunar prospecting. Moon 2003, 31, 2403–2412. [Google Scholar] [CrossRef]
- Dyke, S.J.; Marais, K.; Bilionis, I.; Werfel, J.; Malla, R. Strategies for the design and operation of resilient extraterrestrial habitats. Sens. Smart Struct. Technol. Civ. Mech. Aerosp. Syst. 2021, 2021, 11591. [Google Scholar]
- Ulubeyli, S. Lunar shelter construction issues: The state-of-the-art towards 3D printing technologies. Acta Astronaut. 2022, 195, 318–343. [Google Scholar] [CrossRef]
- Gaddis, L.R. Compositional analyses of small lunar pyroclastic deposits using Clementine multispectral data. J. Geophys. Res.-Planets 2000, 105, 4245–4262. [Google Scholar] [CrossRef]
- Adesina, A. Performance of cementitious composites reinforced with chopped basalt fibres—An overview. Constr. Build. Mater. 2021, 266, 120970. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R. A green material from rock: Basalt fiber—A review. J. Text. Inst. 2016, 107, 923–937. [Google Scholar] [CrossRef]
- Du, J.; Fa, W.; Wieczorek, M.A.; Xie, M.; Cai, Y.; Zhu, M. Thickness of Lunar Mare Basalts: New Results Based on Modeling the Degradation of Partially Buried Craters. J. Geophys. Res. Planets 2019, 124, 2430–2459. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, J.H.; Kim, J.W.; Lee, S.-Y.; Park, S.-J. Interfacial Behaviors of Basalt Fiber-Reinforced Polymeric Composites: A Short Review. Adv. Fiber Mater. 2022, 4, 1414–1433. [Google Scholar] [CrossRef]
- Kim, M.; Lee, T.W.; Park, S.M.; Jeong, Y.G. Structures, electrical and mechanical properties of epoxy composites reinforced with MWCNT-coated basalt fibers. Compos. Part A Appl. Sci. Manuf. 2019, 123, 123–131. [Google Scholar] [CrossRef]
- Hu, W.W.; Liu, H.W.; Zhao, D.F.; Bin Yang, Z. Applications and Advantages of Basalt Assembly in Construction Industry. Adv. Mater. Res. 2011, 332–334, 1937–1940. [Google Scholar] [CrossRef]
- Theinat, A.K.; Modiriasari, A.; Bobet, A.; Melosh, H.J.; Dyke, S.J.; Ramirez, J.; Maghareh, A.; Gomez, D. Lunar lava tubes: Morphology to structural stability. Icarus 2020, 338, 113442. [Google Scholar] [CrossRef]
- Zheng, Y.C.; Wang, S.J.; Ouyang, Z.Y.; Zou, Y.; Liu, J.; Li, C.; Li, X.; Feng, J. CAS-1 lunar soil simulant. Adv. Space Res. 2009, 43, 448–454. [Google Scholar] [CrossRef]
- Tellili, B.; Elmahroug, Y.; Souga, C. Calculation of fast neutron removal cross sections for different lunar soils. Adv. Space Res. 2014, 53, 348–352. [Google Scholar] [CrossRef]
- Tian, H.C.; Yang, W.; Gao, Y.B.; Zhou, Q.; Ruan, R.; Lin, Y.; Li, X.; Wu, F. Reassessing the classification of Chang’e-5 basalts using pyroxene composition. Lithos 2023, 456, 107309. [Google Scholar] [CrossRef]
- He, Q.; Li, Y.H.; Baziotis, I.; Qian, Y.; Xiao, L.; Wang, Z.; Zhang, W.; Luo, B.; Neal, C.R.; Day, J.M.; et al. Detailed petrogenesis of the unsampled Oceanus Procellarum: The case of the Chang’e-5 mare basalts. Icarus 2022, 383, 115082. [Google Scholar] [CrossRef]
- Zong, K.Q.; Wang, Z.C.; Li, J.W.; He, Q.; Li, Y.; Becker, H.; Zhang, W.; Hu, Z.; He, T.; Cao, K.; et al. Bulk compositions of the Chang’E-5 lunar soil: Insights into chemical homogeneity, exotic addition, and origin of landing site basalts. Geochim. Cosmochim. Acta 2022, 335, 284–296. [Google Scholar] [CrossRef]
- Liu, Q.; Song, P.; Li, L.; Wang, Y.; Wang, X.; Fang, J. The effect of basalt fiber addition on cement concrete: A review focused on basalt fiber shotcrete. Front. Mater. 2022, 9, 1048228. [Google Scholar] [CrossRef]
- Kramer, G.Y.; Jaiswal, B.; Hawke, B.R.; Öhman, T.; Giguere, T.A.; Johnson, K. The basalts of Mare Frigoris. J. Geophys. Res. Planets 2015, 120, 1646–1670. [Google Scholar] [CrossRef]
- Liu, D.; Wang, X.; Liu, J.; Liu, B.; Ren, X.; Chen, Y.; Chen, Z.; Zhang, H.; Zhang, G.; Zhou, Q.; et al. Spectral interpretation of late-stage mare basalt mineralogy unveiled by Chang’E-5 samples. Nat. Commun. 2022, 13, 5965. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Li, X. Basalt geochemistry as a diagnostic indicator of tectonic setting. Gondwana Res. 2019, 65, 43–67. [Google Scholar] [CrossRef]
- Guo, Z.S.; Xing, D.; Xi, X.Y.; Yue, X.; Liang, C.-G.; Hao, B.; Zheng, Q.; Gutnikov, S.I.; Lazoryak, B.I.; Ma, P.-C. Production of Fibres from Lunar Soil: Feasibility, Applicability and Future Perspectives. Adv. Fiber Mater. 2022, 4, 923–937. [Google Scholar] [CrossRef]
- Gast, P.W.; Phinney, W.C.; Duke, M.B.; Apollo 15 Preliminary Examination Team. The apollo 15 lunar samples: A preliminary description. Science 1972, 32, 26–30. [Google Scholar]
- Morris, R.V.; See, T.H.; Horz, F. Composition of the Cayley Formation at Apollo-16 as Inferred from Impact Melt Splashes. J. Geophys. Res.-Solid Earth Planets 1986, 91, 21–42. [Google Scholar] [CrossRef]
- Pinheiro, A.S.; Costa, Z.M.; Bell, M.J.; Anjos, V.; Reis, S.; Ray, C. Thermal characterization of glasses prepared from simulated compositions of lunar soil JSC-1A. J. Non Cryst. Solids 2013, 359, 56–59. [Google Scholar] [CrossRef]
- Korotev, R.L. Composition of the Apollo 17 drive tube 76001 and the nonmare lithologies of the North Massif and Luna 20. Meteorit. Planet. Sci. 2022, 57, 1759–1773. [Google Scholar] [CrossRef]
- Kartashov, P.M.; Mokhov, A.V.; Gornostaeva, T.A.; Bogatikov, O.A.; Ashikhmina, N.A. Mineral phases on the fracture of a glass particle and in the fines of a Luna 24 regolith sample. Petrology 2010, 18, 107–125. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Zhang, G.; Dong, K.; Deng, X.; Gao, X.; Yang, Y.; Xiao, Y.; Bai, X.; Liang, K.; et al. Size, morphology, and composition of lunar samples returned by Chang’E-5 mission. Sci. China Phys. Mech. 2022, 65, 229511. [Google Scholar] [CrossRef]
- Cao, H.; Wang, C.; Chen, J.; Che, X.; Fu, X.; Shi, Y.; Liu, D.; Ling, Z.; Qiao, L.; Lu, X.; et al. A Raman Spectroscopic and Microimage Analysis Perspective of the Chang’e-5 Lunar Samples. Geophys. Res. Lett. 2022, 49, e2022GL099282. [Google Scholar] [CrossRef]
- ISO 14719:2011; Chemical Analysis of Refractory Material Glass and Glazes—Determination of Fe2+ and Fe3+ by the Spectral Photometric Method with 1,10-Phenanthroline. International Organization for Standardization: Geneva, Switzerland, 2011.
- Zhao, M.; Cao, J.; Geng, X.; Song, W.; Wang, Z. Structural origin of CaO-MgO-Al2O3-SiO2-Fe2O3 glass crystallization: Iron-containing clusters. J. Non-Cryst. Solids 2020, 547, 120295. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Q.; Luo, L.; Yan, T.; Liu, J.; Ding, L.; Jiang, W. Effects of high-temperature treatment and iron reduction index on tensile strength of basalt continuous fiber. J. Non-Cryst. Solids 2021, 564, 120836. [Google Scholar] [CrossRef]
- Bancroft, G.M.; Nesbitt, H.W.; Henderson, G.S.; O’Shaughnessy, C.; Withers, A.C.; Neuville, D.R. Lorentzian dominated lineshapes and linewidths for Raman symmetric stretch peaks (800–1200 cm−1) in Qn (n = 1–3) species of alkali silicate glasses/melts. J. Non-Cryst. Solids 2018, 484, 72–83. [Google Scholar] [CrossRef]
- Ollier, N.; Gedeon, O. Micro-Raman studies on 50 keV electron irradiated silicate glass. J. Non-Cryst. Solids 2006, 352, 5337–5343. [Google Scholar] [CrossRef]
- Giordano, D.; Russell, J.K.; González-García, D.; Bersani, D.; Dingwell, D.B.; Del Negro, C. Raman Spectroscopy from Laboratory and Proximal to Remote Sensing: A Tool for the Volcanological Sciences. Remote Sens. 2020, 12, 805. [Google Scholar] [CrossRef]
- Borchers, A.; Pieler, T. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes 2010, 1, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Jestel, N.L.; Shaver, J.M.; Morris, M.D. Hyperspectral Raman Line Imaging of an Aluminosilicate Glass. Appl. Spectrosc. 2016, 52, 64–69. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; Zhang, H.; Luo, L.; Ding, L.; Shi, W.; Jiang, W.; Wang, H. Recycling of arsenic residue and waste soda-lime silicate glass via vitrification. J. Non-Cryst. Solids 2023, 609, 122300. [Google Scholar] [CrossRef]
- Xiao, W.; Lin, G.; He, X.; Yang, Z.; Wang, L. Interactions among heavy metal bioaccessibility, soil properties and microbial community in phyto-remediated soils nearby an abandoned realgar mine. Chemosphere 2022, 286 Pt 1, 131638. [Google Scholar] [CrossRef]
- Frost, R.L.; Xi, Y. Vibrational spectroscopic study of the minerals nekoite Ca3Si6O15·7H2O and okenite Ca10Si18O46·18H2O—Implications for the molecular structure. J. Mol. Struct. 2012, 1020, 96–104. [Google Scholar] [CrossRef]
- Cassetta, M.; Zanatta, M.; Biesuz, M.; Giarola, M.; Mariotto, G. New insights about the role of Na–K ratio on the vibrational dynamics of synthetic-basalt glasses. J. Raman Spectrosc. 2022, 53, 540–549. [Google Scholar] [CrossRef]
- Osipov, A.A.; Liska, M.; Osipova, L.M.; Chromčiková, M.; Hruška, B. Thermodynamic modeling and Raman spectroscopy study of Na2O-TiO2-SiO2 glasses. Vib. Spectrosc. 2020, 111, 103160. [Google Scholar] [CrossRef]
- Bechgaard, T.K.; Goel, A.; Youngman, R.E.; Mauro, J.C.; Rzoska, S.J.; Bockowski, M.; Jensen, L.R.; Smedskjaer, M.M. Structure and mechanical properties of compressed sodium aluminosilicate glasses: Role of non-bridging oxygens. J. Non-Cryst. Solids 2016, 441, 49–57. [Google Scholar] [CrossRef]
- O’Shaughnessy, C.; Henderson, G.S.; Nesbitt, H.W.; Bancroft, G.M.; Neuville, D.R. The influence of modifier cations on the Raman stretching modes of Qn species in alkali silicate glasses. J. Am. Ceram. Soc. 2020, 103, 3991–4001. [Google Scholar] [CrossRef]
- Bechgaard, K.; Scannell, G.; Huang, L.; Youngman, R.E.; Mauro, J.C.; Smedskjaer, M.M. Structure of MgO/CaO sodium aluminosilicate glasses: Raman spectroscopy study. J. Non-Cryst. Solids 2017, 470, 145–151. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, Q.; Wang, Q.; Xiao, J.; Liu, J.; Ding, L.; Jiang, W. Effect of the Iron Reduction Index on the Mechanical and Chemical Properties of Continuous Basalt Fiber. Materials 2019, 12, 2472. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Brow, R.K.; Choudhury, A. Structural study of Na2O–FeO–Fe2O3–P2O5 glasses by Raman and Mössbauer spectroscopy. J. Non-Cryst. Solids 2014, 402, 64–73. [Google Scholar] [CrossRef]
- Le, L.C.; Berry, A.J.; Kendrick, M.A.; Neuville, D.R.; O’Neill, H.S.C. Determination of the oxidation state of iron in Mid-Ocean Ridge basalt glasses by Raman spectroscopy. Am. Mineral. 2019, 104, 1032–1042. [Google Scholar]
- Di Muro, A.; Métrich, N.; Mercier, M.; Giordano, D.; Massare, D.; Montagnac, G. Micro-Raman determination of iron redox state in dry natural glasses: Application to peralkaline rhyolites and basalts. Chem. Geol. 2009, 259, 78–88. [Google Scholar] [CrossRef]
- Larre, C.; Morizet, Y.; Bézos, A.; Guivel, C.; La, C.; Mangold, N. Particular H2O dissolution mechanism in iron-rich melt: Application to martian basaltic melt genesis. J. Raman Spectrosc. 2019, 51, 493–507. [Google Scholar] [CrossRef]
- Di Genova, D.; Hess, K.-U.; Chevrel, M.O.; Dingwell, D.B. Models for the estimation of Fe3+/Fetotratio in terrestrial and extraterrestrial alkali- and iron-rich silicate glasses using Raman spectroscopyk. Am. Mineral. 2016, 101, 943–952. [Google Scholar] [CrossRef]
- Cassetta, M.; Giannetta, B.; Enrichi, F.; Zaccone, C.; Mariotto, G.; Giarola, M.; Nodari, L.; Zanatta, M.; Daldosso, N. Effect of the alkali vs. iron ratio on glass transition temperature and vibrational properties of synthetic basalt-like glasses. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 293, 122430. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhou, H.; Wang, J.; Pang, Z.; Pei, G.; Yan, Z.; Mao, H.; Qiu, G.; Lv, X. Influence of TiO2 on viscosity, phase composition and structure of chromium-containing high-titanium blast furnace slag. J. Mater. Res. Technol. 2021, 12, 1615–1622. [Google Scholar] [CrossRef]
- Guigard, M.; Cormier, L.; Montouillout, V.; Menguy, N.; Massiot, D.; Hannon, A.C. Environment of titanium and aluminum in a magnesium alumino-silicate glass. J. Phys. Condens. Matter 2009, 21, 375107. [Google Scholar] [CrossRef] [PubMed]
- Di Genova, D.; Morgavi, D.; Hess, K.U.; Neuville, D.R.; Borovkov, N.; Perugini, D.; Dingwell, D.B. Approximate chemical analysis of volcanic glasses using Raman spectroscopy. J. Raman Spectrosc. 2015, 46, 1235–1244. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.; Wang, H.; Wang, Y.; Shen, Y.; Zhang, J.; Chen, Y.; Zheng, Q.; Zhang, Y.; Tao, H. Mixed alkaline earth effects on crystallization behavior of basalt glasses and liquids. J. Alloys Compd. 2021, 874, 159986. [Google Scholar] [CrossRef]
- Zeng, H.; Wang, L.; Ye, F.; Yang, B.; Chen, J.; Chen, G.; Sun, L. Mechanical–Structural Investigation of Chemical Strengthening Aluminosilicate Glass through Introducing Phosphorus Pentoxide. Front. Mater. 2016, 3, 53. [Google Scholar] [CrossRef]
- Bohara, B.; Karki, B.B. Visualizing microscopic structure of simulated model basalt melt. Comput. Geosci. 2013, 57, 166–174. [Google Scholar] [CrossRef]
Sample | SiO2 | Al2O3 | Fe2O3 | TiO2 | Na2O | K2O | MgO | CaO |
---|---|---|---|---|---|---|---|---|
A15 | 51.4 | 9.4 | 5.9 | 1.2 | 0.4 | 0.1 | 18.9 | 12.7 |
A16 | 50.4 | 18.0 | 2.1 | 0.5 | 0.5 | 0.1 | 9.6 | 18.8 |
A17 | 48.2 | 11.2 | 5.1 | 3.5 | 0.4 | 0.1 | 17.4 | 14.1 |
L20 | 48.7 | 14.2 | 2.8 | 0.5 | 0.5 | 0.1 | 15.8 | 17.4 |
L24 | 50.3 | 8.4 | 8.5 | 1.1 | 0.3 | 0.1 | 16.2 | 15.1 |
CE5 | 51.7 | 6.1 | 10.9 | 6.5 | 0.4 | 0.1 | 8.9 | 15.4 |
Sample | Tg/°C | Tc/°C | ΔT/°C |
---|---|---|---|
A15 | 669.2 | 857.1 | 187.9 |
A16 | 729.6 | 909.5 | 179.9 |
A17 | 668.9 | 869.4 | 200.5 |
L20 | 703.4 | 933.0 | 229.6 |
L24 | 644.1 | 820.2 | 176.1 |
CE5 | 634.8 | 785.6 | 150.8 |
Sample | SL/ΣS/% | SH/ΣS/% | Percentage of Each Qn in ΣS/% | ||||
---|---|---|---|---|---|---|---|
Q0 | Q1 | Q2 | Q3 | Q4 | |||
A15 | 32.6 | 67.4 | <0.1 | 10 | 26.1 | 25.3 | 6 |
A16 | 37.7 | 62.3 | <0.1 | 7.6 | 26.1 | 23.9 | 4.7 |
A17 | 40.9 | 59.1 | <0.1 | 8.9 | 24.4 | 20.4 | 5.5 |
L20 | 40.2 | 59.8 | <0.1 | 8.4 | 24.1 | 20.3 | 7 |
L24 | 43.7 | 56.3 | <0.1 | 10.3 | 22.8 | 17.3 | 5.8 |
CE5 | 24.1 | 75.9 | 24.7 | 24.7 | 19.5 | 6.9 | <0.1 |
Samples | A15 | A16 | A17 | L20 | L24 | CE5 |
---|---|---|---|---|---|---|
IRI | 0.24 | 0.21 | 0.25 | 0.19 | 0.21 | 0.27 |
FeO | 2.8 | 0.9 | 2.6 | 1.1 | 3.6 | 5.9 |
Fe2O3 | 4.5 | 1.7 | 3.8 | 2.3 | 6.7 | 8.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Luo, L.; Xu, J.; Zhu, X.; Shi, G.; Wang, Q. The Impact of the Composition on the Properties of Simulated Lunar Mare Basalt Fibers. Materials 2024, 17, 2043. https://doi.org/10.3390/ma17092043
Liu J, Luo L, Xu J, Zhu X, Shi G, Wang Q. The Impact of the Composition on the Properties of Simulated Lunar Mare Basalt Fibers. Materials. 2024; 17(9):2043. https://doi.org/10.3390/ma17092043
Chicago/Turabian StyleLiu, Jin, Lida Luo, Jiali Xu, Xiaoxu Zhu, Guoying Shi, and Qingwei Wang. 2024. "The Impact of the Composition on the Properties of Simulated Lunar Mare Basalt Fibers" Materials 17, no. 9: 2043. https://doi.org/10.3390/ma17092043
APA StyleLiu, J., Luo, L., Xu, J., Zhu, X., Shi, G., & Wang, Q. (2024). The Impact of the Composition on the Properties of Simulated Lunar Mare Basalt Fibers. Materials, 17(9), 2043. https://doi.org/10.3390/ma17092043