A Review on the Carbonation of Steel Slag: Properties, Mechanism, and Application
Abstract
:1. Introduction
2. Physical and Chemical Properties of Steel Slag
3. Carbonation of Steel Slag
3.1. Carbonation Mechanism of Steel Slag
3.2. Internal Factors Affecting the Carbonation of Steel Slag
3.2.1. Mineral Phases
3.2.2. Particle Size
3.3. External Factors Affecting the Carbonation of Steel Slag
3.3.1. Carbonation Period
3.3.2. Carbonation Temperature
3.3.3. Partial Pressure of CO2
3.4. Soundness of Carbonated Steel Slag
3.5. Potential Application of Carbonated Steel Slag
Main Materials | Products | Particle Size of Steel Slag | Carbonation System | Compressive Strength (MPa) | Carbon Sequestration Ratio (%) | References |
---|---|---|---|---|---|---|
Steel slag powder + sand+ aggregate | Carbonation steel slag brick | — | Carbonation was at the pressure of 0.2 MPa in pure CO2 gas for 7 d | 27.7 | 7.5 | [90] |
Steel slag powder | Carbonation steel slag brick | 3–40 μm | the CO2 concentration was 98 ± 1%, relative humidity was 60 ± 1%, the temperature was 20 ± 1 °C, the CO2 gas pressure was 0.25 MPa, and the carbonation duration was 2 h. | 22–32.6 | 13.28–16.82 | [101] |
Steel slag powder + pore-forming agent | Steel slag block | <75 μm | Introducing 99.9% mass pure CO2 gas to carbonate steel slag at 150 °C for 3 h under the CO2 partial pressure of 0.3 MPa | 24.8 (1 d) | 15.32 | [102] |
Steel slag powder | Carbonated steel slag cement | Average particle size of 39.4 μm | 99.5% purity CO2 gas, CO2 partial pressure of 1.5 bar for 12 h | 39.9–91.2 (12 h) | 9–15 | [103] |
Steel slag powder + Portland cement + reactive magnesia | binding materials | 0.036–0.039 mm | CO2 with a concentration of 99.9% was introduced for curing at a CO2 gas pressure of 0.1 MPa. | 38.6 (1 d) | — | [104] |
Steel slag powder + sand + cement | Ultra-high performance concrete incorporating carbonated steel slag powder | Steel slag powder < 150 μm/Steel slag fine aggregate | CO2 concentration of 20%, temperature 25 °C, curing time 72 h | >145 (28 d) | — | [105] |
Steel slag powder + granite | Carbonation steel slag concrete | <50 μm | Introducing tail gas with a CO2 concentration of 99.9% at a pressure of 1.4 kPa or 0.5 MPa for 12 h | 49.9–54.3 (28 d) | 7.3–8.11 | [106] |
Steel slag powder | Carbonated steel slag aggregate | 1–100 μm | Using 99.9% CO2, the CO2 partial pressure is 0.2 MPa, and the carbonation time is 4, 8 or 24 h | — | 7.0–10.5 | [107] |
Steel slag + biochar | Carbonated steel slag aggregate | — | Curing for 4 h under the reaction temperature of 30 °C and RH of 60 ± 5%, and the pressure of kiln tail gas of 0.2 MPa | 3.2–5.7 | 6.51–8.69 | [108] |
Steel slag | Carbonated steel slag aggregate | — | Curing with CO2 gas with a purity of 99%, RH of 70 ± 5%, curing temperature of 20 ± 2 °C, curing time of 7 h at a gas pressure of 1 bar | 20.5 | 4.49 | [109] |
4. Conclusions and Challenges
4.1. Main Conclusion
4.2. Future Challenges
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.; Wu, D.; Hu, W.; Li, J.; Zhang, Z.; Yang, F.; Wang, Z.; Ni, W. Coupling Mineralization and Product Characteristics of Steel Slag and Carbon Dioxide. Minerals 2023, 13, 795. [Google Scholar] [CrossRef]
- Tajabadipour, M.; Esmaeili, M.; Askari, A. Experimental evaluation of cyclic performance of steel slag and grids of truck scrap tire as a novel reinforced ballast material. Constr. Build. Mater. 2024, 411, 134472. [Google Scholar] [CrossRef]
- Zhong, J.X.; Cao, L.Y.; Li, M.; Wang, S.P.; Liu, F.; Lv, X.W.; Peng, X.Q. Mechanical properties and durability of alkali-activated steel slag–blastfurnace slag cement. J. Iron Steel Res. Int. 2023, 30, 1342–1355. [Google Scholar] [CrossRef]
- Alias, C.; Zerbini, I.; Abbà, A.; Benassi, L.; Gelatti, U.; Sorlini, S.; Piovani, G.; Feretti, D. Ecotoxicity Evaluation of Industrial Waste and Construction Materials: Comparison between Leachates from Granular Steel Slags and Steel Slags-Containing Concrete through a Plant-Based Approach. Bull. Environ. Contam. Toxicol. 2023, 111, 3. [Google Scholar] [CrossRef] [PubMed]
- Bastianini, L.; Rogerson, M.; Brasier, A.; Prior, T.J.; Hardman, K.; Dempsey, E.; Bird, A.; Mayes, W.M. Ikaite formation in streams affected by steel waste leachate: First report and potential impact on contaminant dynamics. Chem. Geol. 2024, 644, 121842. [Google Scholar] [CrossRef]
- Guo, J.; Bao, Y.; Wang, M. Steel slag in China: Treatment, recycling, and management. Waste Manag. 2018, 78, 318–330. [Google Scholar] [CrossRef]
- Azeez, A.T.; Hassan, M.S.; Attiyah, A.A.H. Modelling the complementary role of inert slag aggregate and waste glass on concrete mechanical strengths using the response surface and design-of-experiment approach. Constr. Build. Mater. 2023, 409, 134199. [Google Scholar] [CrossRef]
- Kumar Chilukuri, S.; Narendra Raut, A.; Kumar, S.; Singh, R.J.; Sakhare, V. Enhancing thermal performance and energy Efficiency: Optimal selection of steel slag crumb rubber blocks through Multi-Criteria decision Making. Constr. Build. Mater. 2023, 409, 134094. [Google Scholar] [CrossRef]
- Van Ho, Q.; Huynh, T.-P. A comprehensive investigation on the impacts of steel slag aggregate on characteristics of high-performance concrete incorporating industrial by-products. J. Build. Eng. 2023, 80, 107982. [Google Scholar] [CrossRef]
- Syed, M.; GuhaRay, A.; Raju, S. Subgrade Strength Performance Behavior of Alkali-Activated Binder and Cement Stabilized Expansive Soil: A Semifield Study. J. Mater. Civ. Eng. 2023, 35, 04023329. [Google Scholar] [CrossRef]
- Nunes, V.A.; Borges, P.H.R. Recent advances in the reuse of steel slags and future perspectives as binder and aggregate for alkali-activated materials. Constr. Build. Mater. 2021, 281, 122605. [Google Scholar] [CrossRef]
- Yildirim Irem, Z.; Balunaini, U.; Prezzi, M. Strength-Gain Characteristics and Swelling Response of Steel Slag and Steel Slag–Fly Ash Mixtures. J. Mater. Civ. Eng. 2023, 35, 04023223. [Google Scholar] [CrossRef]
- Nguyen, C.; Pham, P.; Huynh, N.; Le, C. Evaluating potential expansion and strength of compacted steel slag aggregates at different compaction density. IOP Conf. Ser. Mater. Sci. Eng. 2023, 1289, 012072. [Google Scholar] [CrossRef]
- Li, Z.; Shen, A.; Yang, X.; Guo, Y.; Liu, Y. A review of steel slag as a substitute for natural aggregate applied to cement concrete. Road Mater. Pavement Des. 2023, 24, 537–559. [Google Scholar] [CrossRef]
- Elyasi Gomari, K.; Rezaei Gomari, S.; Hughes, D.; Ahmed, T. Exploring the potential of steel slag waste for carbon sequestration through mineral carbonation: A comparative study of blast-furnace slag and ladle slag. J. Environ. Manag. 2024, 351, 119835. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zeng, C.; Li, Z.; Liu, G.; Zhang, W.; Xie, G.; Xing, F. Carbonation of steel slag at low CO2 concentrations: Novel biochar cold-bonded steel slag artificial aggregates. Sci. Total Environ. 2023, 902, 166065. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, T.; Gao, X.; Yang, W. New insights into the effects of different CO2 mineralization conditions on steel slag as supplemental cementitious material. J. Build. Eng. 2024, 84, 108566. [Google Scholar] [CrossRef]
- Kurniati, E.O.; Pederson, F.; Kim, H.-J. Application of steel slags, ferronickel slags, and copper mining waste as construction materials: A review. Resour. Conserv. Recycl. 2023, 198, 107175. [Google Scholar] [CrossRef]
- CO2 emissions in 2022. International Energy Agency. Available online: https://www.iea.org/reports/co2-emissions-in-2022 (accessed on 17 February 2024).
- Zhu, K.; Jiang, X. Slowing down of globalization and global CO2 emissions – A causal or casual association? Energy Economics 2019, 84, 104483. [Google Scholar] [CrossRef]
- Alshalif, A.F.; Irwan, J.M.; Othman, N.; Al-Gheethi, A.A.; Shamsudin, S. A systematic review on bio-sequestration of carbon dioxide in bio-concrete systems: A future direction. Eur. J. Environ. Civ. Eng. 2022, 26, 1209–1228. [Google Scholar] [CrossRef]
- Kumar, M.; Sundaram, S.; Gnansounou, E.; Larroche, C.; Thakur, I.S. Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review. Bioresour. Technol. 2018, 247, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Yu, X.; Zheng, T.; Chen, Y. Review on bacteria fixing CO2 and bio-mineralization to enhance the performance of construction materials. J. CO2 Util. 2022, 55, 101849. [Google Scholar] [CrossRef]
- Li, J.; Hitch, M. Economic analysis on the application of mechanical activation in an integrated mineral carbonation process. Int. Biodeterior. Biodegrad. 2018, 128, 63–71. [Google Scholar] [CrossRef]
- Ding, H.; Zheng, H.; Liang, X.; Ren, L. Getting ready for carbon capture and storage in the iron and steel sector in China: Assessing the value of capture readiness. J. Clean. Prod. 2020, 244, 118953. [Google Scholar] [CrossRef]
- Power, I.M.; Harrison, A.L.; Dipple, G.M.; Wilson, S.; Kelemen, P.B.; Hitch, M.; Southam, G. Carbon mineralization: From natural analogues to engineered systems. Rev. Mineral. Geochem. 2013, 77, 305–360. [Google Scholar] [CrossRef]
- Lai, M.H.; Chen, Z.H.; Cui, J.; Zhong, J.P.; Wu, Z.R.; Ho, J.C.M. Enhancing the post-fire behavior of steel slag normal-strength concrete by adding SCM. Constr. Build. Mater. 2023, 398, 132336. [Google Scholar] [CrossRef]
- Shu, K.; Sasaki, K. Occurrence of steel converter slag and its high value-added conversion for environmental restoration in China: A review. J. Clean. Prod. 2022, 373, 133876. [Google Scholar] [CrossRef]
- Maslehuddin, M.; Sharif, A.M.; Shameem, M.; Ibrahim, M.; Barry, M.S. Comparison of properties of steel slag and crushed limestone aggregate concretes. Constr. Build. Mater. 2003, 17, 105–112. [Google Scholar] [CrossRef]
- Jiang, Y.; Ling, T.C.; Shi, C.; Pan, S.Y. Characteristics of steel slags and their use in cement and concrete—A review. Resour. Conserv. Recycl. 2018, 136, 187–197. [Google Scholar] [CrossRef]
- Xiang, R.; Chen, P.; Liu, R.; Hu, C.; Wan, D.; Fan, J.; Wei, J. Phases Reconstruction and Foaming Modification of Basic Oxygen Furnace Slag on its Grindability. Crystals 2021, 11, 1051. [Google Scholar] [CrossRef]
- Franco Santos, W.; Botterweg, J.J.; Figueiredo, S.C.; Schollbach, K.; van der Laan, S.; Brouwers, H.J.H. Sodium oxalate activation of basic oxygen furnace slag for building materials. Resour. Conserv. Recycl. 2023, 198, 107174. [Google Scholar] [CrossRef]
- Rezende, C.V.; Barbosa, C.L.C.; Fonseca, E.F.P.d.; Silva, B.A.C.d.; de, C.J.M.F.; Fiorotti, P.R.A. Performance of low-energy steel slag powders as supplementary cementitious materials. Constr. Build. Mater. 2023, 392, 107174. [Google Scholar]
- Li, J.; Ni, W.; Wang, X.; Zhu, S.; Wei, X.; Jiang, F.; Zeng, H.; Hitch, M. Mechanical Activation of Medium Basicity Steel Slag Under Dry Condition for Carbonation Curing. J. Build.Eng. 2022, 50, 104123. [Google Scholar] [CrossRef]
- Kovtun, O.; Karbayev, M.; Korobeinikov, I.; Srishilan, C.; Shukla, A.K.; Volkova, O. Phosphorus Partition between Liquid Crude Steel and High-Basicity Basic Oxygen Furnace Slags. Steel Res. Int. 2021, 92, 2000607. [Google Scholar] [CrossRef]
- Li, P.; Ji, J.; Wen, L.; Chen, H.; Bian, L.; Zhou, W.; Wu, Y. Quantitative characterization and evaluation of key physicochemical characteristics of steel slag. Constr. Build. Mater. 2024, 414, 134959. [Google Scholar] [CrossRef]
- Salman, M.; Cizer, Ö.; Pontikes, Y.; Snellings, R.; Vandewalle, L.; Blanpain, B.; Balen, K.V. Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions. J. Hazard. Mater. 2015, 286, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y. Carbonation of alkaline minerals in steel slag and products evolution process. Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2017. [Google Scholar]
- Sun, X.; Liu, J.; Zhao, Y.; Zhao, J.; Li, Z.; Sun, Y.; Qiu, J.; Zheng, P. Mechanical activation of steel slag to prepare supplementary cementitious materials: A comparative research based on the particle size distribution, hydration, toxicity assessment and carbon dioxide emission. J. Build. Eng. 2022, 60, 105200. [Google Scholar] [CrossRef]
- Zeng, T.; Hu, Z.; Huang, C.; Chang, J. Influence of Carbonation on the Properties of Steel Slag–Magnesium Silicate Hydrate (MSH) Cement. Materials 2023, 16, 6737. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Weng, Y.; Liu, Y.; Ji, X.; Liu, J. Calculation of f-CaO Hydration Ratio in Steel Slag Based on Mathematical Model of Hydration Expansion of Steel Slag–Cement Cementitious Materials. JOM 2023, 75, 5243–5251. [Google Scholar] [CrossRef]
- Huang, Z.C.; Liu, J.J.; Ren, F.M.; Cui, J.; Song, Z.; Lu, D.H.; Lai, M.H. Behavior of SSFA high-strength concrete at ambient and after exposure to elevated temperatures. Case Stud. Constr. Mater. 2024, 20, e02946. [Google Scholar] [CrossRef]
- Hong, J.; Xuewu, Z.; Zebo, X. Study on Preparation and Properties of Steel Slag-Shale Slag Foamed Ceramics Material. Multipurp. Util. Miner. Resour. 2023, 44, 93–99, 106. [Google Scholar]
- Luo, Y.; He, D. Research on Indirect Carbonation of Two-step Leaching for the Purpose of Utilizing the Alkalinity of Steel Slag. J. Sustain. Metall. 2021, 7, 947–963. [Google Scholar] [CrossRef]
- You, N.; Shi, J.; Zhang, Y. Corrosion Behaviour of Low-Carbon Steel Reinforcement in Alkali-Activated Slag-Steel Slag and Portland Cement-Based Mortars Under Simulated Marine Environment. Corros. Sci. 2020, 175, 108874. [Google Scholar] [CrossRef]
- Zhuang, X.; Liang, Y.; Ho, J.C.M.; Wang, Y.H.; Lai, M.; Li, X.; Xu, Z.; Xu, Y. Post-fire Behavior of Steel Slag Fine Aggregate Concrete. Structural Concrete : J. FIB 2022, 23, 3672–3695. [Google Scholar] [CrossRef]
- Zhuo, K.X.; Liu, G.T.; Lan, X.W.; Zheng, D.P.; Wu, S.Q.; Wu, P.Z.; Guo, Y.C.; Lin, J.X. Fracture Behavior of Steel Slag Powder-Cement-Based Concrete with Different Steel-Slag-Powder Replacement Ratios. Materials 2022, 15, 2243. [Google Scholar] [CrossRef] [PubMed]
- Wei, C. Study on the Kinetics of CO2 Capture by Steel Slag with Cold-Rolling Wastewater and Carbonated Slag Resource Utilization. Master’s Thesis, Jiangxi University of Science and Technology, Nanchang, China, 2021. [Google Scholar]
- Huang, X.; Zhang, J.; Zhang, L. Accelerated carbonation of steel slag: A review of methods, mechanisms and influencing factors. Constr. Build. Mater. 2024, 411, 134603. [Google Scholar] [CrossRef]
- Zajac, M.; Skibsted, J.; Skocek, J.; Durdzinski, P.; Bullerjahn, F.; Haha, M.B. Phase assemblage and microstructure of cement paste subjected to enforced, wet carbonation. Cem. Concr. Res. 2020, 130, 105990. [Google Scholar] [CrossRef]
- Peiliang, S.; Yangyang, Z.; Yi, J.; Baojian, Z.; Jianxin, L.; Shipeng, Z.; Dongxing, X.; Sun, P.C. Phase assemblance evolution during wet carbonation of recycled concrete fines. Cem. Concr. Res. 2022, 154, 106733. [Google Scholar]
- He, D.; Yang, L.; Luo, Y.; Liu, G.; Wu, Z. Synergistic calcium leaching and iron enrichment by indirect carbonation of thermally modified steel slag. Constr. Build. Mater. 2024, 411, 134249. [Google Scholar] [CrossRef]
- Tamás, K.; Gábor, M.; Sanjay, K.; Ferenc, K. Carbon-dioxide sequestration by mechanical activation of Linz-Donawitz steel slag; the effect of water on CO2 capture. Fuel 2023, 352, 128951. [Google Scholar]
- Ekaterina, K.; Chuhao, Q.; Zhenzhen, L.; Wai, N.C.W. Effect of polyvinyl alcohol on the CO2 uptake of carbonated steel slag. Constr. Build. Mater. 2023, 375, 130761. [Google Scholar]
- Williams, J.M.; Zhao, D.; Zhang, N.; Zheng, A.; Greenbaum, S.G.; Kawashima, S.; Moment, A.J. Calcium carbonate and reactive silica recovery from waste cement: The influence of processing parameters on upcycled material properties and carbon intensity. Chem. Eng. J. 2024, 482, 149013. [Google Scholar] [CrossRef]
- Luo, Y.; He, D. Indirect Carbonation by a Two-Step Leaching Process Using Ammonium Chloride and Acetic Acid. JOM 2022, 74, 1958–1968. [Google Scholar] [CrossRef]
- Tu, M.; Lei, Z.; Lv, X.; Zhao, H.; Wang, L.; Zhang, J.; Chen, D.; Song, W.; Qi, T. Carbon dioxide sequestration using water quenched steel slag. Chin. J. Environ. Eng. 2015, 9, 4514–4518. [Google Scholar]
- Xie, Y.; Feng, X. Research status and prospect of steel slag mineralization for carbon dioxide capture and sequestration. Met. Mine 2023, 11, 45–54. [Google Scholar]
- Baras, A.; Li, J.; Ni, W.; Hussain, Z.; Hitch, M. Evaluation of Potential Factors Affecting Steel Slag Carbonation. Processes 2023, 11, 2590. [Google Scholar] [CrossRef]
- Chen, Z.; Cang, Z.; Yang, F.; Zhang, J.; Zhang, L. Carbonation of steelmaking slag presents an opportunity for carbon neutral: A review. J. CO2 Util. 2021, 54, 101738. [Google Scholar] [CrossRef]
- Lekakh, S.N.; Rawlins, C.H.; Robertson, D.G.C.; Richards, V.L.; Peaslee, K.D. Kinetics of aqueous leaching and carbonization of steelmaking slag. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2008, 39, 125–134. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, M.; Mo, L.; Zhong, J.; Xu, M.; Deng, M. Probe into Carbonation Mechanism of Steel Slag Via FIB-TEM: The Roles of various Mineral Phases. Cem. Concr. Res. 2022, 162, 106991. [Google Scholar] [CrossRef]
- DiGiovanni, C.; Hisseine, O.A.; Awolayo, A.N. Carbon Dioxide Sequestration through Steel Slag Carbonation: Review of Mechanisms, Process Parameters, and Cleaner Upcycling Pathways. J. CO2 Util. 2024, 81, 102736. [Google Scholar] [CrossRef]
- Bonenfant, D.; Kharoune, L.; Sauvé, S.; Hausler, R.; Niquette, P.; Mimeault, M.; Kharoune, M. CO2 sequestration potential of steel slags at ambient pressure and temperature. Ind. Eng. Chem. Res. 2008, 47, 7610–7616. [Google Scholar] [CrossRef]
- Su, T.-H.; Yang, H.-J.; Shau, Y.-H.; Takazawa, E.; Lee, Y.-C. CO2 sequestration utilizing basic-oxygen furnace slag: Controlling factors, reaction mechanisms and V–Cr concerns. J. Environ. Sci. 2016, 41, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, Q.; Huang, H.; Yin, S. Effects of Ca/Si Ratio, Aluminum and Magnesium on the Carbonation Behavior of Calcium Silicate Hydrate. Materials 2019, 12, 1268. [Google Scholar] [CrossRef] [PubMed]
- Seigneur, N.; De Windt, L.; Poyet, S.; Socié, A.; Dauzères, A. Modelling of the evolving contributions of gas transport, cracks and chemical kinetics during atmospheric carbonation of hydrated C3S and C-S-H pastes. Cem. Concr. Res. 2022, 160, 106906. [Google Scholar] [CrossRef]
- Liu, X.; Feng, P.; Cai, Y.; Yu, X.; Liu, Q. Carbonation behaviors of calcium silicate hydrate (C-S-H): Effects of aluminum. Constr. Build. Mater. 2022, 325, 126825. [Google Scholar] [CrossRef]
- Ba, H.; Li, J.; Ni, W.; Li, Y.; Ju, Y.; Zhao, B.; Wen, G.; Hitch, M. Effect of calcium to silicon ratio on the microstructure of hydrated calcium silicate gels prepared under medium alkalinity. Constr. Build. Mater. 2023, 379, 131240. [Google Scholar] [CrossRef]
- Liu, G.; Schollbach, K.; van der Laan, S.; Tang, P.; Florea, M.V.; Brouwers, H.J.H. Recycling and Utilization of High Volume Converter Steel Slag into CO2 Activated Mortars—The Role of Slag Particle Size. Resour. Conserv. Recycl. 2020, 160, 104883. [Google Scholar] [CrossRef]
- Huijgen, W.J.J.; Ruijg, G.J.; Comans, R.N.J.; Witkamp, G.J. Energy consumption and net CO2 sequestration of aqueous mineral carbonation. Ind. Eng. Chem. Res. 2006, 45, 9184–9194. [Google Scholar] [CrossRef]
- Reddy, K.R.; Gopakumar, A.; Chetri, J.K. Critical review of applications of iron and steel slags for carbon sequestration and environmental remediation. Rev. Environ. Sci. Biotechnol. 2019, 18, 127–152. [Google Scholar] [CrossRef]
- He, M. Research on the Preparation and Applications of Accelerated Carbonation Steel Slag Aggregate. Master’s Thesis, Anhui Jianzhu University, Hefei, China, 2020. [Google Scholar]
- Nielsen, P.; Boone, M.A.; Horckmans, L.; Snellings, R.; Quaghebeur, M. Accelerated carbonation of steel slag monoliths at low CO2 pressure—Microstructure and strength development. J. CO2 Util. 2020, 36, 124–134. [Google Scholar] [CrossRef]
- Li, L.; Zhong, X.; Ling, T.C. Effects of accelerated carbonation and high temperatures exposure on the properties of EAFS and BOFS pressed blocks. J. Build. Eng. 2022, 45, 103504. [Google Scholar] [CrossRef]
- Zhang, F.; Mo, L.; Deng, M.; Cai, Y. Effect of carbonation curing on mechanical strength and microstructure of mortars prepared with steel slag-cement-MgO-CaO blends. J. Build. Mater. 2017, 20, 854–861. [Google Scholar]
- Sumit, S.; Michela, C.; Hoang, N.; Valter, C.; Paivo, K.; Mirja, I. Carbonated steel slags as supplementary cementitious materials: Reaction kinetics and phase evolution. Cem. Concr. Compos. 2023, 142, 105213. [Google Scholar]
- Ferrara, G.; Belli, A.; Keulen, A.; Tulliani, J.-M.; Palmero, P. Testing procedures for CO2 uptake assessment of accelerated carbonation products: Experimental application on basic oxygen furnace steel slag samples. Constr. Build. Mater. 2023, 406, 133384. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, Y.; Yang, G.; Ye, J.; Zhang, W.; Liu, Z.; Mu, Y. Effect of Curing Temperature on Carbonation Behavior of Steel Slag Compacts. Constr. Build. Mater. 2021, 291, 123369. [Google Scholar] [CrossRef]
- Peng, B.; Yue, C.; Li, Y.; Zhou, Y. Effects of different conditions on carbonation reaction of steel slag and kinetic aanalysis. Bull. Ceram. Soc. 2020, 39, 3562–3566. [Google Scholar]
- Baciocchi, R.; Costa, G.; Polettini, A.; Pomi, R.; Stramazzo, A.; Zingaretti, D. Accelerated Carbonation of Steel Slags Using CO2 Diluted Sources: CO2 Uptakes and Energy Requirements. Front. Energy Res. 2016, 3, 56. [Google Scholar] [CrossRef]
- Ukwattage, N.L.; Ranjith, P.G.; Li, X. Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Meas. J. Int. Meas. Confed. 2017, 97, 15–22. [Google Scholar] [CrossRef]
- Jacobs, A.D.; Hitch, M. Experimental mineral carbonation: Approaches to accelerate CO2 sequestration in mine waste materials. Int. J. Min. Reclam. Environ. 2011, 25, 321–331. [Google Scholar] [CrossRef]
- Li, J.; Jacobs, A.D.; Hitch, M. Direct aqueous carbonation on olivine at a CO2 partial pressure of 6.5 MPa. Energy 2019, 173, 902–910. [Google Scholar] [CrossRef]
- Yao, H.; Chen, S.; Chen, D.; Naguib, H.M.; Hou, G. Study on soundness of steel slag block under accelerated carbonation. Bull. Chin. Ceram. Soc. 2020, 39, 187–193. [Google Scholar]
- Sun, P.; Fang, Y.; Liu, C.; Lu, W.; Wang, Q. Effects of carbonation on volume stability and hydration activity of steel slag. Concrete 2020, 9, 69–72. [Google Scholar] [CrossRef]
- Chen, Z.; Li, R.; Zheng, X.; Liu, J. Carbon sequestration of steel slag and carbonation for activating RO phase. Cem. Concr. Res. 2021, 139, 106271. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, W.; Shi, D.; Si, Z.; Chen, X. Synergistic effect of alkali-activation and carbonation on carbonated steel slag bricks. J. Chin. Ceram. Soc. 2019, 47, 1582–1592. [Google Scholar]
- Shi, D.; Ye, J.; Zhang, W.; Si, K.; Zhang, M.; Zhang, H. Synergistic mechanism of alkali-activation and carbonation of carbonated steel slag bricks. J. Iron Steel Res. 2021, 33, 1127–1133. [Google Scholar]
- Hou, G.; Yan, Z.; Sun, J.; Naguib, H.M.; Lu, B.; Zhang, Z. Microstructure and mechanical properties of CO2-cured steel slag brick in pilot-scale. Constr. Build. Mater. 2021, 271, 121581. [Google Scholar] [CrossRef]
- Pang, B. Prepration and Property Investigation of Carbonated Steel Slag Aggregate and Concrete. Master’s Thesis, Jinan University, Jinan, China, 2016. [Google Scholar]
- Otmane, S.; Fouad, E.M.; Habib, Y.E.; Emilia, O.; José, M.; Mohamed, S. Efficient Removal of Tannic Acid from Olive Mill Wastewater Using Carbon Steel Slag. C 2023, 9, 32. [Google Scholar] [CrossRef]
- Yu, C.; Cui, C.; Zhao, J.; Liu, F.; Wu, Y.; Liu, K. Novel carbonation solidification process for recovery of Zn-contaminated slurry: Strength and leachability aspects. Constr. Build. Mater. 2023, 370, 130585. [Google Scholar] [CrossRef]
- Etemadiasl, F.; Tishehzan, P.; Kashefipour, S.M.; Jaafarzadeh Haaghighifard, N. Investigating and comparing chemical, electrochemical, and photo-electrochemical processes in decreasing dissolved iron from oily wastewaters using steel slag. Int. J. Environ. Sci. Technol. 2023, 20, 9881–9900. [Google Scholar] [CrossRef]
- Liu, L.; Fan, X.; Gan, M.; Wei, J.; Gao, Z.; Sun, Z.; Ji, Z.; Wu, Y.; Li, J. Microwave-enhanced selective leaching calcium from steelmaking slag to fix CO2 and produce high value-added CaCO3. Sep. Purif. Technol. 2024, 330, 125395. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, J.; Li, H.; Xiong, H.; Xu, A. Calcite Phase Conversion Prediction Model for CaO-Al2O3-SiO2 Slag: An Aqueous Carbonation Process at Ambient Pressure. JOM 2018, 70, 938–945. [Google Scholar] [CrossRef]
- Liu, P.; Zhong, J.; Zhang, M.; Mo, L.; Deng, M. Effect of CO2 treatment on the microstructure and properties of steel slag supplementary cementitous materials. Constr. Build. Mater. 2021, 309, 125171. [Google Scholar] [CrossRef]
- Chen, Y.X.; Liu, G.; Schollbach, K.; Brouwers, H.J.H. Development of cement-free bio-based cold-bonded lightweight aggregates (BCBLWAs) using steel slag and miscanthus powder via CO2 curing. J. Clean. Prod. 2021, 322, 129105. [Google Scholar] [CrossRef]
- Yu, C.; Cui, C.; Wang, Y.; Zhao, J.; Wu, Y. Strength performance and microstructural evolution of carbonated steel slag stabilized soils in the laboratory scale. Eng. Geol. 2021, 295, 106410. [Google Scholar] [CrossRef]
- Li, J.; Zhao, S.; Song, X.; Ni, W.; Mao, S.; Du, H.; Zhu, S.; Jiang, F.; Zeng, H.; Deng, X.; et al. Carbonation Curing on Magnetically Separated Steel Slag for the Preparation of Artificial Reefs. Materials 2022, 15, 2055. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Jin, P.; Dong, H.; Liu, Y.; Ding, Z.; Zhang, W. Effect of moist content on the bio-carbonated steel slag bricks. Constr. Build. Mater. 2021, 269, 121313. [Google Scholar] [CrossRef]
- Chen, W.; Liu, P.; Wang, F.; Hu, C.; Hu, S. Mechanical Performance and Micro-structure of Pore Steel Slag Block Prepared by Accelerated Carbonation. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2022, 37, 475–481. [Google Scholar] [CrossRef]
- Zhang, S.; Ghouleh, Z.; Mucci, A.; Bahn, O.; Provençal, R.; Shao, Y. Production of cleaner high-strength cementing material using steel slag under elevated-temperature carbonation. J. Clean. Prod. 2022, 342, 130948. [Google Scholar] [CrossRef]
- Mo, L.; Zhang, F.; Deng, M.; Jin, F.; Al-Tabbaa, A.; Wang, A. Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates. Cem. Concr. Compos. 2017, 83, 138–145. [Google Scholar] [CrossRef]
- Liu, G.; Schollbach, K.; Li, P.; Brouwers, H.J.H. Valorization of converter steel slag into eco-friendly ultra-high performance concrete by ambient CO2 pre-treatment. Constr. Build. Mater. 2021, 280, 122580. [Google Scholar] [CrossRef]
- Xian, X.; Mahoutian, M.; Zhang, D.; Shao, Y. Development of wet-cast Portland-cement-free concrete based on steel slag and ambient-pressure carbonation activation. Resour. Conserv. Recycl. 2024, 203, 107455. [Google Scholar] [CrossRef]
- Mo, L.; Yang, S.; Huang, B.; Xu, L.; Feng, S.; Deng, M. Preparation, microstructure and property of carbonated artificial steel slag aggregate used in concrete. Cem. Concr. Compos. 2020, 113, 103715. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, Y.; Yang, S.; Mo, L.; Liu, P. Effects of internal CO2 curing provided by biochar on the carbonation and properties of steel slag-based artificial lightweight aggregates (SALAs). Cem. Concr. Compos. 2023, 142, 105197. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; He, B.; Jing, X.; Cang, D.; Zhang, L. Study on evolution of pores channel in carbonation steel slag samples with fly ash. Constr. Build. Mater. 2024, 411, 134471. [Google Scholar] [CrossRef]
Category | Origin | Chemical Composition (wt.%) | Reference | ||||
---|---|---|---|---|---|---|---|
CaO | SiO2 | FexOy | Al2O3 | MgO | |||
Cement | — | 64.88 | 22.08 | 3.42 | 4.51 | 2.28 | [41] |
BOF1 | Beijing | 44.21 | 12 | 29.74 | 4.05 | 4.51 | [41] |
BOF2 | — | 40.20 | 10.76 | 16.47 | 4.49 | 9.48 | [42] |
BOF3 | Panzhihua | 42.18 | 15.02 | 22.58 | 6.14 | 8.94 | [43] |
BOF4 | — | 45.34 | 11.41 | 30.31 | 1.31 | 2.19 | [44] |
BOF5 | — | 34.77 | 26.44 | 18.40 | 10.03 | 6.01 | [45] |
BOF6 | — | 40.20 | 10.76 | 16.47 | 4.49 | 9.48 | [46] |
BOF7 | — | 38.48 | 15.42 | 26.79 | 4.45 | 8.08 | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, M.; Liu, F.; Song, Q.; Deng, Y.; Ye, W.; Ni, J.; Si, X.; Wang, C. A Review on the Carbonation of Steel Slag: Properties, Mechanism, and Application. Materials 2024, 17, 2066. https://doi.org/10.3390/ma17092066
Wang S, Wang M, Liu F, Song Q, Deng Y, Ye W, Ni J, Si X, Wang C. A Review on the Carbonation of Steel Slag: Properties, Mechanism, and Application. Materials. 2024; 17(9):2066. https://doi.org/10.3390/ma17092066
Chicago/Turabian StyleWang, Shuping, Mingda Wang, Fang Liu, Qiang Song, Yu Deng, Wenhao Ye, Jun Ni, Xinzhong Si, and Chong Wang. 2024. "A Review on the Carbonation of Steel Slag: Properties, Mechanism, and Application" Materials 17, no. 9: 2066. https://doi.org/10.3390/ma17092066
APA StyleWang, S., Wang, M., Liu, F., Song, Q., Deng, Y., Ye, W., Ni, J., Si, X., & Wang, C. (2024). A Review on the Carbonation of Steel Slag: Properties, Mechanism, and Application. Materials, 17(9), 2066. https://doi.org/10.3390/ma17092066