Load-Independent Hardness and Indentation Size Effect in Iron Aluminides
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
- Vickers microhardness demonstrates a significant dependency on both the applied indentation load and the specific measurement location.
- In the surface region, a clear reversed indentation size effect (RISE) behavior was observed, characterized by a plateau reached at a 100 g indentation load. In contrast, in the center of the specimen, an indentation size effect (ISE) behavior was identified, with relatively constant microhardness values achieved at a higher load of 500 g, meaning that the recommended indentation load for obtaining load-independent hardness is 500 g or more.
- Lower indentation loads result in a slight concavity of the indentation, indicative of elastic material behavior. However, at higher loads, a slight distortion is observed across all measurements, without any instances of cracking.
- Meyer’s law, proportional specimen resistance (PSR), and modified PSR models have all proven highly adequate in describing the relationship between indentation load and size. Notably, the modified PSR model demonstrated the highest correlation factors among the models tested.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Furukawa, S.; Komatsu, T. Intermetallic Compounds: Promising Inorganic Materials for Well-Structured and Electronically Modified Reaction Environments for Efficient Catalysis. ACS Catal. 2017, 7, 735–765. [Google Scholar] [CrossRef]
- Askeland, D.R.; Fulay, P.P.; Wright, W.J. The Science and Engineering of Materials, 6th ed.; Cengage Learning: Stamford, CT, USA, 2010; pp. 414–416. [Google Scholar]
- Yartys, V.; Lototskyy, M. Laves type intermetallic compounds as hydrogen storage materials: A review. J. Alloys Compd. 2022, 916, 165219. [Google Scholar] [CrossRef]
- Armbruster, M. Intermetallic compounds in catalysis—A versatile class of materials meets interesting challenges. Sci. Technol. Adv. Mater. 2020, 21, 303–322. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Rioux, R.M. Intermetallics in catalysis: An exciting subset of multimetallic catalysts. Catal. Today 2019, 330, 2–15. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Fuchiwaki, K.; Umise, A.; Tahara, M.; Inamura, T.; Hosoda, H. Investigations of Effects of Intermetallic Compound on the Mechanical Properties and Shape Memory Effect of Ti–Au–Ta Biomaterials. Materials 2021, 14, 5810. [Google Scholar] [CrossRef] [PubMed]
- Shimoga, G.; Kim, T.H.; Kim, S.Y. An intermetallic NiTi-based shape memory coil spring for actuator technologies. Metals 2021, 11, 1212. [Google Scholar] [CrossRef]
- Reyes-Damián, C.; Morales, F.; Martínez-Piñeiro, E.; Escudero, R. High-Pressure Effects on the Intermetallic Superconductor Ti0.85Pd0.15. J. Supercond. Nov. Magn. 2020, 33, 2601–2607. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Xia, M.; Xu, C.; Zhou, W.; Wu, G.; Xu, X.; Qian, B.; Shi, Z. Electronic properties of PuNi3-type intermetallic superconductor LaRh3. Phys. C Supercond. Appl. 2020, 572, 1353619. [Google Scholar] [CrossRef]
- Avdeeva, V.; Bazhina, A.; Antipov, M.; Stolin, A.; Bazhin, P. Relationship between Structure and Properties of Intermetallic Materials Based on γ-TiAl Hardened In Situ with Ti3Al. Metals 2023, 13, 1002. [Google Scholar] [CrossRef]
- Wang, H.; He, Q.F.; Yang, Y. High-entropy intermetallics: From alloy design to structural and functional properties. Rare Met. 2022, 41, 1989–2001. [Google Scholar] [CrossRef]
- Grilli, M.L.; Bellezze, T.; Gamsjäger, E.; Rinaldi, A.; Novak, P.; Balos, S.; Piticescu, R.; Letizia Ruello, M. Solutions for Critical Raw Materials under Extreme Conditions: A Review. Materials 2017, 10, 285. [Google Scholar] [CrossRef] [PubMed]
- Kratochvíl, P.; Schindler, I.; Hanus, P. Conditions for the hot rolling of Fe3Al-type iron aluminide. Kovove Mat. 2006, 44, 321–326. [Google Scholar]
- Kant, R.; Prakash, U.; Agarwala, V.; Satya Prasad, V.V. Wear behaviour of an FeAl intermetallic alloy containing carbon and titanium. Intermetallics 2015, 61, 21–26. [Google Scholar] [CrossRef]
- Nayak, S.S.; Wollgarten, M.; Banhart, J.; Pabi, S.K.; Murty, B.S. Nanocomposites and an extremely hard nanocrystalline intermetallic of Al–Fe alloys prepared by mechanical alloying. Mater. Sci. Eng. A 2010, 527, 2370–2378. [Google Scholar] [CrossRef]
- Basariya, M.R.; Srivastava, V.C.; Mukhopadhyay, N.K. Inverse Hall–Petch like behaviour in a mechanically milled nanocrystalline Al5Fe2 intermetallic phase. Philos. Mag. 2016, 96, 2445–2456. [Google Scholar] [CrossRef]
- Basariya, M.R.; Roy, R.K.; Pramanick, A.K.; Srivastava, V.C.; Mukhopadhyay, N.K. Structural transition and softening in Al-Fe intermetallic compounds induced by high energy ball milling. Mater. Sci. Eng. A 2015, 638, 282–288. [Google Scholar] [CrossRef]
- Massalski, T.; Massalski, T.B.; Oram, O.H. Binary Alloy Phase Diagrams; American Society for Metals: Metals Park, OH, USA, 1986; p. 628. [Google Scholar]
- Dobránsky, J.; Baron, P.; Simkulet, V.; Kočiško, M.; Ružbarský, J.; Vojnová, E. Examination of material manufactured by direct metal laser sintering (DMLS). Metalurgija 2015, 54, 477–480. [Google Scholar]
- Balos, S.; Sidjanin, L.; Pilic, B. Indentation Size Effect in Autopolymerized and Microwave Post Treated Poly(methyl methacrylate) Denture Reline Resins. Acta Polytech. Hung. 2014, 11, 239–249. [Google Scholar] [CrossRef]
- Peng, C.; Zeng, F. Modeling the indentation size effects of polymers, based on couple stress elasticity and shear transformation plasticity. Arch. Appl. Mech. 2022, 92, 3661–3681. [Google Scholar] [CrossRef]
- Lin, H.; Jin, T.; Lv, L.; Ai, Q. Indentation Size Effect in Pressure-Sensitive Polymer Based on A Criterion for Description of Yield Differential Effects and Shear Transformation-Mediated Plasticity. Polymers 2019, 11, 412. [Google Scholar] [CrossRef]
- Gong, J.; Li, Y. Energy-balance analysis for the size effect in low-load hardness testing. J. Mater. Sci. 2000, 35, 209–213. [Google Scholar] [CrossRef]
- Marwaha, R.K.; Shah, B.S. Microhardness studies on benzoic acid single crystals. Cryst. Res. Technol. 1988, 23, K63–K65. [Google Scholar] [CrossRef]
- Balos, S.; Rajnovic, D.; Sidjanin, L.; Eric Cekic, O.; Moraca, S.; Trivkovic, M.; Dedic, M. Vickers hardness indentation size effect in selective laser melted MS1 maraging steel. Proc. Inst. Mech. Eng. C 2019, 235, 1724–1730. [Google Scholar] [CrossRef]
- Balos, S.; Rajnovic, D.; Sidjanin, L.; Ciric Kostic, S.; Bogojevic, N.; Pecanac, M.; Pavlicevic, J. Knoop hardness optimal loading in measuring microhardness of maraging steel obtained by selective laser melting. Proc. Inst. Mech. Eng. C 2019, 235, 1872–1877. [Google Scholar] [CrossRef]
- Şahin, O.; Uzun, O.; Kölemen, U.; Uçar, N. Dynamic hardness and reduced modulus determination on the (001) face ofβ-Sn single crystals by a depth sensing indentation technique. J. Phys. Condens. Matter 2007, 19, 306001. [Google Scholar] [CrossRef]
- Ma, Q.; Clarke, D.R. Size dependent hardness of silver single crystals. J. Mater. Res. 1995, 10, 853–863. [Google Scholar] [CrossRef]
- Nix, W.D.; Gao, H.; Nix, W.D.; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
- Kratochvíl, P.; Pešička, J.; Hakl, J.; Vlasák, T.; Hanus, P. Creep behaviour of intermetallic Fe–28Al–3Cr alloy with Ce addition. J. Alloys Compd. 2004, 378, 258–262. [Google Scholar] [CrossRef]
- Kratochvíl, P.; Málek, P.; Pešička, J.; Hakl, J.; Vlasák, T.; Hanus, P. High-temperature deformation of Fe3 Al alloys with TiB2 or Ce additions. Kovove Mater. 2006, 44, 185–190. [Google Scholar]
- Stoloff, N.S.; Liu, C.T. Environmental embrittlement of iron aluminides. Intermetallics 1996, 2, 75–87. [Google Scholar] [CrossRef]
- Trzepiecinski, T.; Lemu, H.G. A Three-Dimensional Elastic-Plastic Contact Analysis of Vickers Indenter on a Deep Drawing Quality Steel Sheet. Materials 2019, 12, 2153. [Google Scholar] [CrossRef] [PubMed]
- Weiler, W. The Relationship between Vickers Hardness and Universal Hardness. Surf. Technol. 1992, 79, 53–55. [Google Scholar]
- Muchtar, A.; Lim, L.C.; Lee, K.H. Finite element analysis of vickers indentation cracking processes in brittle solids using elements exhibiting cohesive post-failure behaviour. J. Mater. Sci. 2003, 38, 235–243. [Google Scholar] [CrossRef]
IC Composition | Vickers Load | Reference |
---|---|---|
FeAl + (0.1; 1)% C, (0; 1; 5)%Ti | 25 g | [14] |
FeAl | 300 g | [15] |
Fe2Al5 | 5 g | [16] |
FeAl3, FeAl2 | 15 g | [17] |
FeAl | 100 g | [18] |
Al | Cr | Ce | Fe |
---|---|---|---|
16.53 | 2.7 | 0.02 | Balance |
A | N | R2 | |
---|---|---|---|
Surface | 170.30 | 2.0617 | 0.9997 |
Center | 124.29 | 1.9617 | 0.9992 |
a1 | a2 | R2 | |
---|---|---|---|
Surface | 140,769 | −61,145 | 0.9998 |
Center | 139,896 | −47,978 | 0.9963 |
Po | a1 | a2 | R | |
---|---|---|---|---|
Surface | −3.1383 | 96.551 | 141.182 | 1 |
Center | 1.1444 | 129.35 | 135.667 | 0.9992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balos, S.; Pecanac, M.; Trivkovic, M.; Bojic, S.; Hanus, P. Load-Independent Hardness and Indentation Size Effect in Iron Aluminides. Materials 2024, 17, 2107. https://doi.org/10.3390/ma17092107
Balos S, Pecanac M, Trivkovic M, Bojic S, Hanus P. Load-Independent Hardness and Indentation Size Effect in Iron Aluminides. Materials. 2024; 17(9):2107. https://doi.org/10.3390/ma17092107
Chicago/Turabian StyleBalos, Sebastian, Milan Pecanac, Mirjana Trivkovic, Savo Bojic, and Pavel Hanus. 2024. "Load-Independent Hardness and Indentation Size Effect in Iron Aluminides" Materials 17, no. 9: 2107. https://doi.org/10.3390/ma17092107
APA StyleBalos, S., Pecanac, M., Trivkovic, M., Bojic, S., & Hanus, P. (2024). Load-Independent Hardness and Indentation Size Effect in Iron Aluminides. Materials, 17(9), 2107. https://doi.org/10.3390/ma17092107