Impact of Hydrostatic Pressure on Molecular Structure and Dynamics of the Sodium and Chloride Ions in Portlandite Nanopores
Abstract
:1. Introduction
2. Methodology
2.1. Model Construction
2.2. Force Fields and MD Simulation Procedures
3. Results
3.1. Molecular Structure of Interfacial Water Molecules
3.2. The Local Structure of Chloride and Sodium Ions
3.3. Dynamic Properties of Water Molecules and Ions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brooks, J.M.; Kennicutt, M.C.; Fisher, C.R.; Macko, S.A.; Cole, K.; Childress, J.J.; Bidigare, R.R.; Vetter, R.D. Deep-Sea Hydrocarbon Seep Communities: Evidence for Energy and Nutritional Carbon Sources. Science 1987, 238, 1138–1142. [Google Scholar] [CrossRef]
- Zhou, Z.; John, E.S.; Anantharaman, K.; Reysenbach, A.-L. Global patterns of diversity and metabolism of microbial communities in deep-sea hydrothermal vent deposits. Microbiome 2022, 10, 241. [Google Scholar] [CrossRef] [PubMed]
- Araki, E.; Saffer, D.M.; Kopf, A.J.; Wallace, L.M.; Kimura, T.; Machida, Y.; Ide, S.; Davis, E. Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust. Science 2017, 356, 1157–1160. [Google Scholar] [CrossRef]
- Clark, M.R.; Durden, J.M.; Christiansen, S. Environmental Impact Assessments for deep-sea mining: Can we improve their future effectiveness? Mar. Policy 2020, 114, 103363–103372. [Google Scholar] [CrossRef]
- Chen, J.-K.; Jiang, M.-Q. Long-term evolution of delayed ettringite and gypsum in Portland cement mortars under sulfate erosion. Constr. Build. Mater. 2009, 23, 812–816. [Google Scholar] [CrossRef]
- Koschinsky, A.; Heinrich, L.; Boehnke, K.; Cohrs, J.C.; Markus, T.; Shani, M.; Singh, P.; Stegen, K.S.; Werner, W. Deep-sea mining: Interdisciplinary research on potential environmental, legal, economic, and societal implications. Integr. Environ. Assess. Manag. 2018, 14, 672–691. [Google Scholar] [CrossRef]
- Mohammed, T.U.; Hamada, H.; Yamaji, T. Marine Durability of 30-Year Old Concrete Made with Different Cements. J. Adv. Concr. Technol. 2003, 1, 63–75. [Google Scholar] [CrossRef]
- Yi, Y.; Zhu, D.J.; Guo, S.C.; Zhang, Z.H.; Shi, C.J. A review on the deterioration and approaches to enhance the durability of concrete in the marine environment. Cement Concrete Comp. 2020, 113, 103695–103709. [Google Scholar] [CrossRef]
- Li, K.F.; Zhang, D.D.; Li, Q.W.; Fan, Z.H. Durability for concrete structures in marine environments of HZM project: Design, assessment and beyond. Cem. Concr. Res. 2019, 115, 545–558. [Google Scholar] [CrossRef]
- Hossain, M.M.; Karim, M.R.; Hasan, M.; Hossain, M.K.; Zain, M.F.M. Durability of mortar and concrete made up of pozzolans as a partial replacement of cement: A review. Constr. Build. Mater. 2016, 116, 128–140. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, J.; Wang, Y. Durability properties of sustainable alkali-activated cementitious materials as marine engineering material: A review. Mater. Today Sustain. 2022, 17, 100099. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.; Hou, D.; Wang, Z. Nanoscale insight on the durability of magnesium phosphate cement: A molecular dynamics study. RSC Adv. 2020, 10, 40180–40195. [Google Scholar] [CrossRef]
- Barberon, F.; Baroghel-Bouny, V.; Zanni, H.; Bresson, B.; de la Caillerie, J.-B.D.; Malosse, L.; Gan, Z. Interactions between chloride and cement-paste materials. Magn. Reson. Imaging 2005, 23, 267–272. [Google Scholar] [CrossRef]
- Vishwakarma, V.; Uthaman, S.; Dasnamoorthy, R.; Kanagasabai, V. Investigation on surface sulfate attack of nanoparticle-modified fly ash concrete. Environ. Sci. Pollut. Res. 2020, 27, 41372–41380. [Google Scholar] [CrossRef]
- Yasuhara, M.; Danovaro, R. Temperature impacts on deep-sea biodiversity. Biol. Rev. 2014, 91, 275–287. [Google Scholar] [CrossRef]
- Amano, C.; Zhao, Z.; Sintes, E.; Reinthaler, T.; Stefanschitz, J.; Kisadur, M.; Utsumi, M.; Herndl, G.J. Limited carbon cycling due to high-pressure effects on the deep-sea microbiome. Nat. Geosci. 2022, 15, 1041–1047. [Google Scholar] [CrossRef]
- Martínez-Dios, A.; Pelejero, C.; López-Sanz, À.; Sherrell, R.M.; Ko, S.; Häussermann, V.; Försterra, G.; Calvo, E. Effects of low pH and feeding on calcification rates of the cold-water coral Desmophyllum dianthus. PeerJ 2020, 8, e8236. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Lee, J.; Jeong, J.; Jeong, J. Improving Marine Concrete Performance Based on Multiple Criteria Using Early Portland Cement and Chemical Superplasticizer Admixture. Materials 2021, 14, 4903. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Qi, S.; Ran, Q.; Dong, L. The Preparation of a Novel Hyperbranched Antifouling Material and Application in the Protection of Marine Concrete. Materials 2022, 15, 8402. [Google Scholar] [CrossRef]
- Concrete Construction Staff. Concrete for Deep Ocean Construction, Concrete Construction. Available online: https://www.concreteconstruction.net/how-to/materials/concrete-for-deep-ocean-construction_o (accessed on 1 May 1983).
- Kobayashi, M.; Takahashi, K.; Kawabata, Y. Physicochemical properties of the Portland cement-based mortar exposed to deep seafloor conditions at a depth of 1680 m. Cem. Concr. Res. 2021, 142, 106335. [Google Scholar] [CrossRef]
- Kawabata, Y.; Takano, D.; Takahashi, K.; Iwanami, M. In situ observation for the influence of hydraulic pressure on internal damage of cement-based materials. Mater. Des. 2022, 216, 110556. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Peng, G. Effect of water pressure on mechanical behavior of concrete under dynamic compression state. Constr. Build. Mater. 2016, 125, 501–509. [Google Scholar] [CrossRef]
- Takahashi, K.; Kawabata, Y.; Iwanami, M.; Kobayashi, M.; Kasaya, T.; Yamanaka, T.; Nomura, S.; Makita, H. In-Situ Deep-Sea Monitoring of Cement Mortar Specimen at a Depth of 3515 m and Changes in Mechanical Properties after Exposure to Deep Sea Condition. J. Adv. Concr. Technol. 2022, 20, 254–266. [Google Scholar] [CrossRef]
- Jang, J.G.; Park, S. Special Issue: “Microstructures and Durability of Cement-Based Materials”. Materials 2021, 14, 866. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Wu, J.; AlShareedah, O.; Shi, X. Nanotechnology in Cement-Based Materials: A Review of Durability, Modeling, and Advanced Characterization. Nanomaterials 2019, 9, 1213. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Li, X.; Lv, Y.; Zhou, M.; Liu, Z.; Ren, Z.; Yu, Z. Cement-Based Materials Containing Graphene Oxide and Polyvinyl Alcohol Fiber: Mechanical Properties, Durability, and Microstructure. Nanomaterials 2018, 8, 638. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Kirkpatrick, R. 35Cl NMR relaxation study of cement hydrate suspensions. Cem. Concr. Res. 2001, 31, 1479–1485. [Google Scholar] [CrossRef]
- Dongshuai, H.; Zeyu, L.; Peng, Z.; Qingjun, D. Molecular structure and dynamics of an aqueous sodium chloride solution in nano-pores between portlandite surfaces: A molecular dynamics study. Phys. Chem. Chem. Phys. 2016, 18, 2059–2069. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hou, D.; Jiang, J.; Liu, L.; She, W.; Yu, J. Experimental and molecular dynamics studies on the transport and adsorption of chloride ions in the nano-pores of calcium silicate phase: The influence of calcium to silicate ratios. Microporous Mesoporous Mater. 2018, 255, 23–35. [Google Scholar] [CrossRef]
- Tu, Y.; Wen, R.; Yu, Q.; Cao, J.; Ji, Y.; Sas, G.; Elfgren, L. Molecular dynamics study on coupled ion transport in aluminum-doped cement-based materials. Constr. Build. Mater. 2021, 295, 123645. [Google Scholar] [CrossRef]
- Dupuis, R.; Dolado, J.S.; Benoit, M.; Surga, J.; Ayuela, A. Quantum Nuclear Dynamics of Protons within Layered Hydroxides at High Pressure. Sci. Rep. 2017, 7, 4842. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Hubao, A.; Chen, J.; Yu, W.; Yu, P.; Chen, E.; Deng, H.; He, Z. The interactions between water molecules and C-S-H surfaces in loads-induced nanopores: A molecular dynamics study. Appl. Surf. Sci. 2019, 496, 143744. [Google Scholar] [CrossRef]
- Ma, H.; Li, Z. Realistic pore structure of Portland cement paste: Experimental study and numerical simulation. Comput. Concr. 2013, 11, 317–336. [Google Scholar] [CrossRef]
- Cygan, R.T.; Greathouse, J.A.; Heinz, H.; Kalinichev, A.G. Molecular models and simulations of layered materials. J. Mater. Chem. 2009, 19, 2470–2481. [Google Scholar] [CrossRef]
- Kirkpatrick, R.J.; Kalinichev, A.G.; Wang, J. Molecular dynamics modelling of hydrated mineral interlayers and surfaces: Structure and dynamics. Mineral. Mag. 2005, 69, 289–308. [Google Scholar] [CrossRef]
- Cygan, R.T.; Liang, J.-J.; Kalinichev, A.G. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field. J. Phys. Chem. B 2004, 108, 1255–1266. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Kawabata, Y.; Kobayashi, M.; Gotoh, S.; Nomura, S.; Kasaya, T.; Iwanami, M. Action of Hydraulic Pressure on Portland Cement Mortars—Current Understanding and Related Progress of the First-Ever In-Situ Deep Sea Tests at a 3515 m Depth. J. Adv. Concr. Technol. 2021, 19, 226–239. [Google Scholar] [CrossRef]
- Collins, M.A.; Priede, I.G.; Bagley, P.M. In situ comparison of activity in two deep-sea scavenging fishes occupying different depth zones. Proc. R. Soc. B Biol. Sci. 1999, 266, 2011–2016. [Google Scholar] [CrossRef]
- Shaikh, S.F.; Mazo-Mantilla, H.F.; Qaiser, N.; Khan, S.M.; Nassar, J.M.; Geraldi, N.R.; Duarte, C.M.; Hussain, M.M. Noninvasive Featherlight Wearable Compliant “Marine Skin”: Standalone Multisensory System for Deep-Sea Environmental Monitoring. Small 2019, 15, e1804385. [Google Scholar] [CrossRef]
- Murray, S.J.; Subramani, V.J.; Selvam, R.P.; Hall, K.D. Molecular Dynamics to Understand the Mechanical Behavior of Cement Paste. Transp. Res. Rec. J. Transp. Res. Board 2010, 2142, 75–82. [Google Scholar] [CrossRef]
- Templeton, J.A.; Jones, R.E.; Lee, J.W.; Zimmerman, J.A.; Wong, B.M. A Long-Range Electric Field Solver for Molecular Dynamics Based on Atomistic-to-Continuum Modeling. J. Chem. Theory Comput. 2011, 7, 1736–1749. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Nilson, R.H.; Templeton, J.A.; Griffiths, S.K.; Kung, A.; Wong, B.M. Comparison of Molecular Dynamics with Classical Density Functional and Poisson–Boltzmann Theories of the Electric Double Layer in Nanochannels. J. Chem. Theory Comput. 2012, 8, 2012–2022. [Google Scholar] [CrossRef] [PubMed]
- Ohtaki, H.; Radnai, T. Structure and dynamics of hydrated ions. Chem. Rev. 1993, 93, 1157–1204. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251. [Google Scholar] [CrossRef]
- Wolfson, M.; Liepold, E.R.; Lin, B.; Rice, S.A. A comment on the position dependent diffusion coefficient representation of structural heterogeneity. J. Chem. Phys. 2018, 148, 194901. [Google Scholar] [CrossRef]
Depth (m) | Pressure (MPa) | Temperature (K) |
---|---|---|
0 | 0.1 | 297 |
500 | 5 | 283 |
1000 | 10 | 277 |
1500 | 15 | 276 |
Ions | 0 m | 500 m | 1000 m | 1500 m |
---|---|---|---|---|
Na+ | 20.22% | 20.77% | 16.42% | 14.82% |
Cl− | 38.25% | 30.10% | 35.54% | 13.15% |
Depth (m) | Cl | Ow | Oh | Total |
---|---|---|---|---|
0 | 0.02 | 5.24 | 0.44 | 5.70 |
500 | 0.02 | 5.20 | 0.30 | 5.52 |
1000 | 0.02 | 5.27 | 0.23 | 5.52 |
1500 | 0.01 | 5.28 | 0.24 | 5.53 |
Depth (m) | Na | Ow | Ho | Ca | Total |
---|---|---|---|---|---|
0 | 0.02 | 7.33 | 0.18 | 0.11 | 7.64 |
500 | 0.02 | 7.33 | 0.10 | 0.11 | 7.56 |
1000 | 0.02 | 7.28 | 0.10 | 0.12 | 7.52 |
1500 | 0.01 | 7.33 | 0.11 | 0.12 | 7.57 |
Depth (m) | Ow | Na | Cl | Ca | OH |
---|---|---|---|---|---|
0 | 2.77 | 1.26 | 1.36 | 0.008 | 0.021 |
500 | 2.30 | 1.16 | 1.35 | 0.087 | 0.095 |
1000 | 1.90 | 0.71 | 0.97 | 0.050 | 0.054 |
1500 | 1.79 | 0.69 | 0.86 | 0.001 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Zhang, H.; Chen, M.; Liu, L.; Tan, H.; Tang, Y. Impact of Hydrostatic Pressure on Molecular Structure and Dynamics of the Sodium and Chloride Ions in Portlandite Nanopores. Materials 2024, 17, 2151. https://doi.org/10.3390/ma17092151
Zhang R, Zhang H, Chen M, Liu L, Tan H, Tang Y. Impact of Hydrostatic Pressure on Molecular Structure and Dynamics of the Sodium and Chloride Ions in Portlandite Nanopores. Materials. 2024; 17(9):2151. https://doi.org/10.3390/ma17092151
Chicago/Turabian StyleZhang, Run, Hongping Zhang, Meng Chen, Laibao Liu, Hongbin Tan, and Youhong Tang. 2024. "Impact of Hydrostatic Pressure on Molecular Structure and Dynamics of the Sodium and Chloride Ions in Portlandite Nanopores" Materials 17, no. 9: 2151. https://doi.org/10.3390/ma17092151
APA StyleZhang, R., Zhang, H., Chen, M., Liu, L., Tan, H., & Tang, Y. (2024). Impact of Hydrostatic Pressure on Molecular Structure and Dynamics of the Sodium and Chloride Ions in Portlandite Nanopores. Materials, 17(9), 2151. https://doi.org/10.3390/ma17092151