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Abstract: This study presents the optimization of the friction stir welding (FSW) process
using polynomial regression to predict the maximum tensile load (MTL) of welded joints.
The experimental design included varying spindle speeds from 600 to 2200 rpm and
welding speeds from 100 to 350 mm/min over 28 experimental points. The resulting MTL
values ranged from 1912 to 15,336 N. A fifth-degree polynomial regression model was
developed to fit the experimental data. Diagnostic tests, including the Shapiro–Wilk test and
kurtosis analysis, indicated a non-normal distribution of the MTL data. Model validation
showed that fifth-degree polynomial regression provided a robust fit with high fitted and
predicted R2 values, indicating strong predictive power. Hill-climbing optimization was
used to fine-tune the welding parameters, identifying an optimal spindle speed of 1100 rpm
and a welding speed of 332 mm/min, which was predicted to achieve an MTL of 16,852 N.
Response surface analysis confirmed the effectiveness of the identified parameters and
demonstrated their significant influence on the MTL. These results suggest that the applied
polynomial regression model and optimization approach are effective tools for improving
the performance and reliability of the FSW process.

Keywords: friction stir welding; polynomial regression; hill-climbing; response surface
analysis; Design Expert 12; welding parameter optimization; aluminum alloy 2024-T3

1. Introduction
Friction Stir Welding (FSW), introduced in the early 1990s by Thomas et al. [1], is a solid-

state joining technique that has gained widespread attention for its ability to produce high-
quality joints in lightweight and difficult-to-weld alloys, notably aluminum [2]. Operating
below the melting temperature of the base material, FSW reduces common defects found
in fusion welding—such as porosity, hot cracking, and distortion—resulting in improved
mechanical properties and structural integrity [3]. Due to these advantages, it has found
extensive applications in transportation, aerospace, and marine industries [4–6]. However,
determining the optimal set of parameters—rotational speed, traverse speed, axial force,
tool geometry, and cooling strategy—remains challenging, as these factors must be balanced
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to achieve the desired mechanical strength, microstructural refinement, and minimal defect
formation [7–9].

Early optimization strategies often relied on trial-and-error approaches combined with
classical statistical tools (e.g., Taguchi, ANOVA), which provided some guidance but were
time-consuming and limited in handling the nonlinear and high-dimensional parameter
interactions of FSW [10–12]. For instance, Sabry et al. [7] and Kesharwani et al. [8] employed
statistical methodologies to identify welding conditions that improved tensile properties
and reduced defects. While these approaches could pinpoint useful parameter trends, they
typically demanded substantial experimental efforts. Similarly, preliminary models or
linear approximations struggled with complex parameter spaces, especially when multiple
performance criteria had to be considered simultaneously [13–15].

As computational resources improved, finite element modeling (FEM) and numerical
simulations contributed insights into temperature fields, material flow, and residual stresses.
He et al. [3] and Jasim et al. [16], for example, integrated FEM with data-driven methods
to propose parameter sets that enhanced joint performance. Although simulations helped
reduce the trial-and-error burden, FEM models are often computationally expensive and
may require extensive calibration, limiting their scalability and adaptation to new welding
conditions [17–21].

The advent of artificial intelligence (AI) and machine learning (ML) techniques pro-
vided new avenues for more accurate and cost-effective process optimization [6,13,22]. By
leveraging historical or experimentally obtained datasets, ML models can capture com-
plex, nonlinear parameter-response relationships. Myśliwiec et al. [22] applied Random
Forest, XGBoost, and MLP models to optimize the FSW of 2024-T3 aluminum alloy, demon-
strating that advanced ML algorithms could accurately predict mechanical outputs and
suggest improved parameter combinations. Similarly, Cho et al. [13] and Albaijan et al. [14]
showed that artificial neural network-based predictions not only improved accuracy but
also reduced guesswork in selecting parameter sets that enhanced tensile strength and
joint reliability.

Nonetheless, ML approaches often rely on extensive, high-quality datasets and can
pose interpretability challenges. Vidakis et al. [23] found that integrating data-driven mod-
els with domain knowledge (e.g., polynomial regression or RSM-based insights) reduced
the need for large-scale experimentation. Mishra et al. [19] and Sambath et al. [24] high-
lighted that while ML excels at identifying trends and relationships, its predictive power is
sensitive to data diversity and preprocessing quality. Chadha et al. [25] successfully imple-
mented ML-based defect prediction yet noted that specialized datasets and sensor feedback
were needed for real-time adaptation, adding complexity to practical implementation.

Metaheuristic and evolutionary algorithms have shown promise in exploring large
parameter spaces and identifying global optima [26–28]. These methods can balance multi-
ple performance criteria—such as tensile strength, microstructural uniformity, and energy
efficiency—more flexibly than classical optimization techniques. Prabhakar et al. [29]
and Kubit et al. [30] employed multi-objective optimization frameworks to improve joint
efficiency and processing time, outperforming baseline conditions derived from simpler
approaches. Rana et al. [26] reported that while hybrid evolutionary algorithms could iden-
tify global optima, the computational overhead and complexity in tuning these algorithms
were not trivial.

To mitigate these challenges, researchers have explored hybrid strategies combining
polynomial regression, RSM, ML, and metaheuristics to achieve interpretability, data
efficiency, and accuracy. Yaknesh et al. [31] and Rao et al. [32] demonstrated that polynomial
models, when integrated with evolutionary searches, provided robust optimization results
without the heavy computational demands typical of complex ML models. Sabry et al. [15]
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and Babalola et al. [33] found that using polynomial fitting as a preliminary modeling step
not only improved interpretability but also served as a strong foundation for subsequent
ML-driven refinement.

Bayesian optimization, transfer learning, and multi-criteria decision-making frame-
works further enhance adaptability, enabling parameter identification that can transfer
across materials or joint configurations with minimal additional experimentation [6,34–37].
Sengupta et al. [6], for example, demonstrated how transfer learning could reuse knowledge
from one alloy system to expedite optimization in another. Kumar et al. [11] used multi-
criteria decision-making to incorporate human expertise and manufacturing constraints
directly into the decision-making process, offering a more holistic perspective.

Despite these advancements, key gaps remain. Many studies reported substantial
improvements in specific metrics—such as achieving a 10–20% increase in tensile strength
or reduced defects [13,22,38]—but often under constrained conditions or tailored datasets.
Scalability, generalizability, and adaptability to limited data scenarios remain pressing
concerns. Likewise, sophisticated ML or metaheuristic approaches might require careful
tuning and might not always be justifiable for certain industrial environments [36,39,40].
Ensuring that enhancements in one property (e.g., tensile strength) do not compromise
others (e.g., ductility or fatigue life) is another ongoing challenge [29,40].

This study proposes a hybrid approach that combines polynomial regression modeling
with a hill-climbing optimization technique to predict and enhance the maximum tensile
load (MTL) of FSW joints. Polynomial regression can capture higher-order interactions
while maintaining interpretability and reducing complexity, and hill-climbing provides a
straightforward iterative procedure for refining parameters and approaching near-optimal
solutions. Unlike pure ML models that require extensive data or metaheuristic methods
that may be computationally demanding, this strategy aims for a balanced solution. By
leveraging polynomial modeling as a starting point and then applying hill-climbing op-
timization, the approach reduces both experimental and computational burdens while
delivering strong predictive capabilities. Thus, it can potentially match or exceed the
improvements reported in the literature while offering greater transparency, adaptability,
and reduced cost—key factors in advancing robust FSW parameter optimization.

2. Materials and Methods
The friction stir welding process was conducted using AA2024-T3 aluminum sheets

with a thickness of 1.5 mm. The experiments were performed on a Makino PS95 CNC
milling machine (Figure 1a) using a commercially available tool with the geometric pa-
rameters shown in Table 1. The plates, which were 200 mm long and 100 mm wide, were
joined along the rolling line. The joints were configured in a lap joint arrangement with
a lap width of 30 mm. A factorial design was used to plan the experiment. The design
matrix, shown in Figure 1b, included 28 experimental points with varying spindle speeds
from 600 to 2200 rpm and welding speeds from 100 to 350 mm/min. The technological
parameters for each test run, along with the measured strength of the FSW joints. The
selected range of spindle and welding speeds was determined through a comprehensive
literature review and preliminary experimental trials. Prior research on AA2024-T3 and
analogous aluminum alloys indicated that these ranges are optimal for attaining defect-free
welds with high mechanical performance. Furthermore, in-house trials were conducted to
refine the process window, thereby ensuring that the selected parameters encompassed the
regions where the maximum tensile strength of the joints could be obtained. This factorial
design allowed a comprehensive analysis of the effects of spindle and welding speeds
on the tensile strength of the FSW joints, ensuring a robust assessment of the optimum
welding conditions. Each joint was then divided into four sections for tensile testing. The
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specimens were precisely cut using a wire electrical discharge machining (EDM) technique
to minimize the influence of external forces on the joint structure. The cutting process
followed the configuration shown in Figure 1c. Each of the four specimens was mounted
on a ZWICK/ROELL Z100 universal testing machine to evaluate the bond strength. The
experimental results were analyzed using Design Expert 12 software, and a fifth-degree
polynomial regression model was developed to predict and optimize the technological
parameters in the FSW process.
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Table 1. Geometric parameters of the FSW tool and welding conditions [22].

Tool Parameters Value Tool View

Shoulder diameter D [mm] 12
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Pin diameter d [mm] 4.5
Pin height [mm] 2.55
Tool offset [mm] 0.05

Dwell time [s] 10
Tool tilt angle 0◦

Tool plunge speed [mm/min] 2
Shoulder profile Flat with spiral groove

Pin profile Conical threaded
D/d ratio of the tool 2.7

Tool material H13 Steel

Evaluation of the Experimental Model

The FSW process was implemented for a range of parameters: tool speed from 600 to
2200 rpm and welding speed from 100 to 350 mm/min. The independent variables were
coded and presented in Table 2. The dependent variable was the response or strength of
the FSW lap joint. The resulting load capacities ranged from 1912 to 15,336 N (Table 3).

Table 2. FSW process parameters: spindle speed (A) and welding speed (B) with their ranges, coded
values, averages, and standard deviations.

Factor Name Units Type Min. Max. Coded Low Coded High Mean Std. Dev.

A Spindle Speed rpm Numeric 600 2200 −1 ↔ 600 +1 ↔ 2200 1400 536.92
B Welding Speed mm/min Numeric 100 350 −1 ↔ 100 +1 ↔ 350 226.79 87.49

Table 3. Measured joint maximum tensile load (MTL) in the FSW experiment, including the number
of observations, range of values, mean, and standard deviation.

Response Name Units Observations Min. Max. Mean Std. Dev. Ratio

R1 MTL N 112 1912 15,336 6451.97 3071.58 8.02

The histogram of the ultimate maximum tensile load, hereafter referred to as MTL,
measurements (Figure 2) from the FSW process were analyzed along with statistical tests
to assess the normality of the data distribution. The histogram shows a right-skewed
distribution of MTL values, with the majority of measurements concentrated between
2500 N and 7500 N. The peak frequency occurs around 5000 N, and there is a noticeable
decrease in frequency towards higher MTL values. To statistically evaluate the normality
of the data, the Shapiro–Wilk test was performed. The test statistic is 0.861 with a p-value
of 7.62 × 10−9, indicating that the MTL data do not follow a normal distribution, and
the null hypothesis (H0) is rejected. This result is visually confirmed by superimposing a
normal distribution curve on the histogram, which highlights significant departures from
normality. Further analysis of the kurtosis of the data yields a value of 0.764. This positive
kurtosis indicates that the distribution has heavier tails and a sharper peak compared to
a normal distribution, contributing to the observed skewness. In addition, the histogram
shows several outliers at higher MTL values, especially above 10,000 N, further supporting
the non-normality of the data.
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Figure 2. Histogram of maximum tensile load (MTL) results from the FSW process. The analysis
indicates a right-skewed distribution, showing that the data are not normally distributed.

The box plot of the maximum tensile load (MTL) measurements (Figure 3a) from
the FSW process was analyzed to identify potential outliers and assess the overall data
distribution. The box plot shows that the majority of the MTL values are concentrated
within the interquartile range (IQR), with the median value in the lower half of the IQR,
indicating a slight skew in the data distribution. The box plot analysis highlights several
high MTL values that are considered outliers. However, these outliers are critical to
understanding the conditions that lead to exceptionally high tensile strengths in welds.
Rather than dismissing these values, further investigation is warranted to explore the
specific parameters and conditions that resulted in these superior weld strengths. This
information could be critical to optimizing the FSW process and achieving more reliable
and higher-quality welds. The final step in evaluating the quality of the experimental
model was to plot the FDS. The graph (Figure 3b) plots the standard error mean (Std Error
Mean) as a function of the fraction of the design space (FDS). This type of graph is typically
used to evaluate the quality of an experimental design [41]. The X-axis represents the
fraction of the design space, while the y-axis represents the standard error of the mean.
The design space is defined as a cube, indicating a rectangular area of variable space. The
radius of 1.41421 indicates that the space is constructed considering the Euclidean distance.
The analysis was performed on a very large number of points (150,026), which increases
the accuracy of the evaluation. The t-Student value indicates the critical value for the
t-distribution at a given confidence level, which is used to assess statistical significance. The
design is well constructed and accurate in the central regions of the design space, indicating
good model quality in these regions. The increase in standard error at the edges is typical
and indicates potentially lower model reliability in these regions but requires attention at
the edges of the design space.
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3. Creating a Polynomial Regression Model
3.1. Principles of Polynomial Regression

Polynomial regression is an extension of linear regression that is used to model the
relationship between a dependent variable y and one or more independent variables x by
fitting a polynomial equation to the observed data. This type of regression is particularly
useful when the relationship between the variables is nonlinear. The polynomial regression
model of degree n can be written as:

y = β0 + β1x + β2x2 + β3x3 + · · ·+ βnxn + ϵ (1)

where y is the dependent variable, x is the independent variable, β0, β1, β2, . . ., βn are
the coefficients of the polynomial to be estimated from the data, and ϵ is the error term
representing the difference between the observed and predicted values [42]. The polynomial
regression process involves several steps. First, data points (xi, yi) are collected for i = 1,
2, . . ., m, where m is the number of observations. Next, the degree n of the polynomial
is chosen, with a higher degree polynomial fitting the data better but potentially leading
to overfitting. A design matrix X is then constructed that contains the powers of the
independent variable x. For a polynomial of degree n, the design matrix is X:

X =


1 x1 x2

1 . . . xn
1

1 x2 x2
2 . . . xn

2
...

...
...

. . .
...

1 xm x2
m . . . xn

m

 (2)

The coefficients β are estimated using the least squares method, which minimizes the
sum of the squared differences between the observed values yi and the values predicted by
the polynomial. The coefficients are given by:

β = (XTX )−1XTy (3)
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where XT is the transpose of the design matrix X, and y is the vector of observed values.
Once the coefficients are estimated, the polynomial equation can be used to predict the
values of the dependent variable for new values of the independent variable x [43–45]. To
illustrate the process, consider fitting a fifth-degree polynomial regression model to a set of
data points (x1, y1), (x2, y2), . . ., (xm, ym). The fifth-degree polynomial regression model can
be written as:

y = β0 + β1x + β2x2 + β3x3 + β4x4 + β5x5 + ϵ (4)

The data points (xi, yi) are collected for i = 1, 2, . . ., m. The design matrix X is formulated
to include the powers of the independent variable x. For a fifth-degree polynomial, the
design matrix X is constructed as follows:

X =


1 x1 x2

1 x3
1 x4

1 x5
1

1 x2 x2
2 x3

2 x4
2 x5

2
...

...
...

...
...

...
1 xm x2

m x3
m x4

m x5
m

 (5)

Once the coefficients are estimated, the polynomial equation is used to predict the
values of the dependent variable for new values of the independent variable x:

ŷ = β0 + β1x + β2x2 + β3x3 + β4x4 + β5x5 + ϵ (6)

The Fit Summary Table 4 compares different polynomial regression models for the
MTL data from the FSW process. Sequential p-values indicate that cubic, quartic, fifth, and
sixth polynomial terms significantly improve the model fit (p < 0.0001), meaning that the
addition of these terms provides a statistically significant improvement to the model. The
lack of fit p-value is less than 0.0001 for all models, indicating a statistically significant lack
of fit. This indicates that the models do not perfectly capture all the underlying patterns
in the data. However, it is common in complex real-world data for models to show some
lack of fit. The adjusted R2, which accounts for model complexity, increases from 0.3877
for the linear model to 0.9752 for the sixth-degree polynomial. Similarly, the predicted R2,
which indicates the predictive power of the model, also increases with model complexity.
The fifth-degree polynomial model is recommended with an adjusted R2 of 0.9489 and a
predicted R2 of 0.9390, providing an excellent balance between model fit and predictive
accuracy. Although the sixth-degree polynomial has slightly higher R2 values, it is noted as
aliased, suggesting potential overfitting or multicollinearity issues. In conclusion, while the
lack of fit is statistically significant for all models, the fifth-degree polynomial model stands
out with high fitted and predicted R2 values, indicating strong model performance and
predictive power. This makes it the optimal choice for accurately modeling and predicting
MTL data in the FSW process.

Table 4. Fit summary for polynomial regression models applied to MTL data.

Source Sequential p-Value Lack of Fit p-Value Adjusted R2 Predicted R2

Linear <0.0001 <0.0001 0.3877 0.3629
2FI 0.1962 <0.0001 0.3916 0.3541

Quadratic 0.1153 <0.0001 0.4049 0.3573
Cubic <0.0001 <0.0001 0.5213 0.4544

Quartic <0.0001 <0.0001 0.8435 0.8234
Fifth <0.0001 <0.0001 0.9489 0.9390 Suggested
Sixth <0.0001 <0.0001 0.9752 0.9683 Aliased
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Table 5 presents key indicators of the quality of the polynomial regression model used to
optimize the FSW process. These indicators include the standard error, VIF, R2, and power
of the model for each term. The standard error measures the variability of the regression
coefficient estimates. In a balanced design, the standard errors for different terms should be
similar. In this case, the standard errors for all terms are relatively small, indicating robust
estimates in the model. The lowest standard error is 0.1357 for term B (welding speed), and
the highest is 0.2453 for term A2 (spindle speed squared). The Variance Inflation Factor (VIF)
measures the degree of collinearity between independent variables. The ideal VIF value is 1.0,
with values greater than 10 indicating significant collinearity, which could lead to problems
with coefficient estimation. All terms have VIF values close to 1.0, indicating no significant
collinearity in the model. R2 measures the fit of the model and indicates the proportion of
variance in the dependent variable that is explained by the independent variables. For an ideal
polynomial regression model, the R2 values for individual terms should be close to 0 to avoid
overfitting. The R2 values for all terms are very low, indicating no overfitting and suggesting
that the model fits well without unnecessary complexity. The power of the statistical test
indicates the ability to detect a true effect if it exists. High power (close to 100%) indicates that
the model is highly effective in detecting the influence of process variables on joint strength.
All terms have a power level of 99.9%, indicating that the model is very effective in detecting
the effects of the process variables. The quality assessment of the polynomial regression model
for the FSW process indicates that the model is well fitted and does not have problems with
collinearity or overfitting. The low standard errors and VIF values, along with the high power
values, demonstrate the robustness and effectiveness of the model. The R2 values suggest
that the model is well calibrated without unnecessary complexity, which is beneficial for the
interpretation of results and practical application.

Table 5. Assessing the quality of the experimental model. * For a standard deviation of 1.

Term Standard Error * VIF Ri
2 Power

A 0.1416 1.00309 0.0031 99.9%
B 0.1357 1.00182 0.0018 99.9%

AB 0.1964 1.00309 0.0031 99.9%
A2 0.2453 1.01148 0.0114 99.9%
B2 0.2349 1.00965 0.0096 99.9%

3.2. ANOVA for Fifth Model

An analysis of variance was performed on the accepted fifth-degree polynomial
regression model. The ANOVA Table 6 for the 5th degree polynomial model of the MTL
data from the FSW process provides a comprehensive analysis of the sources of variation
and their statistical significance. The overall model is highly significant, with an F-value
of 104.12 and a p-value of less than 0.0001, indicating that the model effectively explains
a significant portion of the variability in MTL. Several terms in the model are identified
as statistically significant with p-values less than 0.05. These include the main effect of
spindle speed (A) and numerous higher-order interactions and polynomial terms such as
AB (spindle speed * welding speed), A2, B2, A3, B3, A4, B4, A5, and B5. The significance of
these terms suggests that both the main effects and complex interactions between spindle
speed and welding speed are critical in determining MTL. However, some terms, such as
the main effect of welding speed (B) and interactions such as A2B, A3B, A2B3, and A4B,
are not statistically significant, as indicated by their p-values greater than 0.05. These
non-significant terms do not contribute meaningfully to the model, suggesting that they
could be excluded in future model refinement to improve simplicity without sacrificing
predictive power. The F-value for lack of fit is 49.80, with a p-value of less than 0.0001,
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indicating a significant lack of fit. This suggests that the model does not perfectly capture
all the underlying variability in the data and that there may be other factors or interactions
influencing MTL that are not included in the model.

Table 6. ANOVA for fifth-degree polynomial model applied to MTL data.

Source Sum of Squares df Mean Square F-Value p-Value

Model 1.003 × 109 20 5.017 × 107 104.12 <0.0001 significant
A—Spindle Speed 3.854 × 107 1 3.854 × 107 79.99 <0.0001
B—Welding Speed 7.292 × 105 1 7.292 × 105 1.51 0.2218

AB 1.535 × 108 1 1.535 × 108 318.49 <0.0001
A2 1.946 × 107 1 1.946 × 107 40.40 <0.0001
B2 2.012 × 107 1 2.012 × 107 41.77 <0.0001

A2B 1.090 × 106 1 1.090 × 106 2.26 0.1360
AB2 4.119 × 107 1 4.119 × 107 85.49 <0.0001
A3 4.509 × 107 1 4.509 × 107 93.59 <0.0001
B3 1.284 × 107 1 1.284 × 107 26.65 <0.0001

A2B2 3.609 × 107 1 3.609 × 107 74.91 <0.0001
A3B 1.930 × 108 1 1.930 × 108 400.65 <0.0001
AB3 5.528 × 106 1 5.528 × 106 11.47 0.0010
A4 2.486 × 107 1 2.486 × 107 51.60 <0.0001
B4 8.687 × 106 1 8.687 × 106 18.03 <0.0001

A3B2 1.317 × 107 1 1.317 × 107 27.33 <0.0001
A2B3 5.118 × 104 1 5.118 × 104 0.1061 0.7454
A4B 5.018 × 104 1 5.018 × 104 0.1041 0.7477
AB4 2.440 × 107 1 2.440 × 107 50.64 <0.0001
A5 4.439 × 107 1 4.439 × 107 92.12 <0.0001
B5 1.765 × 107 1 1.765 × 107 36.62 <0.0001

Residual 4.385 × 107 91 4.818 × 105

Lack of Fit 3.533 × 107 7 5.048 × 106 49.80 <0.0001 significant
Pure Error 8.514 × 106 84 1.014 × 105

Cor Total 1.047 × 109 111

The fit statistics for the fifth-degree polynomial model (Table 7) applied to the MTL
data from the FSW process indicate strong model performance. The model achieves a
high R2 value of 0.9581, explaining 95.81% of the variability in MTL. The adjusted R2 of
0.9489 and the predicted R2 of 0.9390 are in close agreement, indicating excellent predictive
accuracy and minimal overfitting. The standard deviation of the residuals is 694.15, and
the coefficient of variation is 10.76%, indicating low variability relative to the MTL mean
of 6451.97. In addition, the adequate precision ratio of 40.7155 far exceeds the desirable
threshold of 4, confirming a strong signal-to-noise ratio.

Table 7. Fit statistics for the fifth-degree polynomial model applied to MTL data.

Std. Dev. 694.15 R2 0.9581
Mean 6451.97 Adjusted R2 0.9489
C.V. % 10.76 Predicted R2 0.9390

Adeq Precision 40.7155

The final regression equation (Table 8) for predicting MTL in the FSW process is
expressed in terms of the actual factors, specifically spindle speed and welding speed. This
equation allows accurate predictions by substituting the specified values of these factors.
It is important to note that the coefficients are scaled to the units of each factor, and the
intercept is not centered in the design space.
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Table 8. Final regression equation for predicting MTL in the FSW process.

MTL =

+2.65761 × 105

−816.24439 Spindle Speed
−1633.38459 Welding Speed
−2.37849 Spindle Speed· Welding Speed
+1.42349 Spindle Speed2

+24.68195 Welding Speed2

+0.000460 Spindle Speed2· Welding Speed
+0.016034 Spindle Speed· Welding Speed2

−0.001068 Spindle Speed3

−0.158386 Welding Speed3

−2.71047 × 10−6 Spindle Speed2· Welding Speed2

−4.74309 × 10−8 Spindle Speed3· Welding Speed
−0.000039 Spindle Speed· Welding Speed3

+3.80250 × 10−7 Spindle Speed4

+0.000442 Welding Speed4

+5.20073 × 10−10 Spindle Speed3· Welding Speed2

+2.29939 × 10−10 Spindle Speed2· Welding Speed3

−7.12925 × 10−12 Spindle Speed4· Welding Speed
+4.38557 × 10−8 Spindle Speed· Welding Speed4

−5.22195 × 10−11 Spindle Speed5

−4.58801 × 10−7 Welding Speed5

4. Results
The applied regression model was used to predict maximum tensile load, hereafter

referred to as MTL values. In addition, a series of diagnostic tests were performed on the
applied model. The experimental results, along with the predicted MTL values from the
fifth-degree polynomial regression model and associated metrics, are presented in Table 9.
The table lists the actual MTL values from the experiments, the predicted maximum tensile
load values from the regression model, the residuals (differences between actual and
predicted values), leverage values indicating the influence of each data point on the model,
internally and externally studentized residuals for detecting outliers, Cook’s Distance for
identifying influential observations, and DFFITS values for assessing the influence of each
observation on the fitted values.

Table 9. Experimental and predicted maximum tensile load (MTL) values along with diagnostic
metrics for the fifth-degree polynomial regression model.

Run
Order

Rotational
Speed
[rpm]

Welding
Speed

[mm/min]

Actual
Value of
MTL [N]

Predicted
Value of
MTL [N]

Residual Leverage
Internally

Studentized
Residuals

Externally
Studentized

Residuals

Cook’s
Distance

Influence on
Fitted Value

DFFITS

1

600 100

7165.00 7288.17 −123.17 0.248 −0.205 −0.204 0.001 −0.117
2 7299.00 7288.17 10.83 0.248 0.018 0.018 0.000 0.010
3 7057.00 7288.17 −231.17 0.248 −0.384 −0.382 0.002 −0.219
4 7329.00 7288.17 40.83 0.248 0.068 0.067 0.000 0.039

5

800 150

2754.00 3364.21 −610.21 0.213 −0.991 −0.991 0.013 −0.516
6 2800.00 3364.21 −564.21 0.213 −0.916 −0.916 0.011 −0.477
7 2671.00 3364.21 −693.21 0.213 −1.126 −1.128 0.016 −0.588
8 2974.00 3364.21 −390.21 0.213 −0.634 −0.632 0.005 −0.329

9

1000 100

4746.00 4397.76 348.24 0.218 0.567 0.565 0.004 0.299
10 4885.00 4397.76 487.24 0.218 0.794 0.792 0.008 0.419
11 5084.00 4397.76 686.24 0.218 1.118 1.120 0.017 0.592
12 5272.00 4397.76 874.24 0.218 1.425 1.433 0.027 0.757



Materials 2025, 18, 448 12 of 29

Table 9. Cont.

Run
Order

Rotational
Speed
[rpm]

Welding
Speed

[mm/min]

Actual
Value of
MTL [N]

Predicted
Value of
MTL [N]

Residual Leverage
Internally

Studentized
Residuals

Externally
Studentized

Residuals

Cook’s
Distance

Influence on
Fitted Value

DFFITS

13

1000 200

6138.00 5629.89 508.11 0.139 0.789 0.787 0.005 0.316
14 5938.00 5629.89 308.11 0.139 0.478 0.476 0.002 0.191
15 6264.00 5629.89 634.11 0.139 0.984 0.984 0.007 0.395
16 6017.00 5629.89 387.11 0.139 0.601 0.599 0.003 0.241

17

1000 300

13,477.00 13,585.93 −108.93 0.141 −0.169 −0.168 0.000 −0.068
18 13,438.00 13,585.93 −147.93 0.141 −0.230 −0.229 0.000 −0.093
19 13,602.00 13,585.93 16.07 0.141 0.025 0.025 0.000 0.010
20 13,511.00 13,585.93 −74.93 0.141 −0.116 −0.116 0.000 −0.047

21

1200 150

5692.00 5464.73 227.27 0.141 0.353 0.352 0.001 0.143
22 5538.00 5464.73 73.27 0.141 0.114 0.113 0.000 0.046
23 5462.00 5464.73 −2.73 0.141 −0.004 −0.004 0.000 −0.002
24 5206.00 5464.73 −258.73 0.141 −0.402 −0.400 0.001 −0.162

25

1200 250

7612.00 8243.00 −631.00 0.128 −0.973 −0.973 0.007 −0.373
26 7547.00 8243.00 −696.00 0.128 −1.074 −1.075 0.008 −0.411
27 7803.00 8243.00 −440.00 0.128 −0.679 −0.677 0.003 −0.259
28 7735.00 8243.00 −508.00 0.128 −0.784 −0.782 0.004 −0.299

29

1400 100

4984.00 5902.63 −918.63 0.173 −1.455 −1.464 0.021 −0.669
30 5059.00 5902.63 −843.63 0.173 −1.336 −1.342 0.018 −0.613
31 4939.00 5902.63 −963.63 0.173 −1.526 −1.538 0.023 −0.702
32 5326.00 5902.63 −576.63 0.173 −0.913 −0.912 0.008 −0.417

33

1400 200

5560.00 6117.56 −557.56 0.106 −0.850 −0.848 0.004 −0.292
34 5602.00 6117.56 −515.56 0.106 −0.786 −0.784 0.003 −0.270
35 5714.00 6117.56 −403.56 0.106 −0.615 −0.613 0.002 −0.211
36 5623.00 6117.56 −494.56 0.106 −0.754 −0.752 0.003 −0.259

37

1400 300

12,271.00 10,669.27 1601.73 0.131 2.475 2.549 0.044 0.989
38 12,121.00 10,669.27 1451.73 0.131 2.243 2.295 0.036 0.891
39 12,189.00 10,669.27 1519.73 0.131 2.348 2.410 0.040 0.935
40 11,405.00 10,669.27 735.73 0.131 1.137 1.139 0.009 0.442

41

1400 350

11,064.00 11,140.53 −76.53 0.191 −0.123 −0.122 0.000 −0.059
42 9862.00 11,140.53 −1278.53 0.191 −2.047 −2.084 0.047 −1.011
43 9916.00 11,140.53 −1224.53 0.191 −1.961 −1.992 0.043 −0.967
44 10,018.00 11,140.53 −1122.53 0.191 −1.797 −1.820 0.036 −0.883

45

1600 150

4556.00 3732.42 823.58 0.141 1.280 1.285 0.013 0.521
46 4525.00 3732.42 792.58 0.141 1.232 1.236 0.012 0.501
47 4989.00 3732.42 1256.58 0.141 1.953 1.985 0.030 0.805
48 4734.00 3732.42 1001.58 0.141 1.557 1.569 0.019 0.636

49

1600 250

5028.00 4620.71 407.29 0.128 0.628 0.626 0.003 0.240
50 4914.00 4620.71 293.29 0.128 0.452 0.450 0.001 0.172
51 4870.00 4620.71 249.29 0.128 0.385 0.383 0.001 0.147
52 4966.00 4620.71 345.29 0.128 0.533 0.531 0.002 0.203

53

1800 100

5092.00 4625.74 466.26 0.218 0.760 0.758 0.008 0.401
54 4889.00 4625.74 263.26 0.218 0.429 0.427 0.002 0.226
55 5102.00 4625.74 476.26 0.218 0.776 0.774 0.008 0.409
56 4612.00 4625.74 −13.74 0.218 −0.022 −0.022 0.000 −0.012

57

1800 200

4465.00 4913.36 −448.36 0.139 −0.696 −0.694 0.004 −0.279
58 4357.00 4913.36 −556.36 0.139 −0.864 −0.863 0.006 −0.347
59 4599.00 4913.36 −314.36 0.139 −0.488 −0.486 0.002 −0.195
60 4741.00 4913.36 −172.36 0.139 −0.268 −0.266 0.001 −0.107

61

1800 300

3250.00 4666.11 −1416.11 0.141 −2.201 −2.250 0.038 −0.912
62 3612.00 4666.11 −1054.11 0.141 −1.638 −1.654 0.021 −0.670
63 3341.00 4666.11 −1325.11 0.141 −2.060 −2.098 0.033 −0.850
64 3493.00 4666.11 −1173.11 0.141 −1.823 −1.847 0.026 −0.749

65

1800 350

4472.00 3473.27 998.73 0.202 1.611 1.625 0.031 0.818
66 3922.00 3473.27 448.73 0.202 0.724 0.722 0.006 0.363
67 3816.00 3473.27 342.73 0.202 0.553 0.551 0.004 0.277
68 4715.00 3473.27 1241.73 0.202 2.003 2.037 0.048 1.025

69

2000 150

3611.00 4131.38 −520.38 0.213 −0.845 −0.844 0.009 −0.440
70 3511.00 4131.38 −620.38 0.213 −1.008 −1.008 0.013 −0.525
71 3761.00 4131.38 −370.38 0.213 −0.602 −0.600 0.005 −0.312
72 3987.00 4131.38 −144.38 0.213 −0.235 −0.233 0.001 −0.122
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Table 9. Cont.

Run
Order

Rotational
Speed
[rpm]

Welding
Speed

[mm/min]

Actual
Value of
MTL [N]

Predicted
Value of
MTL [N]

Residual Leverage
Internally

Studentized
Residuals

Externally
Studentized

Residuals

Cook’s
Distance

Influence on
Fitted Value

DFFITS

73

2000 250

5235.00 5184.34 50.66 0.194 0.081 0.081 0.000 0.040
74 4987.00 5184.34 −197.34 0.194 −0.317 −0.315 0.001 −0.154
75 6166.00 5184.34 981.66 0.194 1.575 1.588 0.028 0.778
76 6125.00 5184.34 940.66 0.194 1.509 1.520 0.026 0.745

77

2200 300

5828.00 5831.36 −3.36 0.224 −0.006 −0.005 0.000 −0.003
78 5552.00 5831.36 −279.36 0.224 −0.457 −0.455 0.003 −0.245
79 6836.00 5831.36 1004.64 0.224 1.643 1.659 0.037 0.892
80 5555.00 5831.36 −276.36 0.224 −0.452 −0.450 0.003 −0.242

81

2200 350

5228.00 6187.20 −959.20 0.242 −1.587 −1.601 0.038 −0.905
82 5928.00 6187.20 −259.20 0.242 −0.429 −0.427 0.003 −0.241
83 6865.00 6187.20 677.80 0.242 1.122 1.123 0.019 0.635
84 6133.00 6187.20 −54.20 0.242 −0.090 −0.089 0.000 −0.050

85

2200 200

5738.00 5860.18 −122.18 0.234 −0.201 −0.200 0.001 −0.111
86 5759.00 5860.18 −101.18 0.234 −0.167 −0.166 0.000 −0.092
87 6288.00 5860.18 427.82 0.234 0.704 0.702 0.007 0.388
88 5890.00 5860.18 29.82 0.234 0.049 0.049 0.000 0.027

89

2200 100

1912.00 1992.21 −80.21 0.248 −0.133 −0.133 0.000 −0.076
90 2065.00 1992.21 72.79 0.248 0.121 0.120 0.000 0.069
91 2058.00 1992.21 65.79 0.248 0.109 0.109 0.000 0.062
92 1951.00 1992.21 −41.21 0.248 −0.068 −0.068 0.000 −0.039

93

600 300

10,620.99 10,887.32 −266.33 0.224 −0.436 −0.434 0.003 −0.233
94 10,933.00 10,887.32 45.68 0.224 0.075 0.074 0.000 0.040
95 10,641.00 10,887.32 −246.32 0.224 −0.403 −0.401 0.002 −0.216
96 10,884.00 10,887.32 −3.32 0.224 −0.005 −0.005 0.000 −0.003

97

600 200

8110.00 7771.51 338.49 0.234 0.557 0.555 0.005 0.307
98 8014.00 7771.51 242.49 0.234 0.399 0.397 0.002 0.220
99 7917.00 7771.51 145.49 0.234 0.239 0.238 0.001 0.132

100 8436.00 7771.51 664.49 0.234 1.094 1.095 0.017 0.606

101

800 250

5529.00 5453.20 75.80 0.194 0.122 0.121 0.000 0.059
102 5168.00 5453.20 −285.20 0.194 −0.458 −0.456 0.002 −0.223
103 5127.00 5453.20 −326.20 0.194 −0.523 −0.521 0.003 −0.255
104 5193.00 5453.20 −260.20 0.194 −0.417 −0.416 0.002 −0.204

105

1000 350

15,336.00 14,230.29 1105.71 0.202 1.783 1.805 0.038 0.908
106 14,590.00 14,230.29 359.71 0.202 0.580 0.578 0.004 0.291
107 14,274.97 14,230.29 44.68 0.202 0.072 0.072 0.000 0.036
108 13,972.00 14,230.29 −258.29 0.202 −0.417 −0.415 0.002 −0.209

109

600 350

5009.00 5290.96 −281.96 0.242 −0.467 −0.465 0.003 −0.263
110 5514.00 5290.96 223.04 0.242 0.369 0.367 0.002 0.208
111 5435.00 5290.96 144.04 0.242 0.238 0.237 0.001 0.134
112 5219.00 5290.96 −71.96 0.242 −0.119 −0.118 0.000 −0.067

4.1. Model Diagnostics

For the accepted regression model, diagnostic tests were performed to assess its
validity. The first diagnostic test is the Normal Probability Plot of Residuals (Figure 4),
which assesses whether the residuals from the fifth-degree polynomial regression model
for the MTL data are normally distributed. In this plot, the externally studentized residuals
are plotted on the x-axis, while the corresponding normal cumulative probabilities are
plotted on the y-axis. Most of the residuals are close to the red reference line, indicating
that they follow a normal distribution. However, some deviations from normality are
observed, especially in the tails of the distribution. Some residuals, especially those on
the far right, deviate significantly from the line, indicating potential outliers or deviations
from normality.
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The second diagnostic test is the residuals versus predicted values plot (Figure 5), 
which evaluates whether the residuals are randomly distributed, indicating a good fit for 
the regression model. The plot shows the externally studentized residuals on the y-axis 
and the predicted MTL values on the x-axis. Most of the residuals are randomly scattered 
around the horizontal line at zero, indicating that the model captures the data well with 
no obvious patterns. The absence of a clear pattern or trend in the residuals indicates that 
there is no significant nonlinearity or heteroscedasticity (nonconstant variance). This ran-
dom scatter supports the assumption that the residuals are independent and identically 
distributed. The plot includes red lines at ±3.65 standard deviations. Note that none of the 
residuals exceed these thresholds, indicating that there are no extreme outliers. The con-
centration of the residuals around the zero line, with no discernible patterns, confirms that 
the model is a good fit for most of the data points. 

 

Figure 4. Normal probability plot of residuals for the fifth-degree polynomial regression model
applied to MTL data.

The second diagnostic test is the residuals versus predicted values plot (Figure 5),
which evaluates whether the residuals are randomly distributed, indicating a good fit for
the regression model. The plot shows the externally studentized residuals on the y-axis
and the predicted MTL values on the x-axis. Most of the residuals are randomly scattered
around the horizontal line at zero, indicating that the model captures the data well with
no obvious patterns. The absence of a clear pattern or trend in the residuals indicates
that there is no significant nonlinearity or heteroscedasticity (nonconstant variance). This
random scatter supports the assumption that the residuals are independent and identically
distributed. The plot includes red lines at ±3.65 standard deviations. Note that none of
the residuals exceed these thresholds, indicating that there are no extreme outliers. The
concentration of the residuals around the zero line, with no discernible patterns, confirms
that the model is a good fit for most of the data points.
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The third diagnostic test is the residuals versus run order plot (Figure 6), which
assesses whether the residuals are randomly distributed across the sequence of observations,
indicating the absence of temporal or sequence bias in the model. The plot plots the
externally studentized residuals on the y-axis and the run number on the x-axis. Most of
the residuals are scattered around the horizontal line at zero, indicating that there is no
clear pattern or trend over the sequence of observations. Although there is some variation
in the residuals, there is no consistent pattern or trend that would suggest systematic
errors related to run order. This lack of a discernible trend suggests that the residuals are
independent of run order, supporting the assumption that there is no autocorrelation in the
residuals. The Durbin-Watson statistic, which tests for the presence of autocorrelation in
the residuals, is 0.8776 with an autocorrelation value of 0.5609. A Durbin-Watson value
close to 2 indicates no autocorrelation, while values significantly lower or higher indicate
positive or negative autocorrelation, respectively. The observed value (0.8776) indicates
some positive autocorrelation, which may require further investigation. The plot includes
red lines at ±3.64 standard deviations, and none of the residuals exceed these thresholds,
indicating that there are no extreme outliers.
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The fourth diagnostic test is the Cook distance plot (Figure 7), which evaluates the
influence of each observation on the regression model. Cook’s Distance measures how
much the regression coefficients change when a particular observation is removed, helping
to identify influential data points that may disproportionately affect the model [46]. Cook’s
Distance for the i-th observation is calculated using the following formula:

Di =
e2

i
p·MSE

(
hi

(1 − hi)
2

)
(7)

where Di is the Cook’s Distance for the i-th observation. ei is the residual for the i-th
observation (i.e., the difference between the observed and fitted values for that observation).
p is the number of parameters in the model, including the intercept. MSE is the mean
squared error of the regression model. hi is the leverage of the i-th observation, which is the
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i-th diagonal element of the hat matrix H = X(X′X) − 1X′. Most observations have Cook’s
Distance values close to zero, indicating that they have minimal influence on the regression
model. The red line at Cook’s Distance of 0.976 serves as a threshold; points above this line
are considered highly influential. In this plot, none of the observations exceed the Cook’s
Distance threshold of 0.976, indicating that there are no highly influential data points in the
data set.
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The sixth diagnostic test is the DFFITS vs. Run Number plot (Figure 9), which examines
the influence of each observation on the fitted values of the regression model. DFFITS
(Difference in Fits) measures how much an observation affects the fitted value and is used
to identify influential points that may disproportionately affect the model. DFFITS is a
diagnostic measure that quantifies the influence of a single observation on the fitted values
of the regression model. It calculates the change in the predicted value when an observation
is excluded from the model. The formula for DFFITS is given by:

DFFITSi =
ŷi − ŷi(−i)

s(−i)
√

hi
(8)

where ŷi is the predicted value with all observations included. ŷi(−i) is the predicted value
with the i-th observation excluded. s(−i) is the standard error of the regression with the
i-th observation excluded. hi is the leverage of the i-th observation. Many of the DFFITS
values lie around zero, indicating that individual observations generally have a minimal
influence on the fitted values of the model. As observations move further from the zero
line, they have a greater impact on the model’s fitted values. The horizontal blue lines

at ±1.29904 serve as thresholds, calculated based on the formula ±2
√

p
n , where p is the

number of predictors (including the intercept), and n is the number of observations. Values
beyond these lines suggest influential observations [47]. The plot shows that none of the
observations exceed these thresholds, indicating that there are no highly influential data
points in the data set. This suggests that the model is robust and not unduly influenced by
any single observation.
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The next diagnostic test is the DFBETAS vs. Run Number plot (Figure 10), which
examines the influence of each observation on the estimated regression coefficients. DF-
BETAS, which stands for “Difference in Beta”, is a diagnostic measure that assesses the
impact of each individual data point on the estimated regression coefficients. Specifically, it
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measures the change in a regression coefficient when an observation is omitted from the
analysis. The formula for DFBETAS is:

DFBETASij =
β̂ j − β̂ j(−i)

s(−i)

√
(X′X)−1

jj

(9)

where β̂ j is the estimated coefficient for predictor j with all observations included. β̂ j(−i)
is the estimated coefficient for predictor jj with the i-th observation excluded. s(−i) is the

standard error of the regression with the i-th observation excluded. (X′X)−1
jj is the j-th

diagonal element of the inverse of the design matrix X′X.
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to MTL data.

DFBETAS values indicate how much an individual observation influences the regres-
sion coefficients. Large DFBETAS values indicate that the observation has a significant
impact on the corresponding coefficient, potentially indicating an influential data point that
may disproportionately affect the model’s estimates. In the plot, the DFBETAS values for
the intercept are plotted on the y-axis, and the run number is plotted on the x-axis. Many of
the DFBETAS values are around zero, indicating that most observations have little to no
effect on the estimated regression coefficients. The horizontal blue lines at ±0.284573 serve
as thresholds, calculated using the formula ±2/

√
n where n is the number of observations.

Values beyond these lines indicate that the corresponding observations have a significant
impact on the model’s coefficients [48]. The plot shows that all observations fall within the
thresholds of ±0.284573, indicating that none of the data points have an undue influence
on the regression coefficients. This indicates that the model is stable, and the coefficients
are not overly sensitive to any single observation.

Both measures are useful for identifying influential data points, but they provide
different perspectives on how an observation affects the regression model. DFFITS is
concerned with overall prediction accuracy, while DFBETAS is concerned with the stability
of the regression coefficients.
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4.2. Principles of Hill-Climbing Algorithm

Hill climbing is an optimization algorithm used to find the best solution to a problem
by iteratively improving the current solution based on a fitness function. Starting with
an arbitrary initial solution, the algorithm evaluates its fitness and generates neighboring
solutions by making small changes. It then selects the neighbor with the best fitness as
the new current solution. This process is repeated until a stopping criterion is met, such
as a fixed number of iterations, a time limit, or when no better neighbors are found. Hill
climbing is a local search algorithm that focuses on improving the current solution and
takes a greedy approach by always moving to the best neighbor solution. However, it
can become stuck in local optima, i.e., solutions that are better than their neighbors but
not the best overall. Variants such as Steepest Ascent, Stochastic, and First-Choice Hill
Climbing help to solve this problem. Hill climbing is easy to implement and efficient
for small problem spaces, making it useful in applications such as artificial intelligence,
operations research, and machine learning.

The process begins with an initial guess

S0 = initial guess. (10)

The fitness of a solution S is evaluated using a fitness function f (S), which maps the
solution to a real number indicating its quality.

f : S → R.

The algorithm generates a set of neighboring solutions N(S) by making small pertur-
bations to the current solution S.

N(S) =
{

S′∣∣S′is a neighbor o f S
}

(11)

Among the generated neighbors, the algorithm selects the neighbor S′ with the optimal
fitness value, either the highest for maximization problems or the lowest for minimiza-
tion problems.

S′ = argmaxS′∈N(S) f (S′) (for maximization)
S′ = argminS′∈N(S) f (S′) (for minimization)

(12)

If the best neighbor S′ improves the fitness function compared to the current solution
S, the algorithm updates S to S′.

If f (S′) > f (S) (for maximization), thenS = S′

If f (S′) < f (S) (for minimization), thenS = S′ (13)

The algorithm iterates through the steps of generating neighbors and selecting the best
one until a predefined stopping criterion T is met. This criterion could be a fixed number
of iterations, a time limit, or the absence of further improvements [49,50].

5. Optimization
For our model, hill-climbing optimization was performed to fine-tune the welding

parameters to achieve the best possible MTL. The process involved starting with an initial
set of welding parameters and iteratively adjusting these parameters to explore their
neighboring values. At each step, the fitness function, defined as the MTL, was evaluated
to identify the optimal combination of welding parameters. By selecting the parameters
that maximized the MTL, the algorithm iteratively moved toward the best solution, thereby
improving the overall performance and reliability of the welding process. This approach
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ensured that the parameters were effectively optimized, resulting in the highest achievable
MTL for the given welding conditions. The optimal parameters identified through this
process are a spindle speed of 1100 rpm and a welding speed of 332 mm/min, which are
predicted to achieve an MTL of 16,852 N. Figure 11 shows the optimization parameters.
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The response surface plot (Figure 12) shows the relationship between MTL and two key
welding parameters: spindle speed (rpm) and welding speed (mm/min).
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Figure 12. Response surface plot (a) and contour plot (b) for MTL as a function of spindle speed and
welding speed. Different colors indicate MTL values.

The surface plot has regions of different heights that indicate how changes in spindle
speed and welding speed affect the MTL. The highest region of the surface corresponds to
the maximum MTL values, represented by the red and yellow areas on the plot. The plot
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shows a peak MTL value around the spindle speed of approximately 1100 rpm and welding
speed of approximately 332 mm/min, which is consistent with the optimal parameters
determined by the hill-climbing optimization.

6. Confirmation Test
The specimen subjected to the confirmation test was FSW in a lap joint configuration

using the optimal parameters identified by the optimization process: a spindle speed of
1100 rpm and a welding speed of 332 mm/min. The test procedure followed the same
protocol as described in the Materials and Methods section to ensure consistency in the
evaluation of the welds. The measured load capacity for the FSW sample in the confirmation
test ranged from 16,200 to 17,300 N, which is in good agreement with the predicted values
from the optimization model. This confirms the accuracy and reliability of the optimization
process for these specific parameters.

6.1. Macro and Microstructure Analysis

Macro and microstructure analyses were performed on the specimen to further validate
the quality of the weld (Figure 13). The image provided illustrates these analyses, with
six different regions marked and examined in detail. The specimen has been electropolished
to reveal its microstructural features, and the image shows a cross-section of the FSW joint.

• Region 1 (Base Metal (BM), Heat-Affected Zone (HAZ), Thermomechanically Affected
Zone (TMAZ), and Stir Zone (SZ)). This region shows the transition from the BM
through the HAZ and the TMAZ into the SZ. The microstructure shows a gradual
refinement of the grains from the BM to the SZ, indicating effective thermal and me-
chanical processing during FSW. The distinct zones highlight the gradient of thermal
and mechanical effects on the material [51].

• Region 2 (TMAZ, HAZ): Similar to Region 1, this region provides a detailed view
of the microstructural changes within the TMAZ and the HAZ. Grain refinement is
evident as the material moves toward the stir zone, showing the progressive effect
of the welding process on the material structure. The shape of the grains is a direct
result of the compression process, which flattens them into small fractions and causes
further grain refinement. A similar evolution of the microstructure was shown in the
work of Orlowska et al. [52].

• Region 3 (SZ): The stir zone exhibits a uniform and refined grain structure, indicating
effective material mixing and recrystallization during the welding process. This region
confirms the high quality of the stir zone, which is critical to the integrity and strength
of the weld.

• Region 4 (SZ, TMAZ, HAZ): This region illustrates the microstructural characteristics
at the interface between the stir zone (SZ), thermomechanically affected zone (TMAZ),
and heat-affected zone (HAZ). The boundaries are well defined and demonstrate the
effectiveness of the welding parameters in producing a strong joint with distinct zones
that contribute to the overall mechanical properties of the weld.

• Region 5 (SZ—Hooking): This section shows a hooking defect within the SZ. The
hooking defect is characterized by a curved, hook-like shape at the interface between
the joined materials. [53]. Despite the presence of this defect, the overall grain structure
remains consistent with the expected characteristics of a properly welded stir zone. The
hooking defect is identified during mechanical testing as a potential crack initiation
site that can compromise the structural integrity of the weld.

• Region 6 (SZ—Material Flow Lines): The microstructure in this region shows material
flow lines within the stir zone (SZ). The visible lines are likely to flow lines of the
material, with changes in shading possibly reflecting the presence of “onion rings”
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that are characteristic of FSW. These features indicate effective stirring and mixing of
the material without the presence of cracks, confirming the overall quality of the weld
in this region [54].

Materials 2025, 18, 448 22 of 29 
 

 

that are characteristic of FSW. These features indicate effective stirring and mixing of 
the material without the presence of cracks, confirming the overall quality of the weld 
in this region [54]. 

 

Figure 13. Macro and microstructure analysis of FSW sample. The colorful points represent different
crystallographic orientations of the material’s grains.



Materials 2025, 18, 448 23 of 29

Figure 14 presents the view of the specimen after failure, showing crack initiation and
propagation through the identified flaw. The confirmation test validates the effectiveness
of the optimized parameters by achieving the predicted load capacities and demonstrat-
ing robust weld quality through detailed macro- and microstructural examination. The
consistency between predicted and actual performance underscores the reliability of the
optimization process used in this study. The observed macrostructure and microstructure
are typical of AA2024-T3 alloys, as reported in the publication by Myśliwiec et al. [55],
which discusses the butt welding of thin AA2024 sheets. The application of advanced
optimization methods for FSW process parameters using commercial software, such as
Design Expert 12, has been successfully demonstrated in the studies of Myśliwiec et al. [56].
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6.2. The Microhardness Analysis

The next step in evaluating the formed lap FSW joint was to measure the Vickers
microhardness in the cross-section. The measurement method and results are shown in
Figure 15. The microhardness profile of the lap FSW joint for the AA2024-T3 alloy shows
the following key features: the microhardness of the parent material is at 130–140 HV,
increasing the temperature in the heat-affected zone causes a gradual increase in micro-
hardness to a value of 160–170 HV. The peak microhardness (210 HV) in the center of
the weld indicates that the refined grains in the weld nugget (the mixing zone) have a
higher hardness and, therefore, higher strength than the base material. The change in
microhardness in the weld nugget is significant, which is typical for FSW joints of 2024-T3
alloy, but we mostly observe a local decrease in microhardness in this region caused mainly
by the dissolution of AlMgCu reinforcing phase particles due to high temperatures [57].
Another factor in the decrease of microhardness is also the movement of dislocations due
to intense mechanical deformation [58]. However, in this particular case, we observe the
phenomenon of a significant increase in microhardness in the weld nugget. On the one
hand, the mechanism of grain reduction due to intense plastic deformation is responsible
for this. According to the Hall-Pecha relationship, grain reduction results in increased
hardness and strength [59]. Another phenomenon is probably due to the high welding
speed and lower temperature in the weld nugget by which the strengthening phase was not
dissolved [60]. In addition, the overlap configuration causes an increase in the cross-section
of the weld, which leads to better cooling and heat transfer to the environment and tooling.
This results in higher longitudinal stresses in the joint, as shown in Staron et al. [61]. The
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appearance of these stresses can have a negative effect on fatigue and crack propagation in
this area. The result can be the appearance of a hook defect in the weld.
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7. Discussion
The findings of this study provide a comprehensive understanding of the influence

of spindle speed and welding speed on the mechanical performance and microstructural
characteristics of lap friction stir welded (FSW) joints in AA2024-T3 aluminum alloy. The
results clearly demonstrate the nonlinear effects of process parameters on the maximum
tensile load (MTL), with significant interaction terms identified through the fifth-order
polynomial regression model. Such complexity in parameter interaction has been similarly
noted in other recent works applying advanced modeling to FSW optimization [62–64].
This highlights that achieving optimal conditions requires not only controlling individual
factors but also understanding their combined effects, a challenge addressed increasingly
by data-driven and hybrid optimization methods [65,66].

The macro- and microstructural analyses confirm that the optimized parameters
effectively refine the grain structure and produce defect-free regions essential for high
tensile strength. Grain refinement and improved joint properties following optimized
parameter selection have been reported previously, supporting the influence of proper
thermal and mechanical conditions on recrystallization kinetics [67,68]. Nevertheless, the
hooking defect observed here, often seen in lap FSW configurations, remains problematic.
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Recent studies have highlighted how hooking can serve as a stress concentrator and limit
the joint’s mechanical integrity [69,70]. This defect arises from complex material flow
patterns and tool geometry factors, including insufficient plunge depth or inappropriate
tool tilt angle, which disturb uniform material flow [53]. The interplay of tool design, heat
input, and material plasticity in creating or mitigating hooking defects has become a focal
point in recent investigations aiming to reduce defect prevalence [71,72].

In addition, the microhardness analysis revealing increased hardness up to 210 HV in
the stir zone is consistent with work showing that refined grain structures and controlled
thermal cycles enhance mechanical properties [73]. Minor hardness variations, particu-
larly near the TMAZ, may indicate localized thermal gradients and partial dissolution of
strengthening precipitates, aligning with reported thermal effects in similarly optimized
FSW joints [63,67].

The use of polynomial regression coupled with a hill-climbing algorithm successfully
identified optimal parameters (spindle speed = 1100 rpm and welding speed = 332 mm/min)
that maximize joint strength. Confirmation tests validated these optimal conditions, pro-
ducing MTL values in good agreement with model predictions and corroborating the
efficacy of integrating statistical modeling with iterative optimization for FSW parameter
tuning. Such approaches reduce reliance on extensive trial-and-error experimentation and
can lead to accelerated development cycles and more reliable welding protocols.

Limitations include the controlled laboratory conditions that may differ from industrial
settings where factors like tool wear, material batch variations, and dynamic temperature
profiles can affect performance. Future work could integrate real-time monitoring and
advanced numerical simulations, such as coupled thermo-mechanical finite element models
or machine learning-driven adaptive control systems, to enhance understanding and
predictability of material flow and defect formation under variable conditions. Expanding
the parameter search space and employing global optimization algorithms or evolutionary
strategies could further improve weld quality and robustness.

8. Conclusions
• The findings of the conducted research led to the following conclusions:
• A fifth-degree polynomial regression model was developed to predict the maximum

tensile load (MTL) of friction stir welded (FSW) lap joints, achieving high predictive
accuracy with minimal overfitting.

• The experimental results demonstrated a range of MTL values, from 1912 N to 15,336 N,
across the tested ranges of spindle speed and welding speed.

• The hill-climbing optimization algorithm identified the optimal welding parameters,
which were a spindle speed of 1100 rpm and a welding speed of 332 mm/min, resulting
in an MTL of 16,852 N.

• The results of the response surface analysis corroborate the significant interaction be-
tween spindle speed and welding speed, delineating regions of maximum MTL values.

• The confirmation tests served to validate the optimized parameters, which were shown
to achieve high load capacities and to demonstrate robust weld quality through macro-
and microstructural analyses.

• The microhardness profile revealed a peak hardness of approximately 210 HV in the
weld center, which can be attributed to grain refinement and the absence of phase
dissolution. This indicates that the joint exhibits superior strength.
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