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Abstract: Hydrogen has emerged as a prominent candidate for future energy sources,
garnering considerable attention. Given its explosive nature, the efficient detection of
hydrogen (H2) in the environment using H2 sensors is paramount. Chemoresistive H2

sensors, particularly those based on noble-metal-decorated metal oxide semiconductors
(MOSs), have been extensively researched owing to their high responsiveness, low detection
limits, and other favorable characteristics. Despite numerous recent studies and reviews
reporting advancements in this field, a comprehensive review focusing on the rational
design of sensing materials to enhance the overall performance of chemoresistive H2

sensors based on noble-metal-decorated MOFs is lacking. This review aims to address this
gap by examining the principles, applications, and challenges of chemoresistive H2 sensors,
with a specific focus on Pd-decorated and Pt-decorated MOSs-based sensing materials.
The observations and explanations of strategies employed in the literature, particularly
within the last three years, have been analyzed to provide insights into the latest research
directions and developments in this domain. This understanding is essential for designing
and fabricating highly efficient H2 sensors.
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1. Introduction
Hydrogen(H2), serving as both a reducing and carrier gas and a novel energy source,

holds immense application value in the chemical, electronics, healthcare, and metal smelt-
ing industries. However, H2 is susceptible to leakage during its production, storage,
transportation, and utilization processes. H2 is undetectable by smell due to its lack of color
and odor, and high concentrations can cause asphyxiation. Furthermore, when its volumet-
ric concentration in the air falls within the range of 4% to 75%, H2 becomes susceptible to
explosion upon exposure to an open flame. Consequently, the deployment of H2 sensors
for detecting H2 content in the environment and monitoring its leakage during usage is
imperative. Despite advancements in the development of various H2 sensors, real-time
leak detection and precise localization of leak sources remains challenging due to the fast
diffusion of H2 [1–5].

An excellent gas sensor should exhibit high responsiveness, fast response/recovery
times, robust stability, and exceptional selectivity [6]. Fast response and recovery times
for H2 detection are essential to achieve real-time monitoring [7]. A low detection limit is
also required. For instance, medical diagnosis necessitates a reliable H2 gas sensor with a
detection limit of approximately 10 ppm to aid healthcare providers in diagnosing specific
digestive issues [8].
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To develop a highly efficient H2 sensor, extensive research efforts have been under-
taken and subsequently summarized. Kafil et al. [9] directed their attention towards specific
sensor parameters, including sensitivity, selectivity, humidity tolerance, and response time,
among others, and proposed corresponding enhancement strategies while analyzing the
underlying causes. Sharma et al. [10] concentrated on recent advancements in metal oxide
semiconductor (MOS)-based and field effect transistor (FET)-based H2 sensors, discussing
the pertinent sensing techniques, mechanisms, and factors influencing sensor sensitivity.
Kamal Hossain et al. [11] summarized strategies to augment H2 sensing performances
using noble-metal-decorated nanostructured zinc oxide (ZnO) as sensing materials. Despite
the plethora of recent research endeavors and reviews reporting advancements in this field,
a comprehensive review specifically focusing on the rational design of sensing materials
to enhance the overall performance of chemoresistive H2 sensors based on noble-metal-
decorated MOSs remains elusive. Herein, we compile observations and explanations of
strategies employed in the literature, particularly within the last three years, to provide
insights into the latest research directions and developments in this domain. Initially, it
introduces the classifications and fundamental operational principles of H2 sensors. Fol-
lowing this introduction, the review delves into a comprehensive analysis of the specific
operational mechanisms of chemoresistive MOSs-based H2 sensors, employing illustrative
examples to elucidate these mechanisms. The third section of this review explores the
recent progress in the utilization of noble-metal-decorated MOSs for the development of
high-performance H2 sensors. Ultimately, the review concludes with a concise summation
and delineates potential avenues for future research and development.

Types and Working Principles

H2 sensors are primarily categorized into the subsequent classifications (Figure 1).
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Figure 1. Classification of H2 sensors.

(1) Electrochemical H2 Sensor

An electrochemical H2 sensor functions through the utilization of electrochemical
reactions. The interaction of H2 with the surface of the working electrode elicits variations
in the potential of the electrode or adjustments in the circuit current. These modifications
can be meticulously measured through the utilization of a reference electrode for calibra-



Materials 2025, 18, 451 3 of 28

tion, thereby facilitating the precise detection of H2 concentration fluctuations. LaConti
et al. [12] innovatively deployed a specialized electrochemical sensor in 1971 for the quan-
titative determination of H2 concentrations in gas mixtures containing electrochemically
inactive species. After this work, electrochemical H2 sensors have undergone significant
advancements. In a recent contribution, Wang et al. [13] deliberated on the progression of
solid-state electrochemical H2 sensors.

(2) Catalytic Combustion H2 Sensors

H2, characterized as a combustible gas, undergoes a rapid oxidation reaction with
oxygen (O2), leading to the release of heat. This thermal signal is subsequently converted
into an electrical signal via a sensitive transducer element. Depending on the methodology
employed for converting thermal signals into electrical signals, these sensors can be further
categorized into Pellistor and thermoelectric H2 gas sensors. The operational principle of
the Pellistor H2 sensor involves the generation of heat through a chemical reaction, causing
an elevation in temperature of the temperature-sensitive material. This temperature change
results in a variation in resistance and, consequently, the creation of a potential difference.
In contrast, thermoelectric H2 sensors generate electrical signals through the utilization
of the thermoelectric effect, also known as the Seebeck effect. In 1985, J.F. McAleer and
his colleagues introduced the concept of the thermoelectric H2 sensor, thereby laying the
theoretical groundwork for subsequent investigative endeavors in the field of thermoelectric
H2 sensing technologies [14]. More recently, Zhang et al. [15] developed a new catalytic
combustion H2 sensor using the electrodeposition method.

(3) Optical fiber H2 sensors

Optical H2 sensors operate by detecting changes in the optical properties of a material
upon exposure to H2. The utilization of optical fibers as sensing elements in H2 sensors
was first reported by Butler et al. in the 1980s. The primary advantages of optical fiber H2

sensors include their corrosion resistance, suitability for remote sensing, and resistance to
electromagnetic interference [16]. Shen et al. [17] has summarized various optical fiber H2

sensing technologies since 1984.

(4) Semiconductor-type sensors

This type of H2 sensor primarily operates on the basis of the chemical interaction
between H2 and sensitive materials, which can be readily transduced into an electro-optical
signal capable of quantitative assessment. In 1962, Seiyama and colleagues were the first
to utilize the unique properties of semiconductor materials for the development of gas
sensors [18]. They fabricated gas sensors utilizing zinc oxide (ZnO) semiconductor materials
and observed the change of the sensor’s resistance when exposed to reducing gases.

Over the past few years, advancements in material synthesis techniques and the
iterative refinement of processing technologies have facilitated the development of high-
performance H2 sensors. Among them, MOS-based H2 sensors boast numerous advantages,
including rapid response times, cost-effectiveness, and ease of integration, leading to their
extensive application. Various techniques for synthesizing MOSs have been reported,
including gas-liquid-solid (GLS) technology [19], electrospinning [20], sol-gel process-
ing [21], hydrothermal synthesis [22], and carbon-thermal transport growth [23]. GLS is
commonly used for nanowires, but has complex procedures. Electrospinning is efficient
for one-dimensional (1D) nanostructures, but may use toxic solvents. The sol-gel method
allows for homogeneous mixing, but may leave residual pores and carbon, requiring heat
treatment. Hydrothermal synthesis suits a range of microstructures, but requires precise
control. Carbon-thermal transport growth offers specific morphologies and sizes, but may
compromise stability and reproducibility. Various MOSs are commonly employed in gas
sensing, such as ZnO and tin oxide (SnO2), among others.



Materials 2025, 18, 451 4 of 28

However, the poor electronic conductivity of MOSs constrains electron transport
during gas–solid interactions, and MOSs usually exhibit limited activity for H2 detection.
To enhance the gas-sensing performance of MOS-based materials, various strategies have
been employed, including morphology and size adjustment, exposure of high-energy
crystal planes, structural modification, and noble metal decoration. Among these strategies,
noble metal decoration was widely employed.

In recent years, considerable research has been conducted on noble-metal-decorated
MOS H2 sensors. As illustrated in Figure 2, over the past decade, the majority of studies on
noble metals have concentrated on Palladium (Pd), Platinum (Pt), Gold (Au), Iridium (Ir),
and Silver (Ag) for modifying MOSs-based H2 sensors. Meanwhile, research on MOSs has
primarily focused on n-type semiconductors such as SnO2, ZnO, Titanium dioxide (TiO2),
and tungsten trioxide (WO3), as well as p-type MOSs like nickel oxide (NiO), copper oxide
(CuO), and Tricobalt tetraoxide (Co3O4). Numerous studies have demonstrated that the
chemical/electronic sensitization of noble metals can substantially enhance the response
and selectivity of sensors towards specific gases [24–26].
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Despite the successful commercialization of MOS-based H2 sensors, they operate at
relatively high temperatures, ranging from 250 ◦C to 400 ◦C, and a significant dependence
on humidity. This dependence undermines the reliability of MOS sensors, particularly
when operated at room temperature (RT), as noted in [27]. Humidity can interfere with
gas–solid interactions by forming water layers, reducing the effective surface area for H2

adsorption. High temperatures boost energy consumption and accelerate sensor aging,
shortening lifespan. Noble metal decorations can mitigate these issues by inhibiting water
adsorption and favoring the adsorption and H2 reactions with a low activation energy,
enabling low-temperature operation. Moon et al. [28] improved H2 detection at RT and
reduced humidity impact by modifying SnO2 with Pd NPs. Lupan et al. [29] showed
enhanced H2 detection at RT and a reduced humidity dependence with Au-NP/ZnO NWs,
achieving high selectivity and response. To meet the H2 sensing performance benchmarks,
which include a response time of less than 1 s at a 4% hydrogen concentration and less than
60 s at a 1% H2 concentration, along with a recovery time of less than 60 s, it is imperative
to develop H2 sensors characterized by faster response and recovery performance [30].
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2. Sensing Mechanism
2.1. General Sensing Mechanism of MOSs-Based H2 Sensors

The general mechanism of chemical impedance MOSs gas sensing can be elucidated as
follows [31]: Firstly, the adsorption of oxygen molecules from the ambient air on the metal
oxide surface leads to the trapping of electrons and the conversion of oxygen anions as
shown in Equations (1)–(4) [32]. Temperature plays a crucial role in the O2 adsorption and
dissociation process. As the temperature increases, the O2 molecules gain enough energy
to undergo chemisorption and capture electrons to form oxygen anions (e.g., O2

−, O−, and
O2−) [33]. At this point, the sensitivity of the sensor increases significantly, but too high a
temperature may lead to too fast a reaction between the target gas and the oxygen anions,
reducing the selectivity of the sensor [34]. The adsorption and dissociation temperatures of
O2 vary depending on the sensing material. For example, the reactions of Equations (2)–(4)
occur at a temperature below 180 ◦C, 180 ◦C~400 ◦C, and above 400 ◦C on Pd, respectively.
At high temperatures, adsorbed oxygen anions may desorb from the surface, leading to a
decrease in the active sites on the sensor surface, thus affecting the sensitivity. Excessive
temperatures may also lead to sintering or phase transformation of the MOSs, further
degrading the performance of the sensor [27].

O2(gas) → O2(ads), (1)

O2(ads) + e− → O−
2 (ads), (2)

O−
2 (ads) + e− → 2O− (ads), (3)

O−(ads) + e− → O2− (ads), (4)

H2(gas) → H2(ads), (5)

H2(ads) → 2H(ads), (6)

H(ads)+O− (ads) → OH− (ads), (7)

OH− (ads)+H(ads) → H2O(gas) + e−, (8)

4H(ads)+O−
2 (ads) → 2H2O(gas) + e− (9)

In the context of n-type MOSs, such as ZnO and SnO2, the presence of an electron
depletion layer (EDL) on their surface leads to an increase in surface resistance. Conversely,
for p-type MOSs, a hole accumulation layer (HAL) forms on the surface of the sensing
material, resulting in a decrease in surface resistance.

When exposed to H2, H2 molecules adsorb onto the surface of sensing materials,
which then reacts with adsorbed oxygen anions present on the MOS surface, as illustrated
in Equations (5)–(9). In a H2-rich environment, the H2 reacts with adsorbed oxygen
anions on the surface to produce water, simultaneously releasing electrons back to the
material’s surface. For n-type MOSs, this leads to an increase in electron concentration
on the outer surface, causing a narrowing of the EDL and resulting in a sensing signal
characterized by a reduced resistance value. Conversely, in p-type semiconductors, the
emitted electrons decrease the hole concentration, thereby generating a sensing signal
marked by an increased resistance value. Furthermore, the specific temperature at which
the reactions in Equations (5)–(9) occur is dependent on the sensing material. However, the
gas response of conventional MOSs is limited. Therefore, an effective strategy involves the
utilization of noble metal nanoparticles for modification.
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2.2. Sensing Mechanism of Noble-Metal-Decorated MOSs-Based H2 Sensors

The modification of MOSs with noble metal nanoparticles, such as Pd, Pt, and Au,
represents an efficacious method for enhancing gas response. In comparison to unmodified
MOSs, the H2 sensing behavior and mechanism of noble-metal-loaded MOSs exhibit
a significantly higher degree of complexity. This complexity arises from the intricate
interplay between the noble metals and the MOSs, encompassing both surface chemistry
and electronic coupling [35].

Initially, we focused on the surface chemistry underlying the H2 sensing mechanism
of noble-metal-decorated MOSs. Extensive research has shown that noble metals serve
as catalysts, enhancing the adsorption of oxygen onto material surfaces and facilitating
the dissociation of target gas molecules. The Schottky barrier, formed at the junction of
noble metal electrodes (Pt, Pd, Au, etc.) and the semiconductor material, is recognized as
a critical factor in sensing processes. In the context of H2 sensors based on noble-metal-
decorated MOSs, beyond the reactions outlined in Equations (1)–(5), there may also be
a phenomenon where oxygen and hydrogen atoms diffuse from the noble metal onto
the oxide support. This phenomenon is termed “spillover”. Recently, several advanced
methodologies have been formulated to gain a deeper understanding of the gas sensing
mechanism of noble-metal-decorated MOSs. These methodologies encompass density
functional theory calculations and in situ transmission electron microscopy analysis [36,37].
A diverse range of noble-metal-decorated MOSs, including Pd/SnO2 and Pt/ZnO, have
been employed in H2 sensors. Subsequently, we will discuss the sensing mechanism of a
typical Pd/SnO2 H2 sensing system as an illustrative example (Figure 3).
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When pure SnO2 is exposed to air, O2 molecules adsorb onto the SnO2 surface. This
adsorption process captures free electrons from the conduction band of SnO2, forming
adsorbed oxygen anions (depending on the operating temperature, as detailed in [39]).
Consequently, an EDL forms, leading to an increase in the sensor’s resistance.

When Pd at the nanoscale interfaces with SnO2, it extracts electrons from SnO2, thereby
inducing an EDL at the interfaces [38]. Upon exposure of the Pd/SnO2 composite to air, the
catalytically active Pd facilitates the dissociation of O2 molecules, with the resultant oxygen
atoms subsequently diffusing from the Pd to the SnO2 support [38] (Figure 3). The diffused
oxygen atoms then accept electrons from the bonded SnO2, leading to the broadening of
the EDL.

When the sensor is subjected to H2, as depicted on the right-hand side of Figure 3,
H2 molecules adsorb onto the Pd surface and disassociate into hydrogen atoms due to the
strong affinity of Pd for H2 [40]. Subsequently, following spillover, the diffused hydrogen
atoms primarily interact with adsorbed oxygen anions [38], forming surface hydroxyl
groups [41]. These hydroxyl groups exhibit a reduced electron affinity, causing the release
of electrons back to SnO2 upon the desorption of produced H2O molecules at temperatures
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exceeding 100 ◦C. This process results in a significant narrowing of the EDL and a corre-
sponding decrease in its resistance [42]. Note that, following the spillover, the active sites
on Pd for O2 and H2 molecule adsorption and dissociation are freed and become available
to capture additional O2 and H2 molecules, thereby initiating a new reaction cycle.

Moreover, H2 can reduce PdO to Pd (Equation (10)), leading to the cessation of elec-
tronic interactions or even the formation of a low-work-function Pd hydrid (PdHx), which
promotes the reverse transfer of electrons [43]. Consequently, the return of a significant
number of electrons results in a narrowing of the EDL and a decrease in the sensor’s resis-
tance [44]. The initial reduction reaction of PdOx leads to an increase in the concentration
of Pd0. This process is considered partial and reversible, as reported in [45]. The resultant
reduced Pd can subsequently catalyze the reaction between H2 molecules and adsorbed
oxygen anions, as outlined in Equations (5)–(9). This catalysis facilitates the release of
electrons into the conduction band of SnO2, thereby enhancing the conductivity of the
composites [46].

PdOx + 1/2H2(g) → Pd0 + xH2O(g) (10)

The aforementioned mechanism elucidates the superior sensing performance of noble-
metal-decorated MOSs at both room and high temperatures. Notably, Pd has been doc-
umented as an exceptionally efficient catalyst for H2 dissociation, even at low temper-
atures [32]. Meng et al. [47] proposed that, in addition to the adsorption of H2 and O2

on Pd surfaces, electron sensitization of Pd can also facilitate the redistribution of in-
terfacial electrons (Figure 4a). Considering the example of 1.0 at% Pd/SnS2/SnO2, the
metal-semiconductor interface exhibits distinct phenomena due to the difference in work
functions. Specifically, the work function of Pd is higher than that of the SnS2/SnO2

semiconductor (Figure 4b). Consequently, the energy band in the semiconductor shifts
downward, resulting in the formation of Schottky barriers at the metal–semiconductor
interface. Within the 1.0 at% Pd/SnS2/SnO2 composition, Pd exists not only in its metallic
form, but also as PdO. Notably, the work function of PdO (ϕ = 7.9 eV) is higher than that of
SnS2/SnO2, prompting electrons to transfer from SnS2/SnO2 to PdO, leading to the for-
mation of a p–n heterojunction (Figure 4c). The concurrent generation of Schottky barriers
and p–n heterojunctions broadens the EDL in SnS2/SnO2, thereby increasing the baseline
resistance (Ra ≈ 225 MΩ). Upon exposure of Pd/SnS2/SnO2 to H2, a portion of Pd converts
to PdHx, characterized by a lower work function (φ < 4.4 eV, Figure 4d). This shift causes
electrons to flow from PdHx back to SnS2/SnO2, increasing the electron concentration in
SnS2/SnO2 and subsequently decreasing the resistance (Rg) of the Pd/SnS2/SnO2 material.
These synergistic effects result in a significant variation in resistance and contribute to the
excellent sensing characteristics of the material.

The small amount of Pd could exhibit three distinct functionalities: catalyzing the
dissociation of O2 molecules, catalyzing the dissociation of H2 molecules, and exerting
a direct influence on the thickness of the EDL. Among these functionalities, the primary
role of Pd is likely to serve as a catalyst for H2 dissociation, attributed to its efficient
capability to facilitate this process even at a low temperature—a pivotal advantage in the
context of H2 sensing applications. Nevertheless, the significance of the other two roles
should not be overlooked. When Pd is deposited onto MOSs, it can further influence
the sensor’s response characteristics via complex interactions between Pd and the MOSs.
These interactions encompass various facets, including interface chemistry and electronic
coupling mechanisms, which collectively govern the overall performance of the sensor.

In summary, due to the interaction between noble metals and MOSs, the H2 sensing
mechanism of noble-metal-loaded MOSs is complex, and many aspects such as surface
chemistry and electronic coupling need to be considered.
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(b) Pd/SnS2/SnO2, (c) PdO/SnS2/SnO2 and (d) PdHx/SnS2/SnO2 [47]. Reprinted with permission
from Elsevier, copyright 2022.
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3. Noble-Metal-Decorated MOSs-Based Gas Sensors
3.1. Pd-Decorated MOSs-Based Gas Sensors

Pd-decorated MOSs exhibit heightened sensitivity, remarkable selectivity, fast re-
sponse/recovery times, and low detection limits for H2 sensing, attributable to the distinct
solubility of H2 in Pd and its capacity to form PdHx. Notably, only H2 is capable of inducing
significant lattice expansion in Pd, due possibly to the small radius of the hydrogen atom,
whereas other gases such as carbon monoxide (CO) exhibit no such effect. This specificity
contributes to the excellent selectivity of the Pd-based sensor. The processes of hydrogen
adsorption and desorption on Pd occur rapidly, facilitating fast response and recovery.
Furthermore, the rapid diffusion and high solubility of hydrogen atoms within the Pd
lattice result in substantial resistance changes even at trace concentrations of H2, enabling
low detection limits.

Given these advantages, Pd catalysts are extensively utilized for H2 detection. Various
studies have shown that the reduction of Pd precursors can be accomplished through
solution-based methods involving UV light irradiation [48], chemical reducing agents [49],
and thermal treatments [50].

3.1.1. Pd-Decorated SnO2

Among the diverse array of semiconductors, n-type SnO2, characterized by its wide
band gap of 3.5~4.0 eV [51,52], which can be measured via photocurrent spectroscopy [53],
stands out as a promising candidate for sensing applications due to its low cost, simple man-
ufacturing technique, and good long-term stability. However, its application is hindered by
limitations such as low sensitivity, high operational temperature, inadequate selectivity,
and sluggish response kinetics. To overcome these disadvantages, the modification of SnO2

through the incorporation of other materials, particularly noble metals such as Pd, has
proven to be an effective strategy for improving its sensing performance.

Manipulating the dimensionality [54–57] and dispersion of Pd on MOSs supports
can fine-tune their H2 sensing performances. So far, a number of Pd-based H2 sensors,
including nanowires (NWs) [5,58,59], nanosheets (NSs) [60], nanofibers (NFs) [59,61],
nanoflowers [62], nanorods (NRs) [63,64], nanotubes (NTs) [65,66], and films have been
suggested [47].

The nanoparticles (NP) enhance sensor sensitivity by providing a larger surface area
for gas adsorption. Nam et al. [67] (Table 1) fabricated Pd/SnO2 nanoparticles (NPs) for an
exceptionally sensitive and selective H2 gas sensor by leveraging Pluronic F-127 (Figure 5).
Pluronic F-127, a block copolymer structured as (polyethylene oxide)99-(polypropylene
oxide)69-(polyethylene oxide)99 [68], features three hydrophilic chains and a central hy-
drophobic chain. It functions dualistically as a reducing agent and surfactant, enhancing
the dispersion of Pd NPs and modulating their size. In comparison to pristine SnO2 and
Pd/SnO2 NPs synthesized without the aid of F-127, the Pd/SnO2 NPs synthesized with
F-127 assistance, denoted as F-Pd/SnO2, exhibited a superior H2 response of 27, 190 and
a fast response time of 3 s when exposed to 50 ppm of H2 at 100 ◦C (Figure 5). This
enhancement is attributed to the increased number of nanojunctions.
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Figure 5. (a) Schematic illustration of the synthesis mechanism of F-Pd/SnO2 nanoparticles with
Pluronic F-127 assistance and corresponding response comparison plot of SnO2, Pd/SnO2 [69].
Reprinted with the permission from Elsevier, copyright 2024. (b) F-Pd/SnO2 to 50 ppm of H2

at 100 ◦C [69]. (c) Schematic of the fabrication of Pd/SnO2 sensing film patterns and MEMS H2

sensing chips: The micro hotplate arrays are aligned with the mask [38], (d) SnO2 film patterns are
deposited in the central sensing area by a mask-assistant magnetron sputtering method [38], (e) Pd
NPs catalysts are further decorated on SnO2 by ALD [38], (f) the film patterns perform annealing
treatment in air-H2-air, and finally the MEMS H2 sensing chips are obtained after (g) dicing and
(h) wire bonding [38].

In the above work and some other literature [47], H2 sensors utilizing SnO2 nanostruc-
tures exhibit linear response characteristics within a concentration range of up to 1% H2.
Only a few works reported H2 sensing properties at concentrations exceeding this threshold.
For H2 concentrations ranging from 1% to 2%, detection utilized the volumetric expansion
characteristic of the β-phase PdHx. This expansion arises from the phase transition from
α-Pd to β-PdHx, causing the reconnection of previously disrupted junctions within the Pd,
thereby resulting in a fast decrement of the resistance in Pd-based sensors [69].
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Table 1. The comparison of sensing performances of noble-metal-decorated MOSs.

Materials
Optimal

Temperature
(◦C)

τres/τrec (s) Detection
Limit (ppm)

Concentration
(ppm) Response Ref.

F-Pd/SnO2 100 3/NA a 50 50 27,190 c [67]
30Pd/SnO2 150 NA/30 a 0.5 20 1.51 d [38]

Pd/SnS2/SnO2 300 1/9 a 10 500 90 d [47]
Pd/SnO2 210 3.4/5.6 a 1.5 5000 712.65 e [35]

SnO2-Pd@rGO 390 8/3 a 0.1 200 243.5 f [32]
NiO-shelled

Pd-decorated ZnO
NW

200 NA NA 100 13.36 d [62]

Pd@ZnO-2 350 84/468 a NA 100 22 d [70]
Pd/Fe2O3-NiO NFs 250 11/105 a 1 1000 199.24 d [71]

p-PdO-n-WO3-
heterostructure film 160 4/NA 0.5 100 45.1 d [72]

Pt SnO2–Co3O4 300 12/NA NA 100 57.9 d [73]
Pd-doped

rGO/ZnO-SnO2
380 4/8 a 9.4 100 9.4 d [74]

5.0 wt% Pd
NPs/CeO2-C 25 3/NA a NA 100 1322 d [75]

Pt-TiO2-MoS2 100 NA 50 500 47.09 d [76]
Pt-SnO2 25 13/NA a NA 1000 5000 e [77]
Pt-SnO2 825 NA NA 1000 450 e [78]
ZnO–Pt 300 133/112 a 100 1000 132.5 g [79]

WO3/Pt-ZnO R.T. 19/81a 1 100 61.5 d [80]
ZNT/G R.T. 30/38 a 10 100 28.08 d [81]

MoS2-HIZNTs R.T. 14/19 a 10 500 51.1 h [82]
Pt–Fe2O3–Vo 240 2/45 b 0.086 50 NA [83]
PtRu/CeO2 500 97/123 a 100 100 NA [84]

Ag@SnO2@g-C3N4 300 ¾ a 0.03 50 5.4 d [85]
Irred/ZnO-450 450 7/9.7 a 10 100 5.5 d [86]

a: The response time (τres) and the recovery time (τrec) were determined as the time taken for the resistance
(current) to reach 90% of the saturated response upon exposure to H2 and to decrease by 90% back to baseline after

removal, respectively. b: τ = υ−1
0 exp

(
−Eads
TKB

)
. υ0, KB, and T are the attempt frequency, Boltzmann constant, and

temperature. c: R = (Ra − Rg)/Rg. R is the sensor response. Ra and Rg are the sensor resistance in air and target
gas, respectively. d: R = Ra/Rg. e: △I/I0 = [(I − I0)/I0] × 100%. I and I0 represent the current values under target
gas and baseline (no target gas) conditions, respectively. f: R = Ig/I0. g: R = (Gg − Ga)/Ga × 100%. Gg and Ga are
the conductance of H2 gas and air stimulation at different ppm of the sensor, respectively. h: R = Ra/Rg × 100%.
NA: Not available.

A comprehensive elucidation of the H2-sensing mechanism at concentrations above
1% is required. Liu et al. (Table 1) have proposed the existence of two H2 concentration-
dependent sensing mechanisms for their developed Pd/SnO2 NPs film-based H2 sensor,
designed for H2 detection across a wide concentration range (1.5 ppm to 10%) [35]. Specifi-
cally, below a 1% H2 concentration, the sensor response exhibits a linear correlation with
the square root of the H2 concentration, primarily attributed to the electronic coupling
effect occurring at the interface between PdHx and SnO2. This mechanism facilitates a high
sensitivity of 0.23 ppm−1. As the H2 concentration increases beyond this point, a linear
dependence between the response and H2 concentration is observed, with a sensitivity of
0.018 ppm−1. This latter behavior is attributed to the redox reaction between H atoms and
the adsorbed oxygen anions on the SnO2 surface [35].

SnO2-based H2 sensors show a high compatibility with integrated circuits (IC). The
development of intelligent and integrated H2 sensors has emerged as a focal area of con-
temporary research. As gas sensing chips transition into mass production, a multitude
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of challenges have come to light. Achieving a uniform film at the wafer level is a pivotal
prerequisite for ensuring high consistency among sensing chips. However, conventional
techniques such as drop-coating and screen-printing fall short at meeting this criterion due
to their inherent lack of precision and uncontrollability. Furthermore, these methods often
lead to unwanted contact between sensing materials and electrode pads, thereby inducing
signal crosstalk between the heating and testing electrodes, and potentially compromising
the subsequent packaging process. Consequently, the development of effective gas sensing
film patterning methods and noble metal catalytic modification techniques at the wafer
level is of paramount importance for the mass manufacturing of sensing chips. Recently,
Zhang et al. [38] (Table 1) have devised a straightforward methodology that integrates
atomic layer deposition (ALD), magnetron sputtering, and subsequent annealing in an
air-H2-air atmosphere to fabricate high-performance Pd/SnO2 film patterns tailored for
H2 sensing (Figure 3). This approach allows for precise regulation of the grain size and
crystallinity of the Pd/SnO2 films through meticulous control of the deposition and anneal-
ing processes, ultimately enhancing their H2 sensing capabilities. The resultant MEMS H2

sensing chips exhibit remarkable consistency and a broad detection range spanning from 0.5
to 500 ppm. Notably, even at an H2 concentration as low as 0.5 ppm, a discernible change
in resistance and response value (with a signal-to-noise ratio exceeding 3) is observed [38].
This sensing chip boasts a lower detection limit and an expanded detection range encom-
passing three orders of magnitude compared to certain previously reported H2 sensors [38].
Two problems may be encountered regarding thin films such as film uniformity and signal
crosstalk, which can be further explored with more advanced deposition techniques, as well
as with new patterning methods. A combination of deposition techniques and patterning
methods can be used to significantly improve the performance of H2 sensors. For example,
ALD deposits a uniform film and combines it with an isolation trench design to reduce
signal crosstalk or deposit a uniform catalytic layer by sputtering. Adding a shielding layer
also blocks electric field interference [87].

In addition to the decoration with noble metals, the further modification of SnO2

with alternative semiconductors offers a viable approach to enhancing its H2 sensing capa-
bilities, primarily due to the substantial resistance modulation at heterojunction barriers.
Various semiconductors have been utilized to establish heterojunctions with SnO2 and are
co-supported with noble metals [88]. Notably, 2D semiconductors have emerged as promi-
nent candidates owing to their layered structure, high surface-to-volume ratio, unique
semiconducting attributes, and substantial electronegativity [89]. Tin disulfide (SnS2), for
instance, exhibits considerable potential in heterostructure-based sensing applications.
Meng et al. (Table 1) synthesized SnO2@SnS2 hollow nanostructures through a combined
hydrothermal and impregnation approach [47]. The optimized 1.0 atomic percent (at%)
Pd/SnS2/SnO2 nanocomposites exhibited a peak response of 95 towards 500 parts per
million (ppm) H2 at 300 ◦C (Figure 6a), which was 10.6 times higher than that of pure SnO2

nanoparticles and 5.3 times higher than that of pure SnS2/SnO2-2 nanocomposites [47].
Furthermore, the 1.0 at% Pd/SnS2/SnO2 composites demonstrated rapid response and
recovery times of 1 and 9 s (Figure 6b), respectively, along with exceptional selectivity and
stability [47]. The enhanced H2 sensing properties of the Pd/SnS2/SnO2 nanocomposites
may be attributed to several factors: (1) the spillover effect of Pd, (2) the formation of a
Schottky barrier at the interface between Pd and SnS2/SnO2, and (3) the establishment of a
p-n heterojunction at the junction between PdO and SnS2/SnO2.
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imately 8 to 0.1 ppm H2 within one minute and maintained acceptable stability under high 
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Figure 6. (a) Response curves and (b) response/recovery time of Pd/SnS2/SnO2 towards
500 ppm H2 [47]. Reprinted with permission from Elsevier, copyright 2022. (c) The schematic
for the rGO-wrapped SnO2–Pd hollow porous spheres. SnO2–Pd@rGO: (d) TEM image (inset:
high-resolution HRTEM image), (e) HRTEM image [32]. Reprinted with permission from Elsevier,
copyright 2022.

Apart from SnS2, graphene and reduced graphene oxide (rGO) have been extensively
employed to construct heterojunctions with MOSs to achieve impressive gas sensing
performances, attributed to their large specific surface areas and exceptional electron
mobility [32]. Notably, the hydrophobicity of rGO has been confirmed to suppress the
effects of high humidity on graphene-based gas sensing [90]. Qiu et al. (Table 1) fabricated
an rGO-encapsulated SnO2–Pd porous hollow sphere composite (SnO2–Pd@rGO) for
a high-performance H2 sensor [32]. The porous hollow architecture of this composite
was derived from a carbon sphere template (Figure 6c). The encapsulation with rGO
was achieved through the self-assembly of GO onto SnO2-based spheres, followed by
thermal reduction in a H2 atmosphere (Figure 6c). This sensor demonstrated outstanding
selective H2 sensing characteristics at 390 ◦C, exhibiting a linear response across a broad
concentration range (0.1–1000 ppm) with a fast recovery time of 3 s. It also showed a
high response of approximately 8 to 0.1 ppm H2 within one minute and maintained
acceptable stability under high humidity conditions (e.g., 80%). The calculated detection
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limit of 16.5 ppb facilitated the potential for trace H2 monitoring. Furthermore, the sensor
displayed a detectable response to H2 at a minimum concentration of 50 ppm at 130 ◦C.
These remarkable performances were primarily attributed to the unique hollow porous
structure with abundant heterojunctions (Figure 6d,e), the catalytic activity of doped-
PdOx, the relatively hydrophobic surface provided by rGO, and the deoxygenation process
following H2 reduction.

The chemiresistive gas sensing mechanism of the MOSs composite is attributed to both
electronic sensitization (i.e., energy band modulation and heterojunction formation) and
chemical sensitization (i.e., doping spillover and oxygen adsorption) [91]. In the context of
electronic sensitization, heterojunctions are established between p-type rGO and n-type
SnO2. The disparity in their work functions (5.1 eV for rGO and 4.5 eV for SnO2) [92] leads
to the formation of an electron depletion region on the SnO2 side at the SnO2/rGO interface.

Notably, the experimental evidence revealed that the SnO2–Pd@rGO composite pre-
dominantly comprises PdO and PdO2 phases, accounting for 96.1% of the total Pd content.
The doped PdOx species are recognized as potent electron acceptors exhibiting p-type
behavior, which can effectively lower the Fermi level of SnO2. Consequently, an addi-
tional electron depletion region is induced on the SnO2 side at the SnO2/Pd interface.
Furthermore, PdO2, being metastable and more reactive towards the target gas compared
to PdO [93], is likely advantageous for enhancing the H2 sensing performance of the
SnO2–Pd@rGO composite, given the substantial presence of PdO2 in the material.

3.1.2. Pd-Decorated ZnO

As discussed above, SnO2 exhibits high conductivity and remarkable sensitivity to low
gas concentrations, particularly enabling a swift response to variations in H2 concentration
and generating pronounced electrical signal changes in H2 sensors. However, ZnO offers
several advantages over SnO2 in the context of H2 sensors utilizing MOSs. Specifically, ZnO
boasts superior biological adaptability, safety, unique piezoelectric properties, and potential
fabrication process and cost benefits. Consequently, in certain specific applications, ZnO
may be a more suitable sensing material for H2 sensors.

Nonetheless, the sensing application of pure ZnO is constrained by its low response,
instability, and particularly poor H2 selectivity. To address these limitations, functionalizing
ZnO with noble metal catalysts, such as Pd and Pt, presents a promising approach to
enhance the properties of the material [70].

The presence of relatively high humidity leads to a decreased gas response in ZnO
sensors, owing to competition for adsorption sites on the sensor surface between H2O
molecules and H2 molecules [94]. Nevertheless, the incorporation of noble metal NPs has
been found to enhance the stability of gas sensors under humid conditions [95].

To enhance the sensing performance by generating abundant active sites, effective
approaches involve forming MOSs heterojunctions and modifying the morphology to
achieve a larger specific surface area. Controlling the morphology of Pd–ZnO structures
can regulate their H2 sensing capabilities. For instance, Nguyen et al. (Table 1) observed
the microscopic morphology of Pd@ZnO-2 using TEM (Figure 7a) [70]. The Pd-decorated
ZnO showed improved H2 sensing performances compared with the ZnO NPs.

However, the operation of gas sensors at high temperatures can lead to the oxidation of
ultrafine noble metal particles in the air, thereby reducing sensing performance and causing
agglomeration of noble metals on the sensor surface [96]. Therefore, it is crucial to devise a
method to shield noble metals from direct air exposure to enhance sensing performance.
One effective preservation strategy involves depositing a thin layer of metal oxide on a
surface adorned with nano-noble metal particles. Among the candidates for protective
layer materials, p-type NiO has garnered significant attention due to its robust structural
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stability, exceptional oxygen adsorption capacity, and potent catalytic activity [97]. Badie
et al. (Table 1) [60] employed NiO as a deposition layer to coat Zn NWs decorated with
Pd (Figure 7b). In the absence of Pd decoration on ZnO, NiO comes into direct contact
with ZnO. The intimate contact between n-type ZnO and p-type NiO generates numerous
heterojunctions with potential barriers that impede charge flow in air. Upon exposure to
the target gas, the barrier height alters, leading to a change in sensor resistance. Since NiO
is deposited as a continuous layer, a core-shell structure forms, with ZnO and NiO in direct
contact, maximizing the contact area between the components and resulting in substantial
resistance variations. Alternatively, when Pd nanoparticles are positioned between ZnO
and NiO layers, Zn-Pd-Ni oxide heterojunctions are established [60]. Compared to single-
component materials, Zn-Ni oxide heterojunctions exhibit superior performance in gas
sensing applications [98].
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P-type MOSs, exemplified by NiO as previously mentioned, offer distinct advantages
over n-type MOSs in the selectivity and monitoring of reducing gases. This superiority
is attributed to the extensive adsorption of oxygen on their surfaces [71]. Research has
demonstrated that sensors based on noble-metal-decorated NiO exhibit promising sensing
capabilities for H2 detection [99]. Cai et al. (Table 1) [71] fabricated porous NiO NFs
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embedded with Pd and Fe2O3 NPs through a straightforward electrospinning process.
These sensors achieved a maximum response value of 199.24 for 1000 ppm H2 gas at an
optimal operating temperature of 250 ◦C, accompanied by a response/recovery time of
11/105 s. Additionally, they exhibited robust selectivity and long-term stability towards
H2. The exceptional gas sensing performance of these sensors is primarily attributed to
the catalytic effect of Pd and the unique fluffy porous 1D microstructure, which features
tightly linked p-n heterojunctions between NiO and Fe2O3. This structure provides a large
specific surface area and numerous active sites, thereby facilitating the reaction between
H2 molecules and surface oxygen anions.

Similarly, Zhu et al. (Table 1) [72] observed that Pd in Pd-decorated WO3 composites
exists in the form of PdO, forming a p-n heterojunction. The H2 gas sensor assembled using
the p-PdO-n-WO3 heterostructure and a uniformly dispersed thin film exhibited excellent
sensing performance, high sensitivity, a low detection limit, and good stability. At an
optimal operating temperature of 160 ◦C, the sensor demonstrated response values (Ra/Rg)
of 1.2 and 45.1 for H2 concentrations of 500 ppb and 100 ppm, respectively. Furthermore,
the response times were 38 s and 4 s for these concentrations.

In addition to the construction of p-n heterojunctions, the H2 sensing performance of
materials can also be improved by constructing n-n heterojunctions and/or adding other
components. For example, Zhang et al. (Table 1) [74] prepared quaternary nanocomposites
(Figure 7c) by hydrothermal method using Pd-doped rGO/ZnO-SnO2 for use as sensing
materials in H2 sensors. Compared with ZnO-SnO2 composites, the materials doped with
3 wt% rGO (NC3) exhibited a better H2 response. The maximum H2 response of the NC3
material at 380 ◦C is 9.4, which is two times that of NC0, i.e., ZnO-SnO2.

Oxygen vacancies, a prevalent and crucial type of crystal defect, play a significant
role in the sensing performance of these semiconductors [100]. Various strategies have
been proposed to enhance the oxygen vacancy content. Traditional methods, such as
high-temperature gas reduction and calcination, are commonly employed to create oxy-
gen defects [56,101–106]. However, these methods often require complex or hazardous
conditions, including high temperatures and H2-rich atmospheres. Consequently, the use
of an appropriate reducing agent to regulate the concentration of oxygen vacancies at
RT has become increasingly important. Ascorbic acid, for instance, serves as an effective
reducing agent, promoting the formation of both surface and intrinsic hydroxyl groups.
The hydroxyl-oxygen vacancy model introduces a novel mechanism for the generation of
oxygen vacancies, wherein hydroxyl groups and oxygen vacancies coexist, with the latter
providing accommodation space for adjacent hydroxyl groups. Song et al. (Table 1) [75]
developed a “hydroxyl-oxygen vacancy model” utilizing the redox-capable Ce4+ ↔ Ce3+

system (Figure 8). Following ascorbic acid reduction, Pd NPs-modified cerium dioxide
(CeO2) (in cubic, Figure 8b, rod-shaped, and spherical morphologies) exhibits a high abun-
dance of hydroxyl groups [75]. This approach not only facilitates the formation of oxygen
vacancies within the CeO2 lattice, but also establishes a linear correlation between the sur-
face Ce3+ content, the content of oxygen vacancies, and highly reactive oxygen species [75].
The optimal 5.0 wt% Pd NPs/CeO2-C, characterized by the highest concentration of oxygen
vacancies and Ce3+ content, owned the largest EDLs in air (Figure 8a). It demonstrated
rapid sensing kinetics (3 s for 1% H2 and 2 s for 3% H2, Figure 8c,d) and remarkable
sensitivity to H2 (Ra/Rg of 1322 for 1% H2), with a detection limit as low as 50 ppm [75].
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3.2. Pt-Decorated MOSs

Pt is also widely used for the H2 detection. Compared with Pd, Pt has a lower affinity
for H2 molecules, is less prone to H2 embrittlement, and has better long-term stability.
And under certain extreme conditions (e.g., high temperature, strong acid and alkali
environment), Pt may exhibit higher stability. Due to the high catalytic activity of Pt, Pt
can quickly promote the reaction of H2 with the sensor surface. Therefore, when Pt is
used as a catalyst, the response speed of the H2 sensor is usually faster, and when the H2

concentration decreases, the sensor doped with Pt is usually able to return to its initial state
more quickly. Accordingly, Pt-decorated MOSs-based H2 sensors show great potential in
applications that require high sensitivity, high selectivity, and a fast response.

3.2.1. Pt-Decorated SnO2

In practical applications within the realm of gas sensors, SnO2-based gas sensors
continue to be a leading choice. Various strategies have been employed to enhance the
gas sensitivity of Pt-decorated SnO2-baed H2 sensors, including the construction of n-n,
p-n, and p-p heterojunction composites [107–109], the design of hierarchical structures, and
the addition of catalytic layers. Luo et al. (Table 1) [76] successfully synthesized a ternary
Pt–TiO2/MoS2 composite through a two-step hydrothermal method, combining TiO2

nanoparticles with flower-like MoS2 structures and depositing Pt. The optimal composites
exhibited remarkable sensitivity and selectivity towards H2 at 100 ◦C. Similarly, Yin et al.
(Table 1) [73] prepared SnO2–Co3O4 p-n heterojunction-based Pt sensing materials via a
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hydrothermal method, which demonstrated excellent gas sensitivity and selectivity for H2

at an optimal operating temperature of 300 ◦C with an optimal amount of 5% Co.
The long-term stability of MOSs-based sensing materials at RT is crucial for H2 sensors,

as it represents a significant hurdle to their commercialization. Huang et al. (Table 1) [77]
addressed this challenge by preparing 1 wt% Pt-doped Pt–SnO2 nanocomposites that
exhibit impressive room-temperature H2 sensing capabilities. However, these capabilities
diminished rapidly over time. Specifically, after seven days of aging, the response to 1% H2

at RT decreased by a factor of 50. Notably, gentle heat treatment (e.g., 10 min at 140 ◦C)
fully restored the room-temperature H2 sensing performances of the aged sample. In
contrast, the robust response of the Pt–SnO2 nanocomposite with 5 wt% Pt to 1% H2 at RT,
synthesized by Zhu et al. (Table 1) [78], remained nearly unchanged after six months of
aging. However, the recovery rate in air decreased significantly.

3.2.2. Pt-Decorated ZnO

Analogous to Pt-decorated ZnO, the ZnO morphology impacts the sensing properties
of Pt-decorated ZnO-based H2 sensors.

In the work conducted by Uddin et al. (Table 1) [79], the ZnO morphology was
optimized through rapid thermal annealing, resulting in an optimal pencil-like topography
sensing material suitable for industrial applications up to 300 ◦C. Additionally, Tan et al. [80]
directionally grew ZnO NR arrays on glass substrates and subsequently coated them with
WO3/Pt (Figure 9a,b). Benefiting from the advantages of effective carrier transport in
nanoarrays, the high catalytic efficiency of Pt clusters, and the work function of WO3 NPs,
the optimal materials exhibited exceptional H2 sensing performances, achieving a response
of 61.5 to 100 ppm H2 with response and recovery times of 19 and 81 s, respectively.
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Figure 9. (a,b) SEM image and cross-sectional SEM of WPt0.25/ZnO and the elemental distribu-
tion. [80] Reprinted with permission from Elsevier, copyright 2024. (c) Field emission SEM images of
the optimal ZNT/G. (d) The TEM microstructure cross sections of the optimal ZNT/G [81]. Reprinted
with permission from [81]. Copyright {2017} American Chemical Society.
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Furthermore, ZnO NTs (ZNTs) are also employed in gas sensing applications due to
their advantages of having a larger surface area, higher surface oxygen vacancy concentra-
tion, and an elevated surface-to-volume ratio [81]. However, ZNTs suffer from limitations
such as poor selectivity, stability, and operating temperatures, which impede their progress
in gas sensing. These challenges can be addressed by the preparation of hybrid nanocom-
posites [110]. Kathiravan et al. (Table 1) [81] documented the innovative nanostructural
interfaces of self-assembled hierarchical ZnO NTs/graphene (ZNT/G) composites by sys-
tematically modulating the growth times of ZNTs on graphene substrates (Figure 9c,d). The
optimal ZNT/G sensor demonstrated exceptional repeatability, reliability, and sustained
long-term stability over a period of 90 days during hydrogenation/dehydrogenation cy-
cles [81]. This superior performance was attributed to the formation of a robust metallized
region at the ZNT/G interface, facilitated by the inner and outer surfaces of the ZNTs, which
collectively established a multifaceted depletion layer. Vivekanandan et al. (Table 1) [82]
constructed a hybrid structure comprising MoS2-incorporated ZnO hollow NTs (MoS2-
HIZNTs). This hybrid nanostructure was synthesized through a simple soft-chemical
method involving the etching of ZNTs in an aqueous solution with MoS2 serving as an
inducible candidate. The resulting MoS2-HIZNT material exhibits a unique labyrinth-like
structure, leading to exceptional H2 sensing performance at RT. The enhanced surface area
of MoS2-HIZNTs facilitates the adsorption of more gas ions, resulting in a linear increase in
oxygen vacancies and surface-active sites.

As discussed in Section 3.1.2, the oxygen defects in MOSs nanomaterials possess a
unique electronic structure and unsaturated coordination environment, which facilitates
molecular adsorption and electron transfer in sensing reactions [111]. In addition to ZnO,
both iron(III) oxide (Fe2O3) [112] and CeO2 can enhance their H2 sensing performances
through the introduction of oxygen defects. Zhang et al. (Table 1) [83] reported a stable
H2 sensor based on Pt single atoms (Pt SA) anchored to oxygen-rich vacancies on Fe2O3

NSs (Pt–Fe2O3–Vo) (Figure 10). The surface oxygen vacancies were introduced in the last
step under the reducing condition (Figure 10a). Gas sensing studies revealed that at an
optimal temperature of 240 ◦C, the sensor response of Pt–Fe2O3–Vo was improved by
a factor of 17 compared to pure Fe2O3 (Figure 10f), with an ultra-fast response time of
2 s (Figure 10g). It also delivered excellent selectivity, as illustrated in Figure 10h. The
exceptional sensing performance of Pt–Fe2O3–Vo is attributed to the unique morphology
(Figure 10b–e), which favored oxygen spillover. Experimental and density functional theory
(DFT) calculations [113] demonstrated that the Pt-Fe atomic site at the oxygen vacancy
exhibits higher binding energy, leading to a strong electronic interaction between Pt and
the Fe2O3 surface, which stabilizes the Pt SA and enhances the sensing performance. CeO2,
characterized by numerous intrinsic defects, possesses various intriguing properties such
as oxygen-rich defects, significant redox properties, high oxygen storage capacity, and the
ability to absorb and release oxygen through the conversion between Ce3

+ and Ce4
+. These

attributes of CeO2 are highly promising for exceptional gas sensing performance. Kim
et al. (Table 1) [84] developed CeO2 hollow NFs (Figure 10i,j) through electrospinning to
enhance the interaction between oxygen vacancies (Figure 10k) and H2 on PtRu, resulting
in higher selectivity and a broader detection range (100 ppm to 50%) compared to the CeO2

and Pt/CeO2.
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Figure 10. (a) Synthesis of Pt-loaded Fe2O3 NSs (Pt–Fe2O3–Vo). Characterization of Pt–Fe2O3–Vo [85]:
(b) SEM images [83]; (c) EDX elemental mappings [83]; (d,e) HRTEM images [83]. (f) Dynamic curve
of sensor response at different H2 concentrations [83]. (g) Response–recovery time of Pt–Fe2O3–Vo
and Pt–Fe2O3 sensors to 50 ppm of H2 at 240 ◦C [83]. (h) Selectivity of the sensors to different
gases [83]. Reprinted with permission from [83]. Copyright {2024} American Chemical Society.
(i) FESEM image of Ce electrospun fiber after calcination at 500 ◦C with inset showing diameter
distribution (mean: 82 nm) [84]. (j) HRTEM image of PtRu/CeO2 with energy dispersive spectroscopy
mapping [84]. (k) X-ray photoelectron spectroscopy of O 1s [84]. Reprinted with permission from
Elsevier, copyright 2024.

3.2.3. Other Noble-Metal-Decorated MOSs

In addition to Pd and Pt, other noble-metal-decorated MOS nanomaterials also exhibit
excellent H2 sensing performance, such as Au, Ag, Ir, etc.
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Hyodo et al. [114] fabricated Au(n)/Pt/TiO2 for H2 sensing. They found that wa-
ter molecules and/or hydroxyl groups adsorbed on the surface played a crucial role in
increasing the H2 adsorption and dissociation on the surface, thereby enhancing H2 sens-
ing performances.

Shao et al. (Table 1) [85] introduced a novel H2 sensor featuring a sandwich structure
that incorporates Ag. This structure comprises a catalytic sensitization layer composed
of Ag NPs, a gas sensing layer of SnO2, and an electron supply layer of graphitic carbon
nitride (g-C3N4), collectively referred to as the catalytic-sensitization-layer gas-sensing-
layer electron-supply-layer (CSE) configuration (Figure 11a). The optimal Ag@SnO2@g-
C3N4 material exhibited a detection limit of 30 ppb, with response and recovery times of
7 s and 9.7 s, respectively, as well as remarkable long-term stability. Guo et al. (Table 1) [86]
achieved successful redispersion of Ir NPs through carbon-assisted pyrolysis, thereby
enhancing the activity and stability of H2 sensors. They used a typical metal–organic
framework [115–117], ZIF-8, as the precursor to obtain the carbon-decorated ZnO via
the annealing in N2 and calcination in air (Figure 11b). The obtained materials inherited
the porous structure from the ZIF-8 and showed a large specific area, which guaranteed
rich reactive sites. By improving the dispersion and uniformity of Ir NPs, the catalytic
performance of the material was significantly enhanced. The redispersed Ir NPs possess a
larger active surface area, which is pivotal in enhancing the performance of the H2 sensor.
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4. Conclusions
Chemoresistive H2 sensors play a pivotal role in various fields, including the hydrogen

energy industry, environmental monitoring, and medical diagnosis. The development of
cost-effective sensing materials is crucial for advancing these applications. MOSs have
emerged as potential candidates for H2 sensing, yet their inherent sensing performance
remains limited. To enhance their performances, the introduction of noble metals to create
noble-metal-decorated MOSs sensing materials has become a widely adopted strategy.

Despite recent extensive research and reviews documenting progress in this field, a
comprehensive analysis specifically addressing the rational design of sensing materials
to optimize the overall performance of noble-metal-decorated MOS-based chemoresistive
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H2 sensors is lacking. This review summarizes the recent research advancements in noble-
metal-decorated MOSs-based H2 sensing materials. We comprehensively consolidate and
analyze the strategies utilized in the literature, particularly those reported within the last
three years, to furnish a foundational comprehension of the rationale underlying the design
of highly efficient chemoresistive H2 sensors. Current research efforts in this field primarily
focus on noble metals such as Pd, Pt, Au, Ag, and Ir, while the MOSs are mainly SnO2, ZnO,
and NiO. Enhancing the dispersion and uniformity of noble metal NPs is anticipated to
boost the catalytic properties of these materials. Furthermore, manipulating the morphol-
ogy of noble-metal-decorated MOSs-based sensing materials is another promising strategy.
Morphologies that can yield a high specific surface area, such as NWs [5,58,59], NSs [60],
NFs [59], NRs [64], and NTs [66], are preferred due to the abundance of reaction sites.
Additionally, the construction of MOSs into heterojunctions, such as p-n-type NiO-Fe2O3

and PdO-WO3, or the incorporation of other components like G and rGO, can further
improve the H2 sensing performance of the material. These strategies collectively offer
significant potential for enhancing the sensing capabilities of noble-metal-decorated MOSs
in H2 detection applications.

The incorporation of oxygen vacancies and the precise modulation of their concentra-
tions within MOSs constitute a widely employed strategy. Reducible oxides, exemplified
by ZnO, CeO2, and Fe2O3, are typically utilized for this purpose. The creation of oxygen
defects is commonly achieved through gas reduction and calcination treatments. However,
these methodologies often suffer from complex or dangerous conditions, including high
temperatures and reducing atmospheres. Consequently, the development of a safe and
easily operated method for controlling oxygen vacancy concentration at RT utilizing an
appropriate reducing agent is important. Ascorbic acid has emerged as a promising candi-
date for facilitating the formation of both surface-bound and intrinsic hydroxyl groups in
the context of oxygen vacancy modulation. The adoption of the hydroxyl-oxygen vacancy
model for sensing materials heralds a novel approach to synthesizing high-performance
gas sensors. Nonetheless, the attainment of remarkably high response values at RT is
accompanied by an elongation in the recovery time to the initial baseline. The challenge
of reducing recovery time while maintaining high sensor responsiveness remains an area
requiring further exploration and investigation.

The H2 sensing performances of perovskite materials such as BaTiO3, which are also
prone to oxygen vacancies, have not been widely explored like materials such as SnO2 and
WO3, despite their physical and chemical properties making them interesting candidates
for gas sensing applications [118]. Perhaps due to its complex H2 sensing mechanism, it
may undergo a phase transition from ferroelectric to paraelectric within the temperature
range of H2 sensing. Multiple influencing factors make it complex to regulate their H2

sensing performances. Fully understanding the H2 sensing mechanism of such systems
can help improve the H2 sensing performance of such materials.

Multi-sensing mode represents one of the most promising avenues for future devel-
opment in gas sensing technology. Gas sensors equipped with a single sensing mode
are frequently constrained by their operational principles and the properties of sensitive
materials, potentially leading to false positives or negatives in specific conditions. By inte-
grating sensors based on diverse principles, such as electrochemical, optical, thermal, and
chemical impedance [119], the multi-sensing mode facilitates multi-dimensional detection
of target gases. This integration significantly enhances detection accuracy and reliability,
mitigating the risks associated with false positives and negatives. For instance, combining
the gasochromic properties of WO3 with the chemoresistive characteristics of SnO2 enables
the design of an H2 sensor with a dual detection mode, thereby improving its detection
accuracy and reliability. Furthermore, under the multi-sensing mode, algorithms such as
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machine learning [120] can be employed to process and analyze this data by amalgamating
multiple sensors and gathering extensive data [121–125], enabling precise predictions of
gas concentration and real-time detection under complex environments.

Although chemoresistive H2 sensors based on noble-metal-decorated MOSs have
demonstrated their high responsiveness and low detection limits, they also face many
challenges, such as performance issues in high-temperature environments, poor selectivity,
and humidity-dependent response. Breakthroughs on these issues are needed in the future.

In summary, the future development of noble-metal-decorated MOSs-based H2 sensors
may follow the directions of cost-effectiveness, intelligence, and integration.
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