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Abstract: The constitutive model was commonly used to describe the flow stress of mate-
rials under specific strain, strain rate, and temperature conditions. In order to study the
thermal–mechanical behavior of DH460 continuous casting steel during the solidification
end heavy reduction (HR) process accurately. The high-temperature compression experi-
ment was carried out, and phenomenological constitutive models were established based
on the experimental results. A new strain-strengthening factor (D(ε)) was proposed in
order to improve the prediction accuracy of the current constitutive models. Then, the
further-modified models were established. It was found that the new strain-strengthening
factor significantly reduced the error of models. The average relative error (AARE) of the
further-modified Johnson–Cook model and the further-modified Zerilli–Armstrong model
were 6.27% and 5.54%, respectively. The results showed that the further-modified models
were more suitable for describing the constitutive behavior of DH460 continuous casting
steel during the solidification end reduction.

Keywords: continuous casting; heavy reduction; flow stress; constitutive model

1. Introduction
The solidification end reduction of continuous casting steel has the characteristics of a

large temperature span, a high strain rate, and an obvious microstructure difference [1].
Under the condition of high strain rate, dynamic recrystallization softening, dynamic re-
covery, and work hardening will occur. As one of the key performance indexes in hot
working deformation, flow stress can comprehensively reflect the hardening and softening
processes of materials. It is necessary to accurately characterize the constitutive model of
continuous casting steel in order to accurately reveal the thermodynamic influence during
the reduction deformation of solidification ends. The constitutive model describes the
influence of temperature, strain rate, and strain on the heat flow behavior of the material in
the thermal machining process, which is essential for the finite element simulation, design
and control of the thermal machining process. There is a complex nonlinear relationship
between the flow stress and the parameters of hot working due to the simultaneous occur-
rence of work hardening and softening in the process of hot working. Therefore, in order to
more accurately describe this relationship, several constitutive models have been explored
by researchers, which can be classified into three main categories [2]: phenomenological
constitutive models, physical-based constitutive models, and artificial neural network
models [3,4].
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Common phenomenological constitutive models include the Johnson–Cook model
(J-C model), Fields–Backofen model (F-B model), Zerilli–Armstrong model (Z-A model),
and Arrhenius model. The J-C model was first introduced into the finite element analy-
sis because of its simple parameter form and convenient calculation [5]. Later, Lin et al.
proposed a modified J-C model considering the coupling effects of strain, strain rate, and
deformation temperature to describe the tensile behavior of common alloy steels. Most
of the subsequent studies on the accuracy correction of the J-C model were based on this
revised model [6–8]. Samantaray et al. made important modifications to the Z-A model,
which consider the effects of thermal softening, strain rate hardening, and isotropic harden-
ing, as well as the coupling effects of strain, strain rate, and temperature on flow stress [9].
The high-temperature flow behavior of D9 alloy in the specified hot working region was
predicted successfully [10]. The subsequent modified models [11] were also mostly based
on the model proposed by Samantaray. Shokry et al. modified the J-C model and the Z-A
model when they tried to fit the contract with multivariate quadratic polynomials. This
modification improved the applicability of the two models, which could accurately predict
most alloys and steels, as well as some plastic materials [12,13]. The Arrhenius model
was first proposed by Sellars and Tegart to describe and predict the thermal deformation
behavior of materials [14]. Pu et al. modified the relationship between the parameters of the
model and the strain by polynomial fitting and predicted the high-temperature constitutive
relationship of Al-Ti alloy more accurately [15]. Dai et al. proposed a strain-compensated
Arrhenius model to accurately represent the flow behavior of 5083 aluminum alloy during
thermal compression [16]. Wang et al. modified the Arrhenius equation by including
the liquid fraction to predict the peak stress of 6063 aluminum alloy during semi-solid
compression [17].

In this paper, DH460 continuous casting steel was used as the experimental specimens
for high-temperature compression experiments. The simulated temperature range was
900 ◦C to 1300 ◦C, and the strain rates were 0.001 s−1, 0.01 s−1, and 0.1 s−1, respectively.
Based on experimental data, the modified J-C model, the modified Z-A model, and the
Arrhenius model were used to model the constitutive relationship. Moreover, in this study,
a new strain-strengthening factor was proposed to further improve the prediction accuracy
of the J-C model and Z-A model. The prediction accuracy of all models was then compared
and analyzed. The results showed that the further-modified constitutive model captured
the recrystallization during the deformation process effectively, with higher accuracy at
lower strains. The further-modified Z-A model obtained the highest accuracy of all the
constitutive models and provided a good description of the constitutive behavior of the
metal in DH460 continuous cast steel during the reduction process at the solidification end.

2. Materials and Methods
Samples for the experiment were obtained from DH460 continuous casting steel

produced by a domestic steel plant, with the chemical composition detailed in Table 1. The
sampling direction was perpendicular to the drawing direction, avoiding the central area
of center segregation and more serious porosity. Figure 1 illustrates that the samples were
wire-cut and processed into cylindrical specimens with a diameter of 8 mm and a length of
12 mm.

Table 1. Elemental composition of DH460 continuous casting steel (wt.%).

C Si Mn P S Nb Ti Al N

0.95 0.15 1.48 0.023 0.005 0.027 0.015 0.03 0.0035
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perature range set between 900 and 1300 °C at intervals of 50 °C. Three strain rates were 
selected for 0.1 s−1, 0.01 s−1, and 0.001 s−1. In the isothermal compression tests, specimens 
were first heated to 1300 °C at a rate of 10 °C/s. The specimens were held for 360 s to ensure 
temperature uniformity. The specimens were subsequently cooled to the compression 
temperature at a rate of 5 °C/s. Eventually, the specimens were subjected to compression 
until a true strain of 0.7 was reached under constant temperature and strain rate condi-
tions. Figure 2 provides an overview of the experimental process. 
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The true stress–strain curves of DH460 continuous casting steel at different tempera-
tures and different strain rates are shown in Figure 3. At low strain levels, the metal’s 
work-hardening effect dominates over the softening effect of dynamic recovery, resulting 
in a rapid increase in stress with strain. When the strain reaches critical strain, dynamic 
recrystallization takes place, leading to the formation of recrystallized grains, which help 
to slow the rate of crystal energy increase and decrease dislocation density [18]. The stress 
peaks when the softening effect is equal to the work-hardening effect. As the strain 

Figure 1. Sampling locations of the compressed sample on DH460.

Thermal compression experiments were conducted on the THERMECMASTOR-
Z100KN thermal simulation testing machine (Tokyo, Japan), with the experimental tem-
perature range set between 900 and 1300 ◦C at intervals of 50 ◦C. Three strain rates were
selected for 0.1 s−1, 0.01 s−1, and 0.001 s−1. In the isothermal compression tests, specimens
were first heated to 1300 ◦C at a rate of 10 ◦C/s. The specimens were held for 360 s to en-
sure temperature uniformity. The specimens were subsequently cooled to the compression
temperature at a rate of 5 ◦C/s. Eventually, the specimens were subjected to compression
until a true strain of 0.7 was reached under constant temperature and strain rate conditions.
Figure 2 provides an overview of the experimental process.
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Figure 2. Schematic representation of the thermal compression experimental procedure.

The true stress–strain curves of DH460 continuous casting steel at different temper-
atures and different strain rates are shown in Figure 3. At low strain levels, the metal’s
work-hardening effect dominates over the softening effect of dynamic recovery, resulting
in a rapid increase in stress with strain. When the strain reaches critical strain, dynamic
recrystallization takes place, leading to the formation of recrystallized grains, which help
to slow the rate of crystal energy increase and decrease dislocation density [18]. The stress
peaks when the softening effect is equal to the work-hardening effect. As the strain contin-
ues to increase, the internal energy of the crystal continues to increase, and the dynamic
recrystallization occurs more obviously [19]. At this point, the softening effect is stronger
than the work-hardening effect, and the stress decreases with increasing strain. Finally, the
stress remains stable, at which point the softening effect reaches a dynamic equilibrium
with the work-hardening effect.
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3. Establishment of Constitutive Models
3.1. Johnson–Cook-Type Model

The Johnson–Cook model was derived by Johnson and Cook on the basis of the
Hopkinson tension test and other experimental data. The model was simple in structure
and easy to determine or fit the parameters. The basic form of the J-C model can be
expressed as follows:

σ = [A + Bεn]

[
1 + C ln

( .
ε
.
ε0

)][
1 −

(
T − Tr

Tm − Tr

)m]
(1)

where, A, B, C, n, and m are material parameters; σ is stress; ε is strain; ε0 is the reference
strain;

.
ε is the strain rate;

.
ε0 is the reference strain rate; T is the temperature; Tr is the

reference temperature; and Tm is the melting point temperature.
Although the parameters of the J-C model are simple and easy to calculate, its accuracy

is low, and its applicability is limited [20]. Lin et al. modified the J-C model by considering
the coupling effects of strain, strain rate, and deformation temperature, which can accurately
estimate the flow stresses of typical high-strength alloy steels. The basic form of the
modified J-C model can be expressed as follows:

σ =
[

A1 + B1ε + B2ε2
](

1 + C1· ln
.
ε
∗) exp

[
−
(

λ1 + λ2 ln
.
ε
∗)·T∗

]
(2)

where, A1, B1, B2, C1, λ1, and λ2 represent material parameters and unknown coefficients,
which can be determined through fitting experimental data;

.
ε0 is the reference strain rate;

Tr is the reference temperature;
.
ε
∗
=

.
ε.
ε0

; and T∗ = T − Tr. The modified J-C is solved using
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the least squares method [21–23]. The parameters obtained from the model are presented
in Table 2, while the detailed outcomes are illustrated in Figure 4.

Table 2. Parameters of the modified J-C model.

Parameter Value

A1 68.72
B1 −11.32
B2 0.12
C1 0.2275
λ1 0.00008914
λ2 0.004525
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As strain increases, the softening effects of dynamic recovery and dynamic recrystal-
lization progressively balance the work hardening, leading to the peak stress. The modified
J-C model cannot capture the recrystallization behavior during metal deformation, so the
prediction error is large. In view of this, this paper proposes a new strain-strengthening
factor to further modify the J-C model. The basic form of D(ε) is as follows:

D(ε) =
6

∑
i=0

Diε
i (3)

The comparison of the effect of the new strain-strengthening factor and the original
factor is shown in Figure 5. As can be seen from the figure, the new strain-strengthening
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factor fits the experimental value much better. The expression of the further-modified J-C
model can be written as follows:

σ = D(ε)
(

1 + C1· ln
.
ε
∗) exp

[
−
(

λ1 + λ2 ln
.
ε
∗)·T∗

]
(4)
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The further-modified J-C model comprises three components: f (ε) = D(ε) accounts
for strain strengthening; f

( .
ε
)
=

(
1 + C1· ln

.
ε
∗) represents strain rate strengthening; and

f
(
T,

.
ε
)
= exp

[
−
(

λ1 + λ2 ln
.
ε
∗)·T∗

]
describes thermal softening, which reflects both the

temperature-induced softening of stress and the coupled influence of temperature and
strain rate on stress.

When the temperature T is set to the reference value (900 ◦C) and the strain rate is
equal to the reference value (0.001 s−1), Equation (4) simplifies to Equation (5). This paper
utilizes the stress–strain data obtained from a thermal compression experiment and solves
for the parameters D0–D6 using the polynomial fitting method. The result is shown by the
red line in Figure 5, and the values of D0–D6 are displayed in Table 3.

σ = D(ε) (5)

When the temperature T is set to the reference value (900 ◦C), Equation (4) can be
abbreviated as:

σ = D(ε)
(

1 + C1· ln
.
ε
∗) (6)

Transfer the items to sort out:

C1· ln
.
ε
∗
=

σ

D(ε)
− 1 (7)

According to Equation (7), C1 is the slope of the function
(

σ
D(ε)

− 1
)
− ln

.
ε
∗. The

parameter C1 is calculated as shown in Figure 6.
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ln

 σ

D(ε)
(
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ε
∗)
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With the strain rate unchanged, the stress values at different temperatures and strain
conditions are substituted into Equation (8). The correspondence of ln

.
ε
∗ and λ can be

obtained. As shown in Figure 7, the slope of the function λ = λ1 + λ2 ln
.
ε
∗ is λ2 and the

intercept is λ1.
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Now that all the parameters have been solved, and Table 3 lists the parameters
for the further-modified J-C model. The detailed results are shown in Figure 8. From
Figures 4 and 8, it can be found that the predicted curves of the modified J-C model only
show a decreasing trend. While the predicted curves of the further-modified J-C model
show a first increasing, then decreasing, and finally smooth trend, which is in better
agreement with the experimental values.
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Table 3. Parameters of the further-modified J-C model.

Parameter Value

D0 56.48076
D1 204.6357
D2 −1048.22
D3 1852.323
D4 −629.222
D5 −1439.83
D6 1139.685
C1 0.2275
λ1 0.00008914
λ2 0.004525
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3.2. Zerilli–Armstrong-Type Model

The Zerilli–Armstrong model was proposed by Zerilli and Armstrong in 1987 and
was divided into two kinds of equations according to the type of metal lattice struc-
ture: face-centered cubic and body-centered cubic. The basic forms of the Z-A model are
shown below.

σ = E0 + E2ε
1
2 exp

(
−E3 + E4T· ln

.
ε
)

(9)

σ = E0 + E1 exp
(
−E3 + E4T· ln

.
ε
)
+ E5εn (10)

Due to the limitations of the Z-A model, it cannot meet the requirements of the
conditions of solidification-end reduction, so the simple Z-A model is not used to describe
the metal constitutive behavior of continuous casting steel.

The modified Z-A model proposed by Samantaray et al. was one of the important
modifications of the Z-A model. It incorporates not only the effects of temperature, strain,
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and strain rate on stress but also accounts for the coupling influence of temperature and
strain rate, as well as temperature and strain on stress. The basic form of the modified Z-A
model is as follows:

σ = [E1 + E2εn] exp
[
−(E3 + E4ε)·T∗ + (E5 + E6T∗)· ln

.
ε
∗] (11)

where E1~E6 are model parameters, and the other variables have the same meaning as the
model shown before. In this modified model, the parameters E1, E2, and n represent the
strain hardening term; E3 and E4 represent the softening term; and E5 and E6 constitute the
strain rate term. The procedure for determining the parameters of the modified Z-A model
is outlined in previous studies [24,25], with the corresponding results provided in Table 4.
The model predictions are shown in Figure 9.

Table 4. Parameters of the modified Z-A model.

Parameter Value

E1 1.390
E2 63.26
n −0.018
E3 0.004332
E4 0.0004962
E5 0.1673
E6 0.0001
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As can be seen in Figure 9, the modified Z-A model, like the modified J-C model,
shows a single overall decreasing trend and fails to capture the dynamic recrystallization
behavior during metal deformation. Hence, introducing the new strain-strengthening
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factor into the Z-A model leads to Equation (12). The parameters of the further-modified
Z-A model are fitted using the same methodology as in Section 3.1.

σ = D(ε) exp
[
−(E3 + E4ε)·T∗ + (E5 + E6T∗)· ln

.
ε
∗] (12)

When the strain rate is set to the reference value (0.001 s−1), Equation (12) can be
abbreviated as:

σ = D(ε) exp[−(E3 + E4ε)·T∗] (13)

Taking the logarithm of both sides of Equation (13) leads to Equation (14):

ln σ = ln D(ε)− (E3 + E4ε)·T∗ (14)

In Figure 10, E3 and E4 can be obtained according to the functional relationship of
parameters S1 and ε.
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Taking the logarithm of both sides of Equation (12) leads to Equation (15):

ln σ = ln D(ε)− (E3 + E4ε)·T∗ + (E5 + E6T∗)· ln
.
ε
∗ (15)

S = E5 + E6T∗ (16)

Let the slope of the function ln σ − ln
.
ε
∗ be S, and E6 can be obtained from the slope

of the function S − T∗, and E5 can be obtained from the longitudinal intercept. Different
strains correspond to different groups of E5 and E6 values, and the group of E5 and E6

values with the smallest error is selected. The parameter values of the further-modified Z-A
model calculated according to the experimental results are shown in Table 5. The model
predictions are shown in Figure 11. As shown in Figures 9 and 11, the further-modified Z-A
model provides a better fit to the experimental values, and the dynamic recrystallization
behavior during deformation can be well captured.
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Table 5. Parameters of the further-modified Z-A model.

Parameter Value

D0 56.48076
D1 204.6357
D2 −1048.22
D3 1852.323
D4 −629.222
D5 −1439.83
D6 1139.685
E3 0.004332
E4 0.0004962
E5 0.1673
E6 0.0001
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3.3. Arrhenius Model

In the process of the hot compression experiment, the metal microstructure corre-
sponding to different temperature curves is also different. Since the Arrhenius model
contains thermal deformation activation energy (Q), it can describe the difficulty of plastic
deformation of metal. Therefore, the Arrhenius model can directly reflect the influence of
temperature and strain rate on stress, and it was used to determine the material constants
in many works of metal thermal processing properties [26,27]. The Arrhenius model exists
in three distinct forms: exponential form, power exponential form, and hyperbolic sine
function, according to different stress levels. Its basic form is expressed as follows:

.
ε = A exp

(
− Q

RT

)
F(σ) (17)
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where F(σ) denotes the stress function, which is given by the following expression:

F(σ) =


σn1 ασ < 0.8

exp(βσ) ασ > 1.2
[sinh(ασ)]n For all σ

(18)

where R is the ideal gas constant; T is the absolute temperature; Q is the deformation
activation energy; n is the material stress index; and A, α, β, and n1 are material constants
(α = β/n1).

The equations of low stress level and high stress level in the Arrhenius model can
be regarded as the equations obtained after Taylor expansion of the hyperbolic sinusoidal
function according to stress state incongruence. The Q in the equation is a physical quantity
that represents the difficulty of rearrangement and combination of microscopic atoms in
the process of thermal deformation. Its value is affected by many factors such as chemical
composition, structure, deformation rate, and deformation temperature of the material.

The Arrhenius model also uses the Zenner–Hollomon factor to describe the effect of
strain rate and temperature on deformation behavior. The Zenner–Hollomon factor is an
important parameter in the study of flow stress and dynamic softening behavior. Its form
is as follows:

Z =
.
ε exp

(
Q
RT

)
(19)

For all stress states, Equation (20) can be obtained from Equations (17)–(19):

Z = A·[sinh(ασ)]n (20)

The connection between Z and flow stress can be derived from Equations (19) and (20):

σ =
1
α

ln


(

Z
A

) 1
n
+

[(
Z
A

) 2
n
+ 1

] 1
2

 (21)

The material parameters Q, A, n, and α corresponding to different strains in the
temperature range of 900~1300 ◦C are calculated, and the strains are selected as 0.05, 0.1,
0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, and 0.7. Table 6 shows the material
parameters corresponding to different strains.

Table 6. Parameters of the Arrhenius model.

Strain Q/J·mol−1 lnA n α

0.05 536,151.0 40.54 5.879 0.029298
0.1 412,704.0 30.31 4.575 0.024803

0.15 350,773.2 25.01 3.854 0.023879
0.2 347,942.5 24.51 3.585 0.024811

0.25 367,176.2 25.87 3.607 0.025843
0.3 386,942.2 27.40 3.666 0.027055

0.35 414,476.4 29.64 3.868 0.028229
0.4 439,527.9 31.71 4.083 0.029255

0.45 454,626.5 33.05 4.252 0.029784
0.5 464,213.7 33.92 4.359 0.03021

0.55 470,455.4 34.53 4.464 0.030169
0.6 470,506.2 34.57 4.506 0.030119

0.65 473,413.0 34.84 4.566 0.029878
0.7 467,813.5 34.47 4.544 0.029444
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The analysis of Table 6 reveals that the correlation between material parameters and
corresponding strains is discrete and discontinuous. During the finite element simulation
process, the parameters need to be continuously changed. Therefore, a polynomial fitting
approach is employed to establish the functional correlation between strain and the param-
eters Q, A, n, and α to solve the complex nonlinear interaction between strain and material
properties. According to the calculation, it is found that the accuracy is highest when the
sixth-degree polynomial is used for fitting, as shown in Equation (22).

Q = B0 + B1ε1 + B2ε2 + B3ε3 + B4ε4 + B5ε5 + B6ε6

ln A = C0 + C1ε1 + C2ε2 + C3ε3 + C4ε4 + C5ε5 + C6ε6

n = D0 + D1ε1 + D2ε2 + D3ε3 + D4ε4 + D5ε5 + D6ε6

α = E0 + E1ε1 + E2ε2 + E3ε3 + E4ε4 + E5ε5 + E6ε6

(22)

Figure 12 shows the variation of material parameters with strain in the temperature
range of 900~1300 ◦C.
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It can be found from Figure 12 that material parameters have an obvious variation
trend with strain, and using polynomial fitting to establish the relationship between ma-
terial parameters and strain is considered suitable. Table 7 shows the parameters of the
Arrhenius model.
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Table 7. Coefficients obtained from polynomial fitting of parameters in the Arrhenius constitutive model.

Coefficient Q/(J·mol−1) lnA n α

X0 772,061.7 59.69 8.04 0.04006
X1 −6,061,787.8 −488.85 −53.52 −0.30553
X2 30,200,000.0 2370.64 225.12 2.10615
X3 −63,500,000.0 −4878.19 −401.59 −6.79173
X4 59,000,000.0 4438.68 288.92 11.84887
X5 −15,400,000.0 −1136.45 0.44 −10.83750
X6 −5,440,000.0 −392.12 −68.34 4.05758

By substituting different strain values into Equation (22), the corresponding material
parameters can be calculated. The combination of Equations (19) and (21) can calculate
the predicted value of the Arrhenius model. Figure 13 illustrates the comparison of the
predicted and experimental results.

Materials 2025, 18, x FOR PEER REVIEW 15 of 18 
 

 

X6 −5,440,000.0 −392.12 −68.34 4.05758 

By substituting different strain values into Equation (22), the corresponding material 
parameters can be calculated. The combination of Equation (19) and Equation (21) can 
calculate the predicted value of the Arrhenius model. Figure 13 illustrates the comparison 
of the predicted and experimental results. 

 

Figure 13. Predicted and experimental results of the Arrhenius model for DH460 at various strain 
rates: (a) 0.001 s−1, (b) 0.01 s−1, (c) 0.1 s−1, and (d) error analysis. 

4. Results and Discussion 
In this part, the calculation results of all the above constitutive models are compared 

to show the improvement effect of the new strain-strengthening factor. The average rela-
tive error (AARE) is introduced to evaluate the accuracy of the flow stress predicted by 
the constitutive models at different strain rates and temperatures. The AARE is calculated 
as follows: 

( )
=

−
= ×

i 1

1% 100
N

i i

i

E P
AARE

N E
 (23)

where Ei is the experimental value; Pi is the predictive value; and N is the total number. 
The AARE is used to calculate the average relative error between the predicted value 

and the experimental value, so it can represent the agreement between the predicted value 
and the experimental value. In order to illustrate the optimality of the models, a compre-
hensive evaluation of multiple error statistics indexes is usually required [28,29]. Hence, 
the root mean square error (RMSE) is added to illustrate the precision comparison of each 
model. RMSE is more focused on providing dimensionless error measures, which are cal-
culated as follows: 

Figure 13. Predicted and experimental results of the Arrhenius model for DH460 at various strain
rates: (a) 0.001 s−1, (b) 0.01 s−1, (c) 0.1 s−1, and (d) error analysis.

4. Results and Discussion
In this part, the calculation results of all the above constitutive models are compared

to show the improvement effect of the new strain-strengthening factor. The average relative
error (AARE) is introduced to evaluate the accuracy of the flow stress predicted by the
constitutive models at different strain rates and temperatures. The AARE is calculated
as follows:

AARE(%) =
1
N

N

∑
i=1

∣∣∣∣Ei − Pi
Ei

∣∣∣∣× 100 (23)

where Ei is the experimental value; Pi is the predictive value; and N is the total number.
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The AARE is used to calculate the average relative error between the predicted value
and the experimental value, so it can represent the agreement between the predicted
value and the experimental value. In order to illustrate the optimality of the models, a
comprehensive evaluation of multiple error statistics indexes is usually required [28,29].
Hence, the root mean square error (RMSE) is added to illustrate the precision comparison
of each model. RMSE is more focused on providing dimensionless error measures, which
are calculated as follows:

RMSE =

√√√√√ n
∑

i=1
(Ei − Pi)

2

N
(24)

The errors of the models can be seen in Table 8. Error analysis of the constitutive
models for DH460 steel reveals that the Arrhenius model presents the highest error, with
the AARE being 9.30%. As can be seen in Figure 13, the Arrhenius model, which takes
into account the deformation activation energy, also shows peak stresses. However, the
Arrhenius model does not notice that the strain point corresponding to the peak stress
shifts forward with increasing temperature, which leads to its large error. The modified
J-C model has an AARE of 7.00%, and the modified Z-A model has an AARE of 7.24%.
The prediction accuracy of the above two models is similar. The further-modified Z-A
model captures the recrystallization behavior during deformation well by introducing a
new strain-strengthening factor, which leads to the highest prediction accuracy, with the
AARE being 5.54% and the RMSE being 4.79 MPa.

Table 8. Error evaluation across various models.

Model AARE/% RMSE/MPa

Modified J-C model 7.00 5.57
Further-modified J-C model 6.27 4.96

Modified Z-A model 7.24 6.06
Further-modified Z-A model 5.54 4.79

Arrhenius model 9.30 6.40

5. Conclusions
In this paper, based on the experimental data of DH460 continuous casting steel, three

phenomenological constitutive models were developed. A new strain-strengthening factor
(D(ε)) was proposed to further modify J-C model and Z-A model. The conclusions can be
summarized as follows:

(1) The stress of DH460 decreases with increasing temperature and increases with increas-
ing strain rate. Under the combined effect of work hardening, dynamic recovery and
dynamic recrystallization, the stress–strain curve first rises rapidly, then decreases
slowly, and finally flattens out.

(2) A new strain-strengthening factor was proposed to further modify the J-C model and
Z-A model. The problem that the models could not capture the dynamic recrystal-
lization behavior during deformation was solved. The accuracy and scalability of the
models were improved.

(3) By comparing all the constitutive models, it could be observed that the further-
modified Z-A model had the highest prediction accuracy. By introducing the new
strain correction factor, the AARE of the Z-A model was reduced from 7.24% to
5.54% and the RMSE from 6.06% to 4.79%. Comprehensively, the further-modified
Z-A model could be suitable for predicting the flow behavior of DH460 continuous
casting steel.
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