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Abstract: Dye-sensitization is a promising strategy to improve the light absorption and pho-
toactivity abilities of wide-bandgap semiconductors, like TiO2. For effective water-splitting
photoanodes with no sacrificial agents, the electrochemical potential of the dye must exceed
the thermodynamic threshold needed for the oxygen evolution reaction. This study investi-
gates two promising organic cyanoacrylic dyes, designed to meet that criterion by means of
theoretical calculations. Both yellow-colored dyes were synthesized and characterized by
optical and photoelectrochemical techniques, demonstrating strong light absorption in the
visible region, suitable experimental reduction potentials, and adsorption from the organic
solvent onto mesoporous TiO2 layers. In addition, to promote immobilization in aqueous
electrolytes, the dyes were hybridized with graphene oxide or multi-walled carbon nan-
otubes. Photoelectrochemical analysis of the dye-sensitized photoelectrodes demonstrated
efficient charge transfer from the dyes to the TiO2 photoanode under simulated solar light.
While the starting photocurrent notably surpassed the blank TiO2, a subsequent decay
points to kinetic obstacles that still need to be overcome.

Keywords: metal-free dye; donor-π-acceptor; photocatalyst; electrolysis; hydrogen

1. Introduction
The photoactivity of wide band-gap metal-oxide semiconductors under solar irra-

diation is restricted by their low absorption in the visible range [1,2]. Sensitization with
organic dyes has proved to be a suitable solution to improve the usable spectral window
in electrochemical photovoltaics, giving rise to the so-called dye-sensitized solar cells
(DSSCs), or sometimes Graetzel cells. Following a similar concept, numerous attempts
have been made to construct other dye-sensitized photoelectrochemical (PEC) systems, in
particular for water splitting towards the production of hydrogen. Many examples, derived
from the former success in DSSCs, are based on organometallic centers, often ruthenium
complexes [3–6].

Research on metal-free organic sensitizers has been gaining impulse with the aim of
avoiding scarce elements. Families of dyes that have been tested in PEC water splitting
include donor-π-spacer-acceptor (D-π-A) dyes [7–9]. In D-π-A molecules, the donor group
works as the electron source after its photoexcitation, starting the flow of charges towards
the acceptor part (A) and through the conjugate π-bridge. Electron-donor groups such as
coumarin, phenothiazine, carbazole, indole, and triphenylamine (TPA), among other units,
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have been used [8]. Also, N, N’-dialkylanilines offer good sensitization capabilities due to
their good light absorption, which is manifested by the intramolecular charge transfer (ICT)
band that shifts towards the red compared to the commonly used TPA derivatives [10,11].
Suitable π-spacers are based on thiophene heteroaromatic ring systems since they offer
dye stability and an extended π-conjugation, improving the molar extinction coefficient
while preventing the degradation of the oxidized form of the dye in water [12]. Finally,
a favorable acceptor system is commonly based on cyanoacetic groups, whose electron-
withdrawing properties are provided by the cyano part, while bonding possibilities with
TiO2 are provided through the carboxylic group [13]. However, the hydrolyzation of the
ester bond between the anchoring group and TiO2 may limit the dye performance in
aqueous environments or in alkaline water-splitting conditions.

All the organic dyes face the difficulty of stability in aqueous media, in particular
under water oxidation conditions in a photoanode [14]. Actually, most studies on dye-
sensitized photoanodes are performed with a sacrificial reagent in the electrolyte, such as
triethanolamine, which is more easily oxidized than water and facilitates dye stability [7].
In theory, a first basic requirement to prevent oxidative degradation under pure water
oxidation conditions is a dye potential higher than the potential for oxygen reduction
(+1.23 V vs. NHE). Strategies to improve chemical stability include molecular design [15,16],
protective groups and layers [17], as well as boosting the desired charge transfer kinetics
by means of co-catalysts [18,19].

Graphene materials have been applied in the photoanode of DSSCs and PEC water-
splitting cells, mixing optimal quantities with TiO2 and forming hole transport layer
coatings [20–24]. As a general trend, improvements in photocurrents and solar conversion
efficiencies have been obtained for relatively small loadings (around 1 wt%) of the carbon
nanomaterial in TiO2 [25]. A few examples have also demonstrated the possibilities of
hybridization of graphene with photoactive organic components [26–28]. The transport
and structural properties of carbon nanomaterials facilitate their use as supports for mul-
tifunctional hybrid platforms [28]. Typically, charge transfer complexes are quite easily
formed between dye molecules and carbon nanomaterials [29,30].

In the present study, two cyanoacrylic molecules are proposed as potential dyes for
sensitizing TiO2 photoanodes in water-splitting conditions. Importantly, this family of
cost-effective, metal-free compounds has been seldom tested in these PEC experiments
despite their straightforward synthesis. Guided by theoretical calculations, two promising
candidates, with higher potential than oxygen, one novel, were identified. Moreover,
none of them has been previously evaluated in PEC water splitting. Both dyes were
synthesized, characterized, and hybridized with a small amount of a carbon nanomaterial,
either graphene oxide (GO) or multi-walled carbon nanotubes (MWCNTs), to promote
stability and prevent desorption in the aqueous electrolyte.

2. Materials and Methods
2.1. Density Functional Theory (DFT) Calculations

DFT calculations were performed using Gaussian 16 [31] with the ultrafine integra-
tion grid. Solvent (CH2Cl2) effects were estimated using a Conductor-like Polarizable
Continuum Model (CPCM) [32,33]. Equilibrium geometries were optimized using the
M06-2x hybrid meta-GGA exchange correlation functional [34] and the medium-size 6-31G*
base [35]. Ground state, first excited state, and oxidized radical cation geometries were
characterized as minima by frequency calculations.

Excitation energies were calculated by time-dependent single-point calculations using
the M06-2x/6-311+G (2d,p) model chemistry. Absorption spectra were estimated through
the calculation of vertical excitations at the ground state geometry using the equilibrium
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CPCM solvation. Ground state oxidation potentials (Eox), excitation energies (E0-0), and
excited state oxidation potentials (E*ox) were determined from ∆G values, which in turn
were obtained using the M06-2x/6-311+G (2d,p) energies and calculating the thermal
corrections to Gibbs free energy at the M06-2x/6-31G* level.

Molecular orbital contour plots at the 0.04 isosurface value were obtained using the
Avogadro 2 software [36].

2.2. Dye Synthesis and Characterization

The dye 2-cyano-3-(2,2′-bithiophen-5-yl)-acrylic acid (TT-CNCOOH) was synthesized
following the protocol reported in the literature [37]. The structural characterization is
included in Supplementary Materials (Figures S1–S8).

2.2.1. (E)-3-(4-((2-(Tert-butyldimethylsilyloxy)ethyl)(methyl)amino)phenyl)-2-cyanoacrylic
Acid (ASIL-CNCOOH)

A total of 0.09 g of cyanoacetic acid (1.02 mmol) was solved in 5 mL of dry CHCl3
at 0 ◦C, and subsequently 0.44 mL piperidine (4.5 mmol) was added drop by drop.
Cyanoacetic acid (99%) was used as received, and piperidine (99%) was purified by redistil-
lation; both were purchased from Sigma-Aldrich, Merck (Darmstadt, Germany). Next, 0.2 g
of 4-({2-[(tert-butyldimethylsilyl)oxy]ethyl}(methyl)amino)benzaldehyde (ALD, synthesis
details in the Supplementary Materials, Scheme S1) (0.6 mmol) was added, and the reaction
was refluxed for 24 h under argon atmosphere in the dark. Afterwards, it was cooled down
to room temperature. It was acidified with HCl 0.1 M for 30 min, brined, and washed with
NH4Cl (1 × 60 mL) and H2O (2 × 60 mL). A dark yellow solid was obtained (40 mg, 16%).

Molecular weight (g/mol): 360. Melting point (◦C) at 760 mm Hg: 116. IR (KBr) cm−1:
3454 (O-H), 2217 (C≡N). 1H-RMN (400 MHz, CDCl3) δ (ppm): 8.1 (s, 1H), 7.85 (s, 2H), 6.6
(s, 2H), 3.78 (s, 2H), 3.52 (s, H), 3.05 (s, 2H), 0.85 (s, 9H), 0.06 (s, 6H). 13C-RMN (100 MHz,
CDCl3) δ (ppm): 170.0, 155.1, 152.7, 134.3, 119.9, 111.50, 60.6, 54.5, 39.6, 25.9, 18.3, −5.3.

2.2.2. Molecular Optoelectronic Characterization

Optical and electrochemical techniques that were applied to dye molecules are in-
cluded in the Supplementary Materials (Figures S9–S11).

2.3. Photoanode Preparation and PEC Tests

Fluorine-doped tin oxide (FTO) substrates (AGC, 80 Ω sq−1, 25 × 10 × 1.1 mm3) were
purchased from Solems (Palaiseau, France). Substrates were thoroughly cleaned, and a
TiO2 layer was deposited on a 1 cm2 area, applying a TiO2 paste (Sigma-Aldrich 791555) by
screen printing. Finally, TiO2 layers were sintered at 500 ◦C for 15 min, following a slow
heating ramp, specifically: up to 325 ◦C at 10 ◦C/min, which is maintained for 5 min; to
375 ◦C (5 ◦C/min) for 5 min; to 450 ◦C (5 ◦C/min) for 5 min; and to 500 ◦C (5 ◦C/min),
maintaining it for 15 min.

The GO material was prepared using a modified Hummers method [30]. It was
dispersed in water (0.1 mg·mL−1) and diluted in acetone to 0.5 × 10−3 mg·mL−1. The
MWCNT powder (NC7000, Nanocyl, Sambreville, Belgium) was dispersed (1 mg·mL−1) in
an aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 2 mg·mL−1), and diluted
in water to 10−3 mg·mL−1.

Dye molecules were dissolved in acetone at 0.1 mM. Next, a suitable volume of the
carbon nanomaterial dispersion was added, achieving a 1% ratio of the dye mass. UV–
vis spectra were measured in a Shimadzu UV-2401PC spectrophotometer (Kyoto, Japan).
TiO2/FTO substrates were immersed in the liquid for 18 h, gaining a pale-yellow color.

PEC measurements were performed in a 3-electrode cell provided with a quartz
window for irradiation. Working electrodes were prepared connecting the FTO surface to
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the wire with adhesive copper tape. The counter-electrode was a 6 mm graphite rod. The
reference electrode was an Ag/AgCl (3M NaCl) from Metrohm (Herisau, Switzerland). The
electrolyte was 0.1 M Na2SO4. All the measurements were performed in an analogous way:
first, two complete conditioning voltammetry cycles at 20 mV·s−1 from 0.4 to −1.1 V were
carried out in the dark; after that, transient photocurrent measurements were followed at
a potential of E = 0 V vs. Ag/AgCl. Light irradiation (100 mW·cm−2) was provided by a
solar simulator consisting of a 150 W xenon lamp, a solar filter, and the suitable optics by
Quantum Design (Pfungstadt, Germany).

3. Results and Discussion
3.1. Theoretical Calculations

The structure of dye molecules that were selected for the present study, namely,
ASIL-CNCOOH and TT-CNCOOH, is shown in Figure 1. Both molecules bear terminal
cyanoacetic acid groups and have a simple molecular structure. Charts of electron density
for the relevant HOMO and LUMO molecular orbitals are included in Figure 1, and the
associated characteristic parameters are listed in Table 1. In particular, the calculated redox
potentials (Eox) are +1.41 and +1.90 V vs. NHE, well above the potential of oxygen reduction
(+1.23 V). Therefore, both organic molecules should be thermodynamically able to oxidize
water to O2.
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Table 1. Theoretical parameters 1 of compounds ASIL-CNCOOH and TT-CNCOOH.

Dye λabs
2

[nm] fosc
3 Eox

4

[V]
E0-0
[eV]

Eox* 5

[V]

ASIL-CNCOOH 387 1.26 1.41 3.02 −1.61
TT-CNCOOH 416 1.08 1.90 2.71 −0.81

1 Calculated using the M06-2x/6-311+G(2d,p) model chemistry and the CPCM solvation model. 2 Equilibrium
CPCM values. 3 fosc: oscillator strength (related to the area below the absorption band). 4 Referenced to
Normal Hydrogen Electrode (NHE). 5 The oxidation potential of the excited state of the dye was calculated from
Eox* = Eox − E0-0.

3.2. Synthesis and Optoelectronic Characterization of Dye Molecules

The synthesized low-molecular-weight dyes, being cyanoacrylic acid derivatives,
were designed to study potential applications in photoelectrochemistry. These acid deriva-
tives (ASIL-CNCOOH and TT-CNCOOH) were obtained using Knoevenagel condensation.
Theoretically predicted properties (Table 1) can be compared with experimental measure-
ments, specifically UV–vis spectroscopy (Table 2) and differential pulse voltammetry (DPV,
Supplementary Materials, Figure S12).

Table 2. Experimental optical properties of compounds ASIL-CNCOOH and TT-CNCOOH
in dichloromethane.

Dye λabs
[nm]

ε
[×104 M−1 cm−1]

λcut
[nm]

Eopt
1

[eV]

ASIL-CNCOOH 429 2.92 ± 0.11 465 2.66
TT-CNCOOH 421 2.41 ± 0.29 472 2.63

1 The optical gap was estimated from the absorption spectra: Eopt = 1239.84/λcut.

Experimental oxidation potential values of the ground state (Eox) for dyes ASIL-
CNCOOH and TT-CNCOOH (+1.29 V and +1.81 V) lie above those expected from DFT
calculations (+1.41 and +1.90 V, respectively), but they are still below the oxygen reduction
potential. This fact should thermodynamically enable the water-splitting process. The
energies of the electronic levels are plotted in Figure 2. It can be observed that both dyes
present nearly identical optical gaps (2.66 and 2.63 eV).
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The UV–vis absorption spectra of the dyes TT-CNCOOH and ASIL-CNCOOH with
the carbon nanomaterials were carried out in acetone solvent (Figure 3). Both dyes present
bands in the near UV–visible region between 350 and 450 nm. The spectra of the bithio-
phene dye (TT-CNCOOH) show a maximum λabs around 400 nm, whereas for the aniline
derivative, λabs = 420 nm due to the donor effect of this ring. In both cases, absorption
bands are attributed to the ICT between the bithiophene or the aniline part and the electron-
withdrawing cyanoacetic group. No significant changes are observed upon the addition
of a small quantity of different carbon nanomaterials, so only spectra of composite dyes
are presented in Figure 3 for clarity. Notably, the carbon nanomaterials allowed an im-
proved immobilization of dye molecules on the photoanode. Moreover, it will be shown
that the presence of either GO or MWCNTs leads to distinct levels of photoactivity in
the photoanode.
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3.3. PEC Characterization of Dye-Sensitized TiO2 Photoanodes

Sensitized photoelectrodes gained a yellowish color upon immersion in the carbon
nanostructure–dye–acetone mixture. At the microscopic scale, no relevant changes in
the electrode microstructure have been previously observed upon dye immersion [38].
It was observed that the presence of the carbon nanomaterial hindered dye detachment
in the aqueous medium, allowing PEC measurements by chronoamperometry (Figure 4).
Transient photocurrent experiments were performed in a nearly neutral pH, which has been
widely probed in TiO2 and dye-sensitized TiO2 photoelectrodes [38,39]. The first irradiation
period (Figure 4b) shows a different decay behavior of the reference TiO2 and dye-sensitized
photoanodes. The starting photocurrent reaches high values on the sensitized electrodes,
and it decays in a timeframe of 5 s to 10 s. This fact indicates that charge injection from
the irradiated dye to the TiO2 electrode is hindered, probably due to a photo-oxidative
degradation that result in a lowered photoactivity (Figure 4a).

The photocurrent of electrodes with GO hybrids was higher than that with MWCNTs,
pointing to the effect of the small quantity of the carbon nanomaterial. Both TT-CNCOOH
and ASIL-CNCOOH dyes showed similar behavior in the first irradiation pulse and after
5 min (Figure 4a), having lost their yellow color at the end of the experiment. While the
observed degradation most likely is a result of the kinetic conditions of water oxidation,
hindering rapid charge transfer for the regeneration of the organic dye molecule, it remains
to highlight that both dye systems feature suitable thermodynamic potentials facilitating
water splitting.
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and sustainable PEC devices.
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