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Abstract: The microwave sintering of various materials is a promising technology, which
has received much attention for its demonstrated potential. Both the conventional (furnace)
and microwave sintering rely on thermal activation for particle bonding, for which a high
temperature environment is essential. In comparison, microwave treatment achieves the
same degree of densification as furnace sintering in a time shorter by a factor of two or
higher and at a temperature lower by 5% to 15%. However, this is a phenomenon not yet
fully understood and is commonly referred to as a non-thermal effect. Its understanding is
a subject of both physics and practical interest. The non-thermal effect has been studied
under years of research in order to broaden the applicability of microwave sintering. Here,
we first present an overview of experimentally demonstrated advantages of microwave
sintering. To facilitate further studies, we then review the literature and put together four
commonly recognized interpretations of the non-thermal effects: the ponderomotive force-
driven mass transport, magnetism-created cohesive forces, polarization charge-enhanced
wave electric field, and polarization charge-induced attractive force among the sintered
particles, with an emphasis on recent development.

Keywords: microwave sintering; low-temperature densification; ponderomotive forces;
magnetism-created cohesive forces; polarization-enhanced neck growth; polarization
charge-enhanced mutual attraction

1. Introduction
Sintering has been a widely used technique to densify fine powders into desired mate-

rials. In the process, thermal energy causes the particles to bond and the necks between
particles to grow into a densified material [1]. The furnace remains the dominant source
of heat. However, microwave heating started upon the availability of high-power mi-
crowave applicators in the 1960s and has produced encouraging results. A recent review by
Ćurković et al. [2] presented the basic theory and progress made in the microwave sintering
of metals, alloys, ceramics, composites, and glasses. Other reviews put emphasis on the
fundamentals, advantages, applications [3], equipment development and commercializa-
tion [4], the range of materials sintered by microwaves [5], modeling [6], susceptor-assisted
sintering [7], microwave-associated heating strategies [8], and the sintering of metal matrix
composites [9]. A more recent review by Batienkov et al. [10] focused on recent studies in
sintering metal powders and composite materials

As illustrated in Ref. [11], in contrast to the surface absorption and slow heat conduc-
tion into the center of the material in a furnace (Figure 1a), microwave heating is volumetric
in nature (Figure 1b), resulting in much faster heat deposition. Equally important, the
applicator walls (typically a conductor) are heated by microwaves at a rate ~50 times
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smaller than by the infrared radiation in a furnace [12], hence allowing significant energy
saving due to much lower black-body radiation leakage out of the applicator.
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Figure 1. Illustration of heat flow in (a) a furnace and (b) a microwave oven [11]. Reproduced with
permission from Elsevier, 2025.

Microwave sintering applies to a variety of materials. Ref. [2] lists the type of materials
that have undergone significant improvements under microwave sintering. The sintered
materials can be classified into four categories: 1. ceramics (mainly inorganic materials),
2. composite materials (of metal, ceramic, polymer, or multi-phase materials), 3. metal or
alloy (two or more chemical substances mixed to form a substance with metallic properties),
and 4. others (such as glass).

Microwave sintering is also a technology with wide application potential. Reference [3]
enumerates the following five advantages of microwave sintering:

(1) Lower energy consumption.
(2) Higher heating rates or shorter heating time.
(3) Intensified diffusion process.
(4) Better grain distribution at higher density.
(5) Improved mechanical and physical properties.

Microwaves lie between 300 MHz and 300 GHz. The 2.45 GHz microwave is used in
the vast majority of experiments, while millimeter waves can produce even more rapid
heating [13,14]. There are, however, also problems reported, such as a sudden rise in
the temperature of ceramic materials (thermal runaway) [15,16], stages in the process of
thermal runaway [17], the region of thermal stability [18], and the method of reliable
performance [19]. Sample fractures are another reported problem [20]. To date, microwave
sintering still needs better characterization and control for broader industrial acceptance.

One of the less-understood issues in microwave sintering happens to be its biggest
advantage. It is well documented that microwave sintering leads to a higher density at
the same temperature [2,3,21–26]. For example, Brosnan et al. sintered alumina by the
two methods for a comparison. At 1500 ◦C, microwave and furnace heating achieved a
density of ~100% and ~70%, respectively [21]. From another angle, when reaching the
same density, microwave sintering requires a lower temperature, as has been observed in
numerous experiments [27–31]. In some cases, the microwave is the exclusive source for
material treatment, such as the microwave spin resonance investigation [32].

This article will focus on the higher densification phenomenon in microwave sintering
and review the proposed mechanisms for it. There are currently several theories as to
why this occurs: 1. ponderomotive force-driven mass transport [33–37], 2. magnetism-
created cohesive forces [38–40], 3. polarization charge-enhanced wave E-field [41,42], and
4. polarization charge-induced attractive forces among the sintered particles [43,44]. These
are generally referred to as non-thermal effects (or microwave effects). However, at present,
the reasons for such non-thermal effects are still inconclusive.
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To probe further, an overview of a large volume of the documented literature appears
warranted. In Section 2, we begin with a review of observations of the non-thermal effects,
followed in Section 3 with a survey of early theories on the causes of these effects. Then,
in Section 4, we put our emphasis on the polarization charge effects. The conclusion is
presented in Section 5.

2. Observations of the Non-Thermal Effects in Microwave Sintering
Low-temperature densification occurs in the microwave sintering of various materials.

Some examples are discussed below.

2.1. Ceramic Material

Brosnan et al. [21] compared the densification of alumina powder sintered in the
furnace and microwave at different temperatures. The sample consists of high-purity
alumina (35 wt% transitional γ-alumina and 65 wt% α-alumina, doped with 500 ppm of
MgO and 350 ppm of Y2O3). Figure 2 shows that, when reaching the density of about 0.8,
the temperature required for microwave sintering is lower by ~250 degrees.
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Figure 2. Alumina powder density comparison between furnace and microwave sintering at different
temperatures [21]. Reproduced with permission from Elsevier, 2025.

2.2. Metal Powder

Wang et al. [22] compared the densification of FeCuCO metal powder (see Table 1 for
composition) between furnace and microwave sintering. Figure 3 shows that microwave
sintering achieved a higher density at the same temperature. In other words, to achieve the
same density, the required temperature is lower in microwave sintering. Furthermore, the
ultimately achieved density is higher by microwave sintering.

Table 1. Metallic powders of the designed recipe for FeCuCo matrix [22]. Reproduced with permission
from Elsevier, 2025.

Elements Fe Cu Co Sn Ni

Content (w.t.%) 40 30 13 7 10
Average particle size (µm) 31.7 µm 23.1 µm 20.4 µm 21.5 µm 20.8 µm
Purity (w.t.%) >99.5 >99.7 >99.9 >99.9 >99.8
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2.3. High Magnetic Permeability Ferrite

In a similar example, Yan and Hu [23] compared the results of the furnace and mi-
crowave sintering of high-permeability ferrite. Figure 4 shows that, at the same density,
the temperature required for microwave sintering is lower. Again, the ultimately achieved
density is higher by microwave sintering.
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2.4. Composites

Another comparison was reported by Zhu et al. [24] on the densification of a ZrB2–B4C
particulate ceramic composite under furnace and microwave sintering (Figure 5). In this
experiment, ZrB2 absorbs little microwave energy. Hence, 4 wt% of B4C powder (a high-
absorption material) was added to facilitate microwave absorption. The results show
that both processes lead to almost full densification at 1700 ◦C or higher, but microwave
sintering clearly exhibits a non-thermal effect with more effective densification at lower
temperatures.
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2.5. Crystallization

Ahn et al. [31] found that microwave annealing of the metal coating of amorphous Si
(a-Si) led to crystallization at a lower temperature than in furnace heating, while microwave
heating further enhanced the crystallization. As shown in Figure 6, fully crystallization of
the a-Si film at a 600 ◦C furnace requires about 30 h. However, a NiCl2-coated a-Si film was
fully crystallized much sooner (10 h) and at a lower temperature (500 ◦C). In microwave
heating, the NiCl2-coated a-Si film was fully crystallized in an even shorter time (8 h) at a
still lower temperature (480 ◦C).
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3. Early Theories on Causes for the Non-Thermal Effects in Microwave
Sintering

There are several proposed reasons as to why microwave sintering causes low-
temperature densification. Some are due to the wave E-field; some due to magnetic
effects. The diversity of theories is due to the variety of materials processed in different
ways. Thus, there may not be a single theory applicable to all cases. For these reasons,
below, we sample the main points of these theories, beginning with the ponderomotive
diffusion mechanism that has been analyzed in great detail.
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3.1. Ponderomotive Force Accelerated Transmission of Ceramic Particles in Solid Ion Plasma

The pondermotive force theory in solid state ionic plasmas was developed following a
series of theoretical and experimental investigations by Rybakov and Booske et al. [33–37].
In analogy to the plasma counterpart, the pondermotive force is a single particle effect in
a spatially varying high-frequency E-field. It is proportional to the gradient of E2 while
independent of the sign of the charge; thus, electrons and ions move in the same direction
to result in a mass flow.

In a high-frequency microwave, the perturbed charge density will, in general, be
localized to the solid surface (Figure 7). The ponderomotive force thus mainly leads to
surface mass transport. According to the authors’ theoretical and experimental analysis, in
practical conditions, it can have a strength comparable to the conventional driving forces
in ceramic and glass processing [33]. Furthermore, a later theory indicates the transport
rate can be orders-of-magnitude greater due to the local electric field intensification (see
Section 3.3.3). In light of the lack of convective mixing in solids, this is a significant
complimentary force to enhance the mass transport in solids.
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Freeman et al. [34] carried out an experiment that verified the pondermotive force
theory. They pulsed a 14 GHz intense microwave for 0.4 ms through a NaC1 crystal sample
maintained at 150 ◦C and also applied an external bias voltage to drive an ionic current.
Figure 8a–c show the measured ionic currents at the same microwave power (~2 kW) during
its 0.4 ms application, while a bias voltage of 10 V (Figure 8a), 17 V (Figure 8b), and 0 V
(Figure 8c) was applied for 5 ms. It can be observed that the bias voltage induced current
varies with the bias voltage and vanishes as it is turned off. However, the incremental
current during the microwave pulse remains the same. The authors also found that the
microwave-driven incremental current was linearly proportional to the microwave power
(or E2). This provides convincing evidence that the incremental current originated from the
ponderomotive force.
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Figure 8. Observed influence of the bias voltage on the ionic current in a 150 ◦C NaCl crystal: In (a), a
10 V, 5 ms bias pulse (1 ms/div) produces an ionic current (0.1 nA/div). In (b), a slightly higher ionic
current at a 17 V bias voltage. In (c), the ionic current vanishes at zero bias voltage. The 2 kW, 0.4 ms
microwave-driven current remains at the same level in all three cases. Reproduced with permission
from the American Physical Society and SciPris, 2025.

3.2. Magnetic Causes

The magnetic field can also affect microwave sintering [38–40]. Xiao et al. [38] modeled
Cu–Fe coupled particles in an applied H-field (Figure 9). A magnetic substance forms a
small magnetic dipole moment parallel or anti-parallel to the magnetizing field, depending
on its magnetic susceptibility. Copper is diamagnetic, while iron is ferromagnetic. So the
two particles are magnetized in opposite directions (diamond arrows). A magnetized
particle experiences a force only in a spatially varying H-field, so the uniform applied H-
field exerts no force on the particle. However, the two magnetized particles each generate a
non-uniform self-field, behaving like two magnets exerting a force on each other.

Figure 9 illustrates the magnetic force in two relative positions of the particles.
The force is attractive when the applied H-field perpendicular to the line connecting the
particle centers Figure 9a and repulsive in a parallel applied H-field Figure 9b. However,
the strongest self-field gradient is along the direction of the magnetization. In Figure 9a,
the two particles are in each other’s weak self-field gradient, while, in Figure 9b, the two
particles are in each other’s strong self-field gradient. This results in a stronger repulsive
force.
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In Xu’s model, as shown in Figure 11, a circular ring of ceramic particles is acted on 
by a uniform, time-varying AC H-field (pointing into the figure). By Faraday’s law, a 
circular AC E-field is induced, which then drives a polarization current along the AC E-
field. This current and the wave H-field thus produce an inward magnetic force. 

Figure 9. Direction of the magnetization (diamond arrows) of Fe and Cu particles under a uniform
H-field and the magnetic force between them. The H-field is (a) perpendicular to and (b) parallel to
the line connecting the particle centers [38].

This model predicts an orientational effect of the H-field on the neck growth between
two iron particles. Experimental evidence was provided by the same authors. Figure 10
shows the microstructure evolution of the Cu–Fe neck before and after microwave sintering
for vertical orientation (Figure 10a) and horizontal orientation (Figure 10b) of the H-field.
The sintering neck is seen to grow large in the former case (Figure 10a), while the growth is
restrained in the latter case (Figure 10b).
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The wave H-field inside the non-permeable, ceramic particles can induce a circular
polarization current which, acted on by the wave H-field, exerts an inward magnetic force.
This force, proposed by Xu et al., is referred to as a polarization Ampere’s force [39].

In Xu’s model, as shown in Figure 11, a circular ring of ceramic particles is acted
on by a uniform, time-varying AC H-field (pointing into the figure). By Faraday’s law,
a circular AC E-field is induced, which then drives a polarization current along the AC
E-field. This current and the wave H-field thus produce an inward magnetic force.

Xu’s theory is evidenced by, as well as explains, the experimental images of the
microwave sintered alumina sample obtained by the same authors. The inward magnetic
force suggests the shrinkage of large particles and expansion of small ones until all have
reached approximately equal size. This results in a particle homogenization phenomenon,
as shown in the microstructure evolution in Figure 12. In Figure 12a, four alumina particles
(labeled with P1–P4) have various sizes before sintering, with P3 as the smallest. As the
microwave was turned on, P3 gradually grew, while the large particles (P1, P2, and
P4) became smaller. Finally, the four particles approach approximately the same size
(Figure 12b–e).
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Figure 12. Particle size homogenization in typical regions of the experimental alumina sample as the
sintering time increases, [39]. Reproduced with permission from Elsevier, 2025.

In a study to compare the influence of wave E- and H-fields on semiconductor sin-
tering, Badev et al. [40] studied the ZnO densification in the E- and H-field regions of
a single-mode cavity in identical heating cycles. The results show different behaviors,
with better densification in the H-field (Figure 13). The authors attributed the difference
to an electromagnetic pressure induced by the combined effect of current loops and the
wave H-field. The magnetic pressure in turn leads to better contact between particles and
therefore enhances the diffusion.
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3.3. Enhanced Reaction in Polarization Charge-Induced Electric Field
3.3.1. Formation of Polarization Charges

The presence of an E-field will slightly displace the electrons tightly bound to the
molecules. Inside the dielectric, a displaced electron will be replaced by another displaced
electron. So, the electron displacements will not (or barely) change the inside charge
density. However, the replacement is not possible on the surfaces. So the electrons become
excessive on one surface to form negative “polarization charges” and partially depleted on
the opposite surface to form positive polarization charges.

Consider the simple case of a uniform sphere in a static, uniform Eext. Induced surface
polarization charges (σpol) on the spherical surface are given by Ref. [41] (Section 4.4).

σpol = 3ε0(
ε − ε0

ε + 2ε0
)Eext cos θ (1)

where ε and ε0 are the sphere and vacuum permittivity, and θ is the observation angle in
Figure 14a.
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Figure 14. (a) E-field lines of a dielectric sphere of ε/ε0 =4 in the presence of a static and uniform
external Eext as calculated from Equation (1). Surface polarization charges are seen to be induced.
(b) For a much larger ε/ε0 = 80, the simulated E(x) displays a much greater variation with relative
amplitude given by the color code [42]. Reproduced with permission from AIT Publishing, 2025.

The ±σpol partially cancels the Eext inside the sphere (Figure 14a) while still maintain-
ing a uniform interior field (Ein). The cancelation is larger for a larger dielectric constant.
For example, Ein/Eext = 0.5 for ε/ε0 = 4 and Ein/Eext = 0.037 for ε/ε0 = 80. Figure 14a plots
the directions and discontinuities (at σpol) of E-field lines for ε/ε0 = 4, while Figure 14b
shows the large field variations for ε/ε0 = 80 in color code.

Equation (1) describes a static case valid for any sphere radius. In the presence
of an electromagnetic wave of free-space wavelength λfre, the wavelength will be λd

[=λfree/Re(ε/ε0)] in the dielectric sphere. If a sphere of radius R is in the near zone if
λd >> R, the induced, oscillating E-field is “quasi-static”; namely, it has a spatial profile
closely approaching that of the static case in Figure 14 (Ref. [41], Section 10.1).

3.3.2. Theory of Electric Field Intensification by Polarization Charges

Calculations by Birnboim et al. [43] have shown that, when two dielectric spheres
that nearly touch are aligned along Eext, an E-field >> Eext is induced in the gap region
(Figure 15). Quantitatively, depending on the dielectric constant, the authors found that the
peak E-field is ~30 times higher than Eext for ZnO spheres and ~14 times higher than Eext

for Al2O3 spheres.
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Figure 15. (a) The E-field concentrates in the gap of two dielectric spheres in the presence of Eext.
(b) Close-up of the isoelectric field pattern in the gap [43]. Reproduced with permission from AIT
Publishing, 2025.

Lin et al. [42] and Liu et al. [44] further studied the gap E-field intensification phe-
nomenon. They show that, when two dielectric spheres (of radius R) are put closer to each
other, the positive and negative polarized charges on opposite sides of their gap surfaces
(±σpol) will induce more ±σpol, leading to an increased gap E-field (Egap) (Figure 16).
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Figure 16. Illustration of σpol buildup and Egap (at z = 0) intensification between two identical dielectric
spheres of radius R, separation d and ε = 20ε0 in a uniform, static, and linearly polarized, 2.45 GHz
Eextex. (a) d = 2R and (b) d = 0.4R. The relative E-field strength (normalized to Eext) is given by the
color code [44].

The enhanced E-field under a 2.45 GHz microwave as a function of the sphere sepa-
ration d is shown in Figure 17b. Egap becomes larger as d becomes smaller. As shown in
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Figure 17c, when two dielectric particles are in contact, there is still an increase in Egap when
viewed from the y direction. A similar E-field intensification effect is shown in Figure 18
for two spheres connected over a neck length of ℓ.
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Figure 17. Quantitative illustration of Egap intensification of the two spheres in Figure 16: (a) E(z = 0)-
field pattern plotted on the x-y plane for d = 0.1R. (b) Egap (x, y = 0)/Eext vs. x for d = 0.005R, 0.02R,
and 0.1R. (c) Egap (x = 0, y)/Eext vs. y for d = 0.005R, 0.02R, and 0.1R [44].
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3.3.3. Effect of Enhanced Electric Field on Microwave Sintering 

From their result shown in Figure 15, Birnboim et al. [43] found that the intensified 
Egap between two contacting dielectric spheres is 14–30 times higher than the wave E-field. 
According to the ponderomotive force theory, the mass flow rate scales with E2. Thus, the 
flow rates can be greatly enhanced due to the local Egap intensification. 

The prediction by Birnboim et al. appears to be corroborated by Qiao and Xie, who 
showed, in simulation and experiment, that the intensified Egap led to the fusing of solid 
materials [coal fly ash (CFA) and copper] and enhanced the mass transport [45]. In their 
experiment, two CFA cylinders (1.4 × 10 mm) were sintered by an intensified Egap of 7.84 × 
103V/cm (calculated) perpendicular to the contact boundary when exposed to a 250 W 
microwave for 100 s. A large amount of the fused phase was seen to form in their gap 
(Figure 19). 

Figure 18. Cont.



Materials 2025, 18, 668 13 of 21

Materials 2025, 18, x FOR PEER REVIEW 13 of 22 
 

 

Figure 17. Quantitative illustration of Egap intensification of the two spheres in Figure 16: (a) E(z = 0)-
field paĴern ploĴed on the x-y plane for d = 0.1R. (b) Egap (x, y = 0)/Eext versus x for d = 0.005R, 0.02R, 
and 0.1R. (c) Egap (x= 0, y)/Eext versus y for d = 0.005R, 0.02R, and 0.1R [44]. 

 

Figure 18. Quantitative illustration of Egap intensification when the two spheres are connected over 
a neck length of ℓ [as shown in (a)]. (b) E(z = 0)-field paĴern on the x-y plane for ℓ = 0.4R. (c) E (x = 0, 
y) versus y for ℓ = 0.01R, 0.05R, and 0.1R [44]. 

3.3.3. Effect of Enhanced Electric Field on Microwave Sintering 

From their result shown in Figure 15, Birnboim et al. [43] found that the intensified 
Egap between two contacting dielectric spheres is 14–30 times higher than the wave E-field. 
According to the ponderomotive force theory, the mass flow rate scales with E2. Thus, the 
flow rates can be greatly enhanced due to the local Egap intensification. 

The prediction by Birnboim et al. appears to be corroborated by Qiao and Xie, who 
showed, in simulation and experiment, that the intensified Egap led to the fusing of solid 
materials [coal fly ash (CFA) and copper] and enhanced the mass transport [45]. In their 
experiment, two CFA cylinders (1.4 × 10 mm) were sintered by an intensified Egap of 7.84 × 
103V/cm (calculated) perpendicular to the contact boundary when exposed to a 250 W 
microwave for 100 s. A large amount of the fused phase was seen to form in their gap 
(Figure 19). 

Figure 18. Quantitative illustration of Egap intensification when the two spheres are connected over a
neck length of ℓ [as shown in (a)]. (b) E(z = 0)-field pattern on the x-y plane for ℓ = 0.4R. (c) E (x = 0, y)
vs. y for ℓ = 0.01R, 0.05R, and 0.1R [44].

3.3.3. Effect of Enhanced Electric Field on Microwave Sintering

From their result shown in Figure 15, Birnboim et al. [43] found that the intensified
Egap between two contacting dielectric spheres is 14–30 times higher than the wave E-field.
According to the ponderomotive force theory, the mass flow rate scales with E2. Thus, the
flow rates can be greatly enhanced due to the local Egap intensification.

The prediction by Birnboim et al. appears to be corroborated by Qiao and Xie, who
showed, in simulation and experiment, that the intensified Egap led to the fusing of solid
materials [coal fly ash (CFA) and copper] and enhanced the mass transport [45]. In their
experiment, two CFA cylinders (1.4 × 10 mm) were sintered by an intensified Egap of
7.84 × 103V/cm (calculated) perpendicular to the contact boundary when exposed to a
250 W microwave for 100 s. A large amount of the fused phase was seen to form in their
gap (Figure 19).
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where R± = R ± δ with δ→0. Er is discontinuous across the surface due to σpol at r = R; hence, 
the second equality in Equation (2). 

Since there is no free charge, we have a continuous electric displacement, i.e., ε0Er(at 
r = R+) = εEr(at r = R−): 
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Applying Gauss law and Equation (3) gives σpol 

0
0( , ) (1 ) ( , )   pol rR E R

      (5)

Figure 19. Two CFA cylinder samples sintered by 250 W microwave for 100 s [45].

4. A Recent Theory on Electric Force Attraction Due to Polarization
Charge Enhancement

As discussed in Section 3.3, an intensified Egap is expected to greatly promote mass
transport in microwave sintering. On the other hand, there is also an attractive force
between the spheres due to the action of Egap on ±σpol. The relevant question here is
whether this force is strong enough to also play a positive role in microwave sintering.
This seems to be highly likely based on the calculations below.
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4.1. Force Density on the Spherical Surface

The Egap and ±σpol will produce an attractive force between the two spheres. By
symmetry, the forces on both spheres are equal in amplitude, so we only need to consider
the left sphere. Assume its center is located at r = 0 in spherical coordinates (Figure 20a).
By symmetry, the E-field is independent of the azimuthal angle φ, and σpol depends only
on θ. With a negligible displacement current in the quasi-static regime, we have Eφ = 0.
Note that a charge’s self-field does not exert a force on itself. It can be shown [46] that
the effective field (Eeff) acting on σpol is [46] (all equations below are reproduced from the
authors’ earlier publication [44]):

Ee f f (R, θ) = 1
2 [E(R−, θ) + E(R+, θ)]

= 1
2 [Er(R−, θ) + Er(R+, θ)]er + Eθ(R, θ)eθ

(2)

where R± = R ± δ with δ→0. Er is discontinuous across the surface due to σpol at r = R;
hence, the second equality in Equation (2).
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Figure 20. (a) Configuration and coordinate system for the calculation. (b) r− and θ− components of
the force density on the left sphere vs. θ for ε = 20ε0, d = 0.02R and Eext (peak) = 200 V/cm [44].

Since there is no free charge, we have a continuous electric displacement, i.e., ε0Er(at r
= R+) = εEr(at r = R−):

Er(R−, θ) = Er(R+, θ)
ε0

ε
(3)

By Equations (2) and (3), we obtain

Ee f f (R, θ) =
Er(R+, θ)

2
(1 +

ε0

ε
)er + Eθ(R, θ)eθ (4)

Applying Gauss law and Equation (3) gives σpol

σpol(R, θ) = ε0(1 − ε0

ε
)Er(R+, θ) (5)
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In the quasi-static regime, σpol, Er, and Eθ are all oscillating in phase. So, their time-
average is simply one half of their peak values. Thus, the force per unit area (force density)
is

⟨f(R, θ)⟩t =
〈

σpol(R, θ)Ee f f

〉
t

= 1
4 ε0(1 − ε2

0
ε2 )E2,peak

r (R+, θ)er +
1
2 ε0(1 − ε0

ε )Epeak
r (R+, θ)Epeak

θ (R, θ)eθ

(6)

where the peak value (in time) of a quantity is denoted by the superscript “peak”. In our
linear model, Er and Eθ scale linearly with Eext and depend on d/R (or ℓ/R).

The r- and θ-components of Equation (6) are, respectively, <fr (R, θ)>t and <fθ (R, θ)>t.
The two components (in dyne/cm2) vs. θ are illustrated in Figure 20 for ε = 20ε0, d = 0.02R,
and Eext(peak) =200 V/cm (as in a microwave oven [47]). <fr (R, θ)>t peaks sharply at θ ≈
0. The same quantities for two connected spheres with ε= 20ε0 and ℓ = 0.2R are shown in
Figure 21. In Figure 21b, the force only appears at θ > θn, where θn is the neck’s angular
half width. As in Figure 20, <fr (R, θ)>t has a sharp and narrow peak of at θ ≈ θn.
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Assume ε/ε0 = 5, 10, 20, and Eext (peak) = 200 V/cm. The maximum of f with respect
to θ is at θ = 0 or θn. Figure 22 displays <f (R, θ = 0)>t vs. d/R for two closely spaced spheres
and <f (R, θ = θn)>tvs. ℓ/R for two connected spheres. In both cases, the maximum force
density for ε/ε0 = 20 peaks at ~130 dyne/cm2 with a corresponding E ≈ 2.5 × 104 V/cm
(below the air breakdown field of 3 × 104 V/cm at 1 atm). The region of larger f (θ = 0 or
θn) is where powder compaction and neck growth take place.
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Figure 22. (a) The maximum force density <f (R, θ = 0)>t (with respect to θ) vs. d/R for two closely
spaced spheres; and (b) the maximum force density <f (R, θ = θn)>t vs. ℓ/R for two connected spheres.
ε/ε0 = 5, 10, 20, and Eext (peak) = 200 V/cm [44].

4.2. Total Attractive Force

By symmetry, the total attractive force is the x-component of <f(R, θ)>t

⟨ fx(R, θ)⟩t = ⟨f(R, θ)⟩t · ex

= 1
4 ε0(1 − ε2

0
ε2 )E2,peak

r (R+, θ) cos θ

− 1
2 ε0(1 − ε0

ε )Epeak
r (R+, θ)Epeak

θ (R, θ) sin θ

(7)

We now limit our consideration to two closely spaced spheres. Their total attractive
force is given by an integration of Equation (7) over the spherical surface

⟨Fx(R, θ)⟩t =
∮

s
⟨ fx(R, θ)⟩tda = 2πR2

∫ π

0
⟨ fx(R, θ)⟩t sin θdθ (8)

which is to be evaluated numerically. Figures 20 and 21 show that force density is primarily
in the radial direction, which depends on the square of Er. Equation (6). Hence, the total
force in Equation (8) is independent of the phase of Er, i.e., always attractive.

Equation (8), derived for Eextex, gives a total force in the x-direction. A randomly
polarized Eext will produce an isotropic total force, with half of the value in Equation (8).

The surface area of a sphere scales with R2, while its mass scales with R3. Thus, a
smaller sphere is accelerated more in the same Eext. We define the force per unit volume as

force
unit volume

=
total force on sphere

volume of sphere
= (

3
4πR3 )⟨Fx(R, θ)⟩t (9)

The size (R) dependence of the attractive force per unit volume in Equation (9) is
plotted in Figure 23 for Eext (peak) = 200 V/cm in a broad space of d/R and ε/ε0. As an
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example, an R = 1 µm sphere 2.5 in specific weight will be accelerated up to a few g
(=980 cm/s2) in Eext(peak) = 200 V/cm.
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4.3. Significance of the Attractive Force to Microwave Sintering

As discussed earlier, the electric force always produces an attractive force in the
oscillating Eext. Compared with the contact force under an externally applied pressure,
the E-field produces a non-contact force. The starting powder is usually formed of nearly
spherical particles. For two closely spaced spheres 1 µm in radius and 2.5 in specific weight
under Eext (peak) = 200 V/cm, the attractive force can accelerate the particles up to a few g
(=980 cm/s2) (Figure 23), which is greater than or comparable to gravitational or centrifugal
compaction. As a neck is formed between the two spheres, the force still acts on the gap
near the neck at a strength up to 100 dyne/cm2 (Figure 22b). It thus continues to promote
the densification process, particularly in the liquid phase.

4.4. A Relevant Experiment

Chang and Jian presented a study focusing on the orientational effect [48]. They
sintered a doped BaTiO3 PTCR sample cylindrical in shape with a 2.45 GHz microwave
linearly polarized along the axis of the cylinder. The treatment was at 1250 ◦C for 15 min.
For comparison, they also sintered an identical sample at 1350 ◦C for 2 h in a furnace.
In microwave sintering, the sample shrinkage rates and grain growth showed a strong
orientational dependence. The maximum axial shrinkage rate is 48% in the microwave as
compared to 26% in a furnace (Figure 24). In comparison, the radial shrinkage rate showed
little difference between the two sintering methods. In addition, the microwave-sintered
grains also exhibit a strip-like microstructure along the E-field (Figure 25).
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The reason for Chang and Jian’s observations is still unclear. However, a physical
effect along the E-field has clearly taken place. The directional coincidence of the maximum
shrinkage rate and maximum σpol buildup suggests the attractive force to be a plausible
cause, although more verifying experiments are needed.

5. Conclusions
As surveyed in Section 2, microwave sintering has been widely shown in experiments

to require a substantially lower processing temperature to achieve the same degree of
densification as in furnace sintering. The reason for this benefit is subject to different
physical interpretations depending on the type of sintered materials. It is referred to
as a non-thermal effect; namely, it is due to either the wave electric or magnetic field.
Theoretical studies on these observations have shed much light on the non-thermal effect.
However, the proposed causes largely remain an open issue. A definitive investigation of
the non-thermal effect is thus much needed in order to bring this promising but not yet
fully realized technology to fruition.

To promote and facilitate further research, Section 3 sorts the main points out of a
wide spread of the literature on the potential causes proposed in early and recent theories
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for the non-thermal effect and illustrate each one with representative figure(s) from the
original publication, with an emphasis on the latest development.

In Section 4, we discuss in greater detail the polarization charge intensification effect,
which can greatly reinforce the early proposed mass flow driven by the ponderomotive
force, while also leading to an attractive force between neighboring particles. The attractive
force concentrates in the region where the primary sintering process takes place. As quanti-
tatively illustrated in Figure 23, the force has a strength significant enough to assist particle
compaction and neck growth. It also explains the directional effect found in an early
experiment, which showed a much greater sample shrinkage rate along the wave E-field.

The main limitation of future works lies in the complexity of material behavior and
the difficulty of experimental diagnostics in penetrating through the material’s interior
to verify a proposed theory. Nevertheless, the formalism and data base presented here
could hopefully be useful for further studies to understand the long-standing question of
microwave-enhanced densification.
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