The Use of Ceramics as Bone Substitutes in Revision Hip Arthroplasty
Abstract
:1. Introduction
- Xenografts
- Corraline derived hydroxyapatite
- Polymethylmethacrylate
- Calcium sulphate
- Polyhydroxyacids
- Glass-ionomer ceramics
- Absorbable ceramics
- Collagen matrix
2. Ceramics
2.1. Ceramics
2.2. Glass-Ionomer Ceramics
2.3. Absorbable Ceramics
2.4. Clinical Use of Ceramics
3. Conclusions
- Be inexpensive
- Be available in unlimited quantities
- Be reproducible
- Provide structural stability at least until substituted by host bone
- Allow neo-ossification by means of osseoconduction and osseoinduction
- Have no infectivity
- Provoke no antigenicity
References
- Howie, D.W.; Haynes, D.R.; Rogers, S.D.; McGee, M.A.; Pearcy, M.J. The response to particulate debris. Orthop. Clin. North. Am. 1993, 24, 571–581. [Google Scholar]
- Willert, H.G.; Semlich, M. Reactions of the articular capsule to wear products of artificial joint prostheses. J. Biomed. Mater. Res. 1997, 11, 157–164. [Google Scholar] [CrossRef]
- Frost, H.M. The Utah paradigm of skeletal physiology: An overview of its insights for bone, cartilage and collagenous tissue organs. J. Bone Miner. Metab. 2000, 18, 305–316. [Google Scholar] [CrossRef]
- Bonfield, W. Designing porous scaffolds for tissue engineering. Phil. Trans. R. Soc. A 2005, 364, 227–232. [Google Scholar] [CrossRef]
- Borsato, K.S.; Sasaki, N. Measurement of partition of stress between mineral and collagen phases in bone using X-ray diffraction techniques. J. Biomech. 1997, 30, 955–957. [Google Scholar]
- Younger, E.M.; Chapman, M.W. Morbidity at bone graft donor sites. J. Orthop. Trauma. 1989, 3, 192–195. [Google Scholar]
- Gie, G.A.; Linder, L.; Ling, R.S.M.; Simon, J.-P.; Sloof, T.J.; Timperely, A.J. Impacted cancellous allograft and cement for revision total hip arthroplasty. J. Bone Joint Surg. Br. 1993, 75, 14–21. [Google Scholar]
- Ling, R.S.; Timperley, A.J.; Linder, L. Histology of cancellous impaction grafting in the femur. A case report. J. Bone Joint Surg. Br. 1993, 75, 693–696. [Google Scholar]
- Sloof, T.J.; Schimmel, J.W.; Buma, P. Cemented fixation with bone grafts. Orthop. Clin. North Am. 1993, 24, 667–677. [Google Scholar]
- Amstutz, H.C.; Ma, S.M.; Jinnah, R.H.; Mai, L. Revision of aseptic loose total hip arthroplasties. Clin. Orthop. 1982, 170, 21–33. [Google Scholar]
- Eldridge, J.D.; Smith, E.J.; Hubble, M.J.; Whitehouse, S.L.; Learmonth, I.D. Massive early subsidence following femoral impaction grafting. J. Arthroplasty 1997, 12, 535–540. [Google Scholar]
- Schreurs, B.W.; Sloof, T.J.; Buma, P.; Gardeniers, J.W.; Huiskes, R. Acetabular reconstruction with impacted morsellised cancellous bone graft and cement. J. Bone Joint Surg. Am. 1997, 79, 159–168. [Google Scholar]
- Solgard, S. Impaction allografting in cementless revision of the femoral component. Hip Int. 2002, 12, 233–234. [Google Scholar]
- Jofe, M.H.; Gebhardt, M.C.; Tomford, W.W.; Mankin, H.J. Reconstruction for defects of the proximal part of the femur using allograft arthroplasty. J. Bone Joint Surg. Am. 1988, 70, 507–516. [Google Scholar]
- Mankin, H.J.; Doppelt, S.H.; Sullivan, T.R.; Tomford, W.W. Osteoarticular and intercalary allograft transplantation in the management of malignant tumours of bone. Cancer 1982, 50, 613–630. [Google Scholar]
- Greenwald, A.S.; Boden, S.D.; Goldberg, V.M.; Khan, Y.; Laurencin, C.T.; Rosier, R.N. Bone-graft substitutes: Facts, fictions, and applications. J. Bone Joint Surg. Am. 2001, 83, 98–103. [Google Scholar]
- Galea, G.; Kopman, D.; Graham, B.J.M. Supply and demand of bone allograft for revision hip surgery in Scotland. J. Bone Joint Surg. Br. 1998, 80, 595–599. [Google Scholar] [CrossRef]
- Blom, A.W.; Heal, J.; Learmonth, I.D. Restoration of bone stock loss at revision total hip arthroplasty using allograft and bone substitutes. Curr. Orthop. 2002, 16, 411–419. [Google Scholar]
- Begley, C.; Doherty, M.; Mollan, R.; Wilson, D. Comparative study of the osteoinductive properties of biocermic, coral and processed bone grafts. Biomaterials 1995, 16, 1181–1185. [Google Scholar]
- Charalambides, C.; Beer, M.; Cobb, A.G. Poor results after augmenting autograft with xenograft (Surgibone) in hip revision surgery: A report of 27 cases. Acta Orthop. 2005, 76, 544–549. [Google Scholar]
- Bell, W. Resorption characteristics of bone and bone substitutes. Oral Surg. 1964, 17, 650–657. [Google Scholar] [CrossRef]
- Coetzee, A. Regeneration of bone in the presence of calcium phosphate. Arch. Otolaryngol. 1980, 106, 405–409. [Google Scholar] [CrossRef]
- Bouler, J.M.; Trecant, M.; Delecrin, J.; Royer, J.; Passuti, N.; Daculsi, G. Macroporous biphasic phosphate ceramics: Influence of five synthesis parameters on compressive strength. J. Biomed. Mater. Res. 1996, 32, 603–609. [Google Scholar] [CrossRef]
- Suominen, E.; Aho, A.; Juhanoja, J.; Yli-Urpo, A. Hydroxyapatite-glass composite as a bone substitute in large metaphyseal cavities in rabbits. Int. Orthop. 1995, 19, 167–173. [Google Scholar]
- Behairy, Y.; Jasty, M. Bone grafts and bone substitutes in hip and knee surgery. Orthop. Clin. North Am. 1999, 30, 661–671. [Google Scholar] [CrossRef]
- Hing, K.A.; Best, S.M.; Bonfield, W. Characterization of porous hydroxyapatite. J. Mater. Sci. Mater. Med. 1999, 10, 135–145. [Google Scholar] [CrossRef]
- Itokazu, M.; Matsunaga, T.; Ishii, M.; Kusakabe, H.; Wyni, Y. Use of arthroscopy and interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Arch Orthop. Trauma Surg. 1996, 115, 45–48. [Google Scholar]
- Ransford, A.O.; Morley, T.; Edgar, M.A.; Webb, P.; Paauti, N.; Chopin, D.; Morin, C.; Michel, F.; Garin, C.; Pries, D. Synthetic porous ceramic compared with autograft in scoliosis surgery. A prospective, randomized study of 341 patients. J. Bone Joint Surg. Br. 1998, 80, 13–18. [Google Scholar] [CrossRef]
- Babister, J.C.; Hails, L.A.; Oreffo, R.O.; Davis, S.A.; Mann, S. The effect of pre-coating human bone marrow stromal cells with hydroxyapatite/amino acid nanoconjugates on osteogenesis. Biomaterials 2009, 30, 3174–3182. [Google Scholar]
- Bolland, B.J.; Kanczler, J.M.; Ginty, P.J.; Howdle, S.M.; Shakesheff, K.M.; Dunlop, D.G.; Oreffo, R.O. The application of human bone marrow stromal cells and poly(DL-lactic acid) as a biological bone graft extender in impaction bone grafting. Biomaterials 2008, 29, 3221–3227. [Google Scholar]
- Green, D.W.; Walsh, D.; Yang, X.B.; Mann, S.; Oreffo, R.O. Stimulation of human bone marrow stromal cells using growth factor encapsulated calcium carbonate microspheres. J. Mater. Chem. 2004, 14, 2206–2212. [Google Scholar]
- Green, D.W.; Bolland, B.J.; Kanczler, J.M.; Lanham, S.A.; Walsh, D.; Mann, S.; Oreffo, R.O. Augmentation of skeletal tissue formation in impaction bone grafting using vaterite microsphere biocomposites. Biomaterials 2009, 30, 1918–1927. [Google Scholar]
- Hanft, J.; Sprinkle, R.; Surprenant, M.; Werd, M. Implantable bone substitute materials. Implant Biomat. 1995, 12, 437–455. [Google Scholar]
- Kuhne, J.H.; Bartl, R.; Frisch, B.; Hammer, C.; Jannson, V.; Zimmer, M. Bone formation in coralline hydroxyapatite: Effects of pore size studied in rabbits. Acta Orthop. Scand. 1994, 65, 246–252. [Google Scholar] [CrossRef]
- Tsuruga, E.; Takita, H.; Itoh, H.; Wakisaka, Y.; Kuboki, Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J. Biochem. 1997, 121, 317–324. [Google Scholar]
- Jarcho, M. Calcium phosphate ceramics as hard tissue prosthetics. Clin. Orthop. Relat. Res. 1981, 157, 259–278. [Google Scholar]
- Hamson, K.R.; Toth, J.M.; Stiehl, J.B.; Lynch, K.L. Preliminary experience with a novel model assessing in vivo mechanical strength of bone grafts and substitute materials. Calcif. Tissue Int. 1995, 57, 64–68. [Google Scholar] [CrossRef]
- Kokubo, T.; Kim, H.M.; Kawashita, M. Novel bioactive materials with different mechanical properties. Biomaterials 2003, 24, 2161–2175. [Google Scholar]
- Yoshida, A.; Miyazaki, T.; Ashizuka, M.; Ishida, E. Bioactivity and mechanical properties of cellulose/carbonate hydroxyapatite composites prepared in situ through mechanochemical reaction. J. Biomater. Appl. 2006, 21, 179–194. [Google Scholar]
- Le Nihouannen, D.; Goyenvalle, E.; Aguado, E.; Pilet, P.; Bilban, M.; Daculsi, G.; Layrolle, P. Hybrid composites of calcium phosphate granules, fibrin glue, and bone marrow for skeletal repair. J. Biomed. Mater. Res. A 2007, 81, 399–408. [Google Scholar] [CrossRef]
- Hing, K.A.; Annaz, B.; Saeed, S.; Revell, P.A.; Buckland, T. Microporosity enhances bioactivity of synthetic bone graft substitutes. J. Mater. Sci. Mater. Med. 2005, 16, 467–475. [Google Scholar] [CrossRef]
- Frayssinet, P.; Trouillet, J.L.; Rouquet, N.; Azimus, E.; Autefage, A. Effects of the chemical composition of calcium phosphate ceramics on their osseointegration. Orthop. Int. 1993, 1, 308–313. [Google Scholar]
- Shimazaki, K.; Mooney, V. Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute. J. Orthop. Res. 1985, 3, 301–310. [Google Scholar] [CrossRef]
- Spence, G.; Patel, N.; Brooks, R.; Bonfield, W.; Rushton, N. Osteoclastogenesis on hydroxyapatite ceramics: The effect of carbonate substitution. J. Biomed. Mater. Res. A. 2009, in press. [Google Scholar]
- Yang, X.B.; Webb, D.; Blaker, J.; Boccaccini, A.R.; Maquet, V.; Cooper, C.; Oreffo, R.O. Evaluation of human bone marrow stromal cell growth on biodegradable polymer/Bioglass composites. Biochem. Biophys. Res. Commun. 2006, 342, 1098–1107. [Google Scholar] [CrossRef]
- Ikeda, N.; Kawanabe, K.; Nakamura, T. Quantitative comparison of osteoconduction of porous, dense A-W glass-ceramic and hydroxyapatite granules (effects of granule and pore sizes). Biomaterials 1999, 20, 1087–1095. [Google Scholar]
- Oonishi, H.; Hench, L.L.; Wilson, J.; Sugihara, F.; Tsuji, E.; Kushitani, S.; Iwaki, H. Comparative bone growth behavior in granules of bioceramic materials of various sizes. J. Biomed. Mater. Res. 1999, 44, 31–43. [Google Scholar] [CrossRef]
- Carlisle, E.M. Silicon: A Possible Factor in Bone Calcification. Science 1970, 167, 279–280. [Google Scholar]
- Reffitt, D.M.; Ogston, N.; Jugdaohsingh, R.; Cheung, H.F.; Evans, B.A.; Thompson, R.P.; Powell, J.J.; Hampson, G.N. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003, 32, 127–135. [Google Scholar]
- Gibson, I.R.; Best, S.M.; Bonfiled, W. Chemical characterization of silicon-substituted hydroxyapatite. J. Biomed. Mater. Res. 1999, 44, 422–428. [Google Scholar] [CrossRef]
- Patel, N.; Brooks, R.A.; Clarke, M.T.; Lee, P.M.; Rushton, N.; Gibson, I.R.; Best, S.M.; Bonfield, W. In vivo assessment of hydroxyapatite and silicate-substituted hydroxyapatite granules using an ovine defect model. J. Mater. Sci. Mater. Med. 2005, 16, 429–440. [Google Scholar] [CrossRef]
- Porter, A.E.; Patel, N.; Skepper, J.N.; Best, S.M.; Bonfield, W. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials 2003, 24, 4609–4620. [Google Scholar]
- Porter, A.E.; Buckland, T.; Hing, K.; Best, S.M.; Bonfield, W. The structure of the bond between bone and porous silicon-substituted hydroxyapatite bioceramic implants. J. Biomed. Mater. Res. A 2006, 78, 25–33. [Google Scholar] [CrossRef]
- Huang, J.; Best, S.M.; Bonfield, W.; Buckland, T. Development and characterization of titanium-containing hydroxyapatite for medical applications. Acta Biomater. 2009, in press. [Google Scholar]
- Harada, Y.; Wang, J.T.; Doppalapudi, V.A.; Willis, A.A.; Jasty, M.; Harris, W.H.; Nagase, M.; Goldring, S.R. Differential effects of different forms of hydroxyapatite and hydroxyapatite/tricalcium phosphate particulates on human monocyte/macrophages in vitro. J. Biomed. Mater. Res. 1996, 31, 19–26. [Google Scholar] [CrossRef]
- Sun, J.S.; Tsuang, Y.H.; Chang, W.H.; Li, J.; Liu, H.C.; Lin, F.H. Effect of hydroxyapatite particle size on myoblasts and fibroblasts. Biomaterials 1997, 18, 683–690. [Google Scholar]
- Habibovic, P.; Kruyt, M.C.; Juhl, M.V.; Clyens, S.; Martinetti, R.; Doicini, L.; Theilgaard, N.; van Blitterswijk, C.A. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. J. Orthop. Res. 2008, 26, 1363–1370. [Google Scholar]
- Hing, K.A.; Wilson, L.F.; Buckland, T. Comparative performance of three ceramic bone graft substitutes. Spine J. 2007, 7, 475–490. [Google Scholar]
- McAndrew, M.P.; Gorman, P.W.; Lange, T.A. Tricalcium phosphate as a bone graft substitute in trauma: a preliminary report. J. Orthop. Trauma. 1988, 2, 333–339. [Google Scholar]
- Heise, U.; Osborn, J.F.; Duwe, F. Hydroxyapatite cermic as a bone substitute. Int. Orthop. 1990, 14, 329–338. [Google Scholar]
- Blom, A.W.; Cunningham, J.; Hughes, G.; Lawes, T.J.; Smith, N.; Blunn, G.; Learmonth, I.D.; Goodship, A.E. The compatibility of ceramic bone graft substitutes as allograft extenders for use in impaction grafting of the femur. J. Bone Joint Surg. Br. 2005, 87, 421–425. [Google Scholar]
- Blom, A.W.; Wylde, V.; Livesey, C.; Whitehouse, M.R.; Eastaugh-Waring, S.; Bannister, G.C.; Learmonth, I.D. Impaction bone grafting of the acetabulum at hip revision using a mix of bone chips and a biphasic porous ceramic bone graft substitute. Acta Orthop. 2009, 80, 150–154. [Google Scholar]
- Oonishi, H. Orthopaedic applications of hydroxyapatite. Biomaterials 1991, 12, 171–178. [Google Scholar]
- Oonishi, H.; Iwaki, Y.; Kin, N.; Kushitani, S.; Murata, N.; Wakitani, S.; Imoto, K. Hydroxyapatite in revision of total hip replacements with massive acetabular defects: 4 to 10 year clinical results. J. Bone Joint Surg. Br. 1997, 79, 87–92. [Google Scholar] [CrossRef]
- Hashimoto, N.; Ando, M.; Yayama, T.; Uchida, K.; Kobayashi, S.; Negoro, K.; Baba, H. Dynamic analysis of the resultant force acting on the hip joint during level walking. Artif. Organs. 2005, 29, 387–392. [Google Scholar] [CrossRef]
- Oonishi, H.; Kushitani, S.; Yasukawa, E.; Iwaki, H.; Hench, L.L.; Wilson, J.; Tsuji, E.; Sugilhara, T. Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin. Orthop. Relat. Res. 1997, 334, 316–325. [Google Scholar]
- Wasielewski, R.C.; Sheridan, K.C.; Lubbers, M.A. Coralline hydroxyapatite in complex acetabular reconstruction. Orthopedics 2008, 31, 367. [Google Scholar]
- Uchida, A.; Nade, S.; McCartney, E.; Ching, W. The use of ceramics for bone replacement. J. Bone Joint Surg. Br. 1984, 66, 269–275. [Google Scholar]
- Kawanabe, K.; Iida, H.; Matsusue, Y.; Nishimatsu, H.; Kasai, R.; Nakamura, T. A-W glass ceramic as a bone substitute in cemented hip arthroplasty: 15 hips followed 2-10 years. Acta. Orthop. Scand. 1998, 69, 237–242. [Google Scholar] [CrossRef]
- Nich, C.; Sedel, L. Bone substitution in revision hip replacement. Int. Orthop. 2006, 30, 525–531. [Google Scholar]
- Aulakh, T.S.; Jayasekera, N.; Kuiper, J.H.; Richardson, J.B. Long-term clinical outcomes following the use of synthetic hydroxyapatite and bone graft in impaction in revision hip arthroplasty. Biomaterials 2009, 30, 1732–1738. [Google Scholar]
- Nelissen, R.G.; Valstar, E.R.; Poll, R.G.; Garling, E.H.; Brand, R. Factors associated with excessive migration in bone impaction hip revision surgery: a radiostereometric analysis study. J. Arthroplasty 2002, 17, 826–833. [Google Scholar]
- Gokhale, S.; Solimna, A.; Dantas, J.P.; Richardson, J.B.; Cook, F.; Kuiper, J.H.; Jones, P. Variables affecting initial stability of impaction grafting for hip revision. Clin. Orthop. Relat. Res. 2005, 432, 174–180. [Google Scholar] [CrossRef]
- Nelissen, R.G.; Bauer, T.W.; Weidenhielm, L.R.; LeGolvan, D.P.; Mikhail, W.E. Revision hip arthroplasty with the use of cement and impaction grafting. Histological analysis of four cases. J. Bone Joint Surg. Am. 1995, 77, 412–422. [Google Scholar]
- Bolland, B.J.; New, A.M.; Madabhushi, G.; Oreffo, R.O.; Dunlop, D.G. The role of vibration and drainage in femoral impaction bone grafting. J. Arthroplasty. 2008, 23, 1157–1164. [Google Scholar]
- Boden, S.D.; Martin, G.J.J.; Morone, M.; Ugbo, J.L.; Titus, L.; Hutton, W.C. The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lubar fusion. Spine 1999, 24, 320–327. [Google Scholar]
- Acharya, N.K.; Kumar, R.J.; Varma, H.K.; Menon, V.K. Hydroxyapatite-bioactive glass ceramic as stand-alone graft substitute for posterolateral fusion of lumbar spine: A prospective, matched, and controlled study. J. Spinal Disord. Tech. 2008, 21, 106–111. [Google Scholar] [CrossRef]
- Ma, B.; Clarke, S.A.; Brooks, R.A.; Rushton, N. The effect of simvastatin on bone formation and ceramic resorption in a peri-implant defect model. Acta Biomater. 2007, 4, 149–155. [Google Scholar] [CrossRef]
- Valimaki, V.V.; Moritz, N.; Yrjans, J.J.; Vuorio, E.; Aro, H.T. Effect of zoledronic acid on incorporation of a bioceramic bone graft substitute. Bone 2006, 38, 432–443. [Google Scholar]
- Iwai, T.; Harada, Y.; Imura, K.; Iwabuchi, S.; Murai, J.; Hiramatsu, K.; Myoui, A.; Yoshikawa, H.; Tsumaki, N. Low-intensity pulsed ultrasound increases bone ingrowth into porous hydroxyapatite ceramic. J. Bone Miner. Metab. 2007, 25, 392–399. [Google Scholar] [CrossRef]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Whitehouse, M.R.; Blom, A.W. The Use of Ceramics as Bone Substitutes in Revision Hip Arthroplasty. Materials 2009, 2, 1895-1907. https://doi.org/10.3390/ma2041895
Whitehouse MR, Blom AW. The Use of Ceramics as Bone Substitutes in Revision Hip Arthroplasty. Materials. 2009; 2(4):1895-1907. https://doi.org/10.3390/ma2041895
Chicago/Turabian StyleWhitehouse, Michael R., and Ashley W. Blom. 2009. "The Use of Ceramics as Bone Substitutes in Revision Hip Arthroplasty" Materials 2, no. 4: 1895-1907. https://doi.org/10.3390/ma2041895
APA StyleWhitehouse, M. R., & Blom, A. W. (2009). The Use of Ceramics as Bone Substitutes in Revision Hip Arthroplasty. Materials, 2(4), 1895-1907. https://doi.org/10.3390/ma2041895