Characterization of Bronze Surface Layer Formed by Microarc Oxidation Process in 12-Tungstophosphoric Acid
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Experimental Techniques
3. Results and Discussion
3.1. Coating Formation by MAO Process
3.2. Microscopic Analysis: AFM and SEM-EDS
3.3. Micro-Raman Spectroscopy
3.4. XRD Analysis
3.5. Coating Optical Emission
Ion | Observed Wavelength Air [nm] | Relative Intensity | Aki [s-1] | Ei [cm -1] | Ek [cm -1] | |
---|---|---|---|---|---|---|
1 | W I | 353.5539 | 100 | 7.6e+06 | 13307.10 | 41583.20 |
W I | 354.5220 | 200 | 3.2e+06 | 28198.90 | ||
2 | W II | 364.1407 | 113 | 9.91e+06 | 8711.274 | 36165.356 |
W II | 364.5595 | 134 | 1.46e+06 | 14967.745 | 42390.287 | |
3 | W I | 370.7922 | 300 | 2.9e+06 | 2951.29 | 29.912.85 |
4 | W I | 372.2235 | 60 | 1.19e+07 | 19648.54 | 46506.37 |
5 | W I | 376.8447 | 250 | 3.47e+06 | 1670.29 | 28198.90 |
W I | 378.0772 | 200 | 4.2e+06 | 2951.29 | 29393.40 | |
6 | W I | 400.8753 | 1000 | 1.63e+07 | 2951.29 | 27889.68 |
7 | W I | 407.4358 | 600 | 1.0e+07 | 2951.29 | 27488.11 |
8 | W I | 413.7457 | 80 | 8.4e+06 | 3325.53 | 27.488.11 |
9 | W I | 429.4606 | 800 | 1.24e+07 | 2951.29 | 26229.77 |
10 | P II | 519.613 | 400 | 5.5e+07 | 87124.60 | 106001.25 |
11 | P II | 531.607 | 250 | 2.4e+07 | 86743.96 | 105549.67 |
12 | P II | 537.820 | 250 | 1.1e+07 | 105302.37 | 123890.81 |
P II | 538.688 | 300 | 2.3e+07 | 86743.96 | 105302.37 | |
13 | P II | 540.972 | 200 | 9.3e+07 | 86743.96 | 105224.06 |
P II | 542.591 | 400 | 6.9e+07 | 87124.60 | 105549.67 | |
14 | P II | 545.074 | 400 | 3.3e+07 | 105549.67 | 123890.81 |
15 | P II | 548.355 | 200 | 1.5e+07 | 105224.06 | 123455.46 |
16 | P II | 554.114 | 200 | 4.5e+07 | 105302.37 | 123344.19 |
4. Conclusions
Acknowledgements
References
- Pope, M.T.; Müller, A. Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity; Kluwer Academic Publishing: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Pope, M.T.; Müller, A. Polyoxometalate Chemistry from Topology via Self-Assembly to Applications; Kluwer Academic Publishing: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Nakamura, O.; Kodama, T.; Ogino, I.; Miyake, Y. High-conductivity solid proton conductors: Dodecamolybdophosphoric acid and dodecatungstophosphoric acid crystals. Chem. Lett. 1979, 8, 17–18. [Google Scholar] [CrossRef]
- Mioč, U.B.; Dimitrijević, R.; Davidović, M.; Nedić, Z.; Mitrović, M.; Colomban, Ph. Thermally induced phase transformations of 12-tungstophosphoric acid 29-hydrate: Synthesis and characterization of PW8O26-type bronzes. J. Mater. Sci. 1994, 29, 3705–3718. [Google Scholar] [CrossRef]
- Pope, M.T. Heteropoly and Isopoly Oxometalate; Springer-Verlag: Berlin, Germany, 1983. [Google Scholar]
- Hill, C.L. Polyoxometalates. Chem. Rev. 1998, 98, 1–390. [Google Scholar]
- Colomban, Ph. (Ed.) Protonic Conductors, Solid Membranes and Gels; Cambridge University Press: Cambridge, UK, 1992.
- Mioč, U.B.; Colomban, Ph.; Novak, A. Infrared and Raman study of some heteropolyacid hydrates. J. Mol. Struct. 1990, 218, 123–128. [Google Scholar] [CrossRef]
- Mioč, U.B.; Dimitrijević, R.; Mitrović, M.; Nedić, Z.P. Method for synthesis of metal-doped phosphorus-tungsten bronzes from heteropoly acid as precursor. J. Serb. Chem. Soc. 1995, 60, 959–967. [Google Scholar]
- Mioč, U.B.; Davidović, M.; Stanisavljev, B.; Todorović, M.; Nedić, Z.; Uskoković, S. Spectroscopic investigation of the effects of monovalent cations on the dynamics of the protonic species in the hydrates of 12-tungstophosphoric acid salts. J. Serb. Chem. Soc. 1996, 61, 759–765. [Google Scholar]
- Mioč, U.B.; Todorović, M.; Colomban, Ph.; Nedić, Z.; Uskoković, S.; Borčić, I. Identification of protonic species and their dynamic equilibrium in magnesium and calcium salts of 12-tungstophosphoric acid. Solid State Ionics 1999, 125, 425–429. [Google Scholar] [CrossRef]
- Mioč, U.; Davidović, M.; Tjapkin, N.; Colomban, Ph.; Novak, A. Equilibrium of the protonic species hydrates of some heteropolyacids at the elevated temperatures. Solid State Ionics 1991, 46, 103–109. [Google Scholar] [CrossRef]
- Mioč, U.B.; Todorović, M.R.; Davidović, M.; Colomban, Ph.; Holclajtner-Antunovic, I. Heteropoly compounds—From proton conductors to biomedical agents. Solid State Ionic 2005, 176, 3005–3017. [Google Scholar] [CrossRef]
- Mioč, U.B.; Milonjić, S.K.; Malović, D.; Stamenković, V.; Colomban, Ph.; Mitrović, M.M.; Dimitrijević, R. Structure and proton conductivity of 12-tungstophosphoric acid-doped silica. Solid State Ionics 1999, 97, 239–246. [Google Scholar] [CrossRef]
- Mioč, U.B.; Milonjić, S.K.; Stamenković, V.; Radojević, M.; Colomban, Ph.; Mitrović, M.M.; Dimitrijević, R. Structural properties and proton conductivity of the 12-tungstophosphoric acid doped aluminosilicate gels. Solid State Ionics 1999, 125, 417–424. [Google Scholar] [CrossRef]
- Wu, Q.; Tao, Sh.; Lin, H.; Meng, G. Preparation, characterization and proton-conductivity of silica gel containg 71 wt.% 12-tungstogermanic heteropoly acid. Mater. Chem. Phys. 2000, 64, 25–28. [Google Scholar] [CrossRef]
- Aparicio, M.; Mosa, J.; Etienne, A.; Duran, A. Proton-conducting methacrylate-silica sol-gel membranes containing tungstophosphoric acid. J. Power Sources 2005, 145, 231–236. [Google Scholar] [CrossRef]
- Uksche, E.A.; Leonova, L.S.; Korosteleva, A.I. Protonic conduction in heteropoly compounds. Solid State Ionics 1989, 36, 219–223. [Google Scholar] [CrossRef]
- Haber, J.; Matachowski, L.; Mucha, D.; Stoch, J.; Sarv, P. New Evidence on the Structure of Potassium Salts of 12-Tungstophosphoric Acid, KxH3-xPW12O40. Inorg. Chem. 2005, 44, 6695–6703. [Google Scholar] [CrossRef] [PubMed]
- Mioč, U.B.; Todorović, M.; Uskoković-Marković, S.; Nedić, Z.; Bošnjaković, N. Spectroscopic investigation of 12-tungstophosphoric acid alkali salts. J. Serb. Chem. Soc. 2000, 65, 399–406. [Google Scholar]
- Davidović, M.; Čajkovski, T.; Mioč, U.B.; Colomban, Ph.; Likar-Smiljanić, V.; Čajkovski, D.; Biljić, R. The influence of monovalent and bivalent cations on the electrical properties of 12-tungstophosphoric acid salts. Solid State Ionics 2005, 176, 2881–2885. [Google Scholar] [CrossRef]
- Essayem, N.; Tong, Y.Y.; Jobic, H.; Vedrin, J.C. Catalytic synthesis of N-alkylacrylamide from acrylonitrile and alcohol with solid acids. Appl. Catal. A 2000, 194–195, 109–122. [Google Scholar] [CrossRef]
- Čajkovski, T.; Davidovic, M.; Čajkovski, D.; Likar-Smiljanic, V.; Biljic, R.M.; Mioč, U.B.; Stamenkovic, V. Dielectric properties of metal salts of heteropollyacid hydrates. Solid State Phenomena 1998, 61–62, 279–284. [Google Scholar] [CrossRef]
- Horky, A.; Kherani, N.P.; Xu, G. Conductivity and transport properties of aqueous phosphotungstic and silicotungstic acid electrolytes for room-temperature fuel cells. J.Electrochem. Soc. 2003, 150, A1219–A1224. [Google Scholar] [CrossRef]
- MacDonald, J.R. Impedance Spectroscopy; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Dias, F.B.; Fernandes, J.B. Dilatometry studies of phosphotungstic acid pellets during hydration and dehydration processes and design of a room temperature fuel cell. J. Power Sources 1998, 74, 1–7. [Google Scholar] [CrossRef]
- Barton, D.G.; Soled, S.L.; Iglesia, E. Solid acid catalysts based on supported tungsten oxides. Top. Catal. 1998, 6, 87–99. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Pavlova, S.N.; Bunina, R.V.; Alikina, G.M.; Tikhov, S.F.; Kuznetsova, T.G.; Frolova, Yu.V.; Lukashevich, A.I.; Snegurenko, O.I.; Sazonova, N.N.; Kazantseva, E.V.; Dyatlova, Yu.N.; Usol'tsev, V.V.; Zolotarskii, I.A.; Bobrova, L.N.; Kuz'min, V.A.; Gogin, L.L.; Vostrikov, Z.Yu.; Potapova, Yu.V.; Muzykantov, V.S.; Paukshtis, E.A.; Burgina, E.B.; Rogov, V.A.; Sobyanin, V.A.; Parmon, V.N. Selective oxidation of hydrocarbons into synthesis gas at short contact times: Design of monolith catalysts and main process parameters. Kinet. Katal. 2005, 46, 243–268. [Google Scholar] [CrossRef]
- Zheng, H.Y.; Wang, Y.K.; Li, B.S.; Han, G.R. The effects of Na2WO4 concentration on properties of microarc oxidation coatings on aluminium alloy. Mater. Lett. 2005, 59, 139–142. [Google Scholar] [CrossRef]
- Beck, A.; Bednorz, J.G.; Gerber, Ch.; Rossel, C.; Widmer, D. Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 2000, 77, 139–142. [Google Scholar] [CrossRef]
- Hagenmuller, P. Comperehensive Inorganic Chemistry; Pergamon: Oxford, UK, 1973. [Google Scholar]
- Whittinghamm, M.S. Intercalation Chemistry; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Yamase, T. Photo- and Electrochromism of polyoxometalates and related materials. Chem. Rev. 1998, 98, 307–325. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Leon, M.C.; Mingotaud, C.; Agricole, B.; Gomez-Garcya, C.J.; Coronado, E.; Delhaes, P. Application of the Langmuir-Blodgett technique to polyoxometalates: Towards new magnetic films. Angew. Chem. Int. Ed. Engl. 1997, 36, 1114–1116. [Google Scholar] [CrossRef]
- Labbe, Ph.; Goreaud, M.; Raveau, A. Monophosphate tungsten bronzes with pentagonal tunnels (PO2)4(WO3)2m: Structure of two even-m members P4W12O44 (m = 6) and P4W16O56 (m = 8). J. Solid State Chem. 1986, 61, 324–331. [Google Scholar] [CrossRef]
- Wang, S.L.; Wang, C.C.; Li, K.H. Crystal structure of WPO5, the second member of the monophosphate tungsten bronze series (WO3)2m(PO2)4. J. Solid State Chem. 1989, 82, 298–302. [Google Scholar] [CrossRef]
- Roussel, P.; Labbe, P.; Groult, D. Symmetry and twins in the monophosphate tungsten bronze series (PO2)4(WO3)2m (2 ≤ m ≤ 14). Acta Crystallogr. 2000, B56, 377–391. [Google Scholar] [CrossRef]
- Beierlein, U.; Hess, C.; Schlenker, C.; Dumass, J.; Buder, R.; Groult, D.; Steep, E.; Vignolles, D.; Bonfait, G. Charge-density-wave instabilities and quantum transport in the monophosphate tungsten bronzes with m = 5 alternate structure. Eur. Phys. J. B 2000, 17, 215–226. [Google Scholar] [CrossRef]
- Martinez-de la Cruz, A.; Longoria Rodriguez, F.E.; Ibarra Rodriguez, J. Electrochemical lithium insertion in the phosphate tungsten bronze P8W12O52. Solid State Ionics 2005, 176, 2625–2630. [Google Scholar] [CrossRef]
- Longoria Rodrigues, F.E.; Martinez-de la Cruz, A.; López Cuéllar, E. Behavior of the monophosphate tungsten bronzes (PO2)4(WO3)2m (m = 4 and 6) in electrochemical lithium insertion. J. Power Sources 2006, 180, 1314–1319. [Google Scholar] [CrossRef]
- Dimitrijević, R.; Mioč, U.B.; Davidović, M.; Todorović, M.R.; Nedić, Z.; Tjapkin, N. Thermally induced phase transformations of hydrates of 12-tungstophosphoric acid sodium salts. Synthesis of sodium-intercalated phosphate tungsten bronzes. Proc. Natural Sci. Matica Srpska 1993, 85, 329–333. [Google Scholar]
- Mioč, U.B.; Dimitrijević, R.Ž.; Mitrović, M.M.; Nedić, Z.P. Method for synthesis of metal-doped phosphorus-tungsten bronzes from heteropoly acid as precursor. J. Serb. Chem. Soc. 1995, 60, 959–967. [Google Scholar]
- Jokanović, V.; Mioč, U.B.; Nedić, Z.P. Nanostructured phosphorous tungsten bronzes from ultrasonic spray pyrolysis. Solid State Ionics 2005, 176, 2955–2956. [Google Scholar] [CrossRef]
- Jokanović, V. Structures and substructures in spray pyrolysis process. In Nanodesigning, Fluosols, Finely Dispersed Particles: Micro-, Nano- and Atto Engineering; Spasic, A.M., Hsu, J.P., Eds.; CRC, Taylor and Francis: London, UK, 2005; pp. 513–533. [Google Scholar]
- Mioč, U.B.; Davidović, M. (Eds.) Fast Proton-Ion Transport Compounds; Transworld Research Network: Kerala, India, 2010; in press.
- Chopra, K.L. Avalanche-induced negative resistance in thin oxide films. J. Appl. Phys. 1965, 36, 184–187. [Google Scholar] [CrossRef]
- Feng, W.; Wang, J.; Wu, Q. Preparation and conductivity of PVA films composited with decatungstomolybdovanadogermanic heteropoly acid. Mater. Chem. Phys. 2005, 93, 31–34. [Google Scholar] [CrossRef]
- Lukiyanchuk, I.V.; Rudnev, V.S. Tungsten oxide films on aluminum and titanium. Inorg. Mat. 2007, 43, 264–267. [Google Scholar] [CrossRef]
- Mane, S.R.; Patil, N.S.; Sargar, A.M.; Bhosaleb, P.N. Preparation and characterization of thallium(I) doped molybdenum heteropolyoxometalate semiconducting thin films. Mater. Chem. Phys. 2008, 112, 74–77. [Google Scholar] [CrossRef]
- Holclajtner-Antunović, I.; Bajuk-Bogdanović, D.; Todorović, M.; Mioč, U.B.; Zakrzewska, J.; Uskoković-Marković, S. Spectroscopic study of stability and molecular species of 12-tungstophosphoric acid in aqueous solution. Can. J. Chem. 2008, 86, 996–1004. [Google Scholar] [CrossRef]
- Kasalica, B.V.; Belca, I.D.; Stojadinovic, S.Dj.; Zekovic, Lj.D.; Nikolic, D. Light-emitting-diode-based light source for calibration of an intensified charge-coupled device detection system intended for galvanoluminescence measurements. Appl. Spectrosc. 2006, 60, 1090–1094. [Google Scholar] [CrossRef] [PubMed]
- Kasalica, B.; Petkovic, M.; Belca, I.; Stojadinovic, S.; Zekovic, Lj. Electronic transitions during plasma electrolytic oxidation of aluminum. Surf. Coat. Technol. 2009, 203, 3000–3004. [Google Scholar] [CrossRef]
- Nakamoto, N. Infrared and Raman Spectra of Inorganic and Coordinated Compounds, 3rd ed.; Wiley: New York, NY, USA, 1978. [Google Scholar]
- Horsley, J.A.; Wachs, I.E.; Brown, J.M.; Via, G.H.; Hardcastle, F.D. Structure of surface tungsten oxide species in the WO3/Al2O3 supported oxide system from X-ray absorption near-edge spectroscopy and raman spectroscopy. J. Phys. Chem. 1987, 91, 4014–4020. [Google Scholar] [CrossRef]
- Misono, M. Heterogeneous Catalysis by Heteropoly compounds of molybdenum and tungsten. Catal. Rev. Sci. Eng. 1987, 29, 269–321. [Google Scholar] [CrossRef]
- Moffat, J.B. Microporosity in heteropoly oxometalate catalysis. Stud. Sur. Sci. Catal. 1988, 38, 469–482. [Google Scholar]
- Rakić, V.; Dondur, V.; Mioč, U.; Jovanović, D. Microcalorimetry in the identification and characterization of the most reactive active sites of heterogeneous catalysts. Top. Catal. 2002, 19, 241–247. [Google Scholar] [CrossRef]
- Fuhr, J.R.; Wiese, W.L. NIST atomic transition probability table. In CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Rudnev, V.S.; Lukiyanchuk, I.V.; Kon’shin, V.V.; Gordienko, P.S. Anodic-Spark depozition of P- and W (Mo)-containing coating onto aluminium and titanium alloys. Russ. J. Appl. Chem. 2002, 75, 1082–1086. [Google Scholar] [CrossRef]
- Rudnev, V.S. Multiphase anodic layers and prospects of their application. Prot. Met. 2008, 44, 263–272. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mioč, U.B.; Stojadinović, S.; Nedić, Z. Characterization of Bronze Surface Layer Formed by Microarc Oxidation Process in 12-Tungstophosphoric Acid. Materials 2010, 3, 110-126. https://doi.org/10.3390/ma3010110
Mioč UB, Stojadinović S, Nedić Z. Characterization of Bronze Surface Layer Formed by Microarc Oxidation Process in 12-Tungstophosphoric Acid. Materials. 2010; 3(1):110-126. https://doi.org/10.3390/ma3010110
Chicago/Turabian StyleMioč, Ubavka B., Stevan Stojadinović, and Zoran Nedić. 2010. "Characterization of Bronze Surface Layer Formed by Microarc Oxidation Process in 12-Tungstophosphoric Acid" Materials 3, no. 1: 110-126. https://doi.org/10.3390/ma3010110
APA StyleMioč, U. B., Stojadinović, S., & Nedić, Z. (2010). Characterization of Bronze Surface Layer Formed by Microarc Oxidation Process in 12-Tungstophosphoric Acid. Materials, 3(1), 110-126. https://doi.org/10.3390/ma3010110