A Brief Review of Chelators for Radiolabeling Oligomers
Abstract
:1. Introduction
2. Oligomers
3. Metallic Radionuclides
Radionuclide | half-life | energy (KeV) | emitter | source |
64Cu | 12.7 h | 653 | β+ | cyclotron |
67Ga | 78.3 h | 93,185 | γ | cyclotron |
89Sr | 50.6 d | 1460 | β- | reactor |
90Y | 64.1 h | 2270 | β- | reactor |
99mTc | 6.02 h | 141 | γ | generator |
111In | 67.9 h | 171,247 | γ | cyclotron |
153Sm | 46.3 h | 702,810;103 | β-,γ | reactor |
177Lu | 6.7 d | 176,497;113,208 | β-,γ | reactor |
186Re | 90.6 h | 936,1070;137 | β-,γ | reactor |
188Re | 16.9 h | 1500;155 | β-,γ | generator |
201Tl | 73.1 h | 135,167 | γ | cyclotron |
4. Chelators and/or Linkers
4.1. MAG3 derivatives
4.2. DTPA
4.3. DOTA
4.4. HYNIC
5. Biological Properties and Labeling
6. Conclusions
References
- John, V.F. New technologies for human cancer imaging. J. Clin. Oncol. 2008, 26, 4012–4021. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xie, C.; Jin, X.; Zhang, P. Simultaneous modulated accelerated radiation therapy in the treatment of nasopharyngeal cancer: A local center’s experience. Int. J. Radiat. Oncol. Biol. Phys. 2009, 66, 40–46. [Google Scholar] [CrossRef]
- Liu, G.; Dou, S.; Yin, D.; Squires, S.; Liu, X.; Wang, Y.; Rusckowski, M.; Hnatowich, D.J. A novel pretargeting method for measuring antibody internalization in tumor cells. Cancer Biother. Radio. 2007, 22, 33–39. [Google Scholar] [CrossRef]
- Wang, Y.; Nakamura, K.; Liu, X.; Kitamura, N.; Kubo, A.; Hnatowich, D.J. Simplified preparation via streptavidin of antisense oligomers/carriers nanoparticles showing improved cellular delivery in culture. Bioconjugate Chem. 2007, 18, 1338–1343. [Google Scholar] [CrossRef]
- Hicke, B.J.; Stephens, A.W.; Gould, Ty.; Chang, Y.; Lynott, C.K.; Heil, J.; Borkowski, S.; Hilger, C.; Cook, G.; Warren, S.; Schmidt, P.G. Tumor targeting by an aptamer. J. Nucl. Med. 2006, 47, 668–678. [Google Scholar] [PubMed]
- Agrawal, S.; Temsamani, J.; Tang, J.Y. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc. Natl. Acad. Sci. USA 1991, 88, 7595–7599. [Google Scholar] [CrossRef]
- Summerton, J.; Stein, D.; Huang, S.B.; Matthew, P.; Weller, D.; Partridge, M. Morpholino and phosphporothioate antisense oligomers compared in cell-free and in-cell systems. Antisense Nucleic. Acid. Drug. Dev. 1997, 7, 63–70. [Google Scholar] [CrossRef]
- Nielsen, P.E. Antisense properties of peptide nucleic acid. Method. Enzymol. 1999, 313, 156–164. [Google Scholar]
- Koshkin, A.A.; Singh, S.K.; Rajwanshi, V.K.; Kumar, R.; Meldgaard, M.; Olsen, C.E.; Wengel, J. LNA(locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 1998, 54, 3607–3630. [Google Scholar] [CrossRef]
- Obika, S.; Nanbu, D.; Hari, Y.; Andoh, J.; Morio, K.; Doi, T.; Imanishi, T. Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2’-O, 4’-C-methyleneribonucleosides. Tetrahedron Lett. 1998, 39, 5401–5404. [Google Scholar] [CrossRef]
- Wolf, W.; Shani, J. Criteria for the selection of the most desirable radionuclide for radiolabeling of monoclonal antibodies. Nucl. Med. Biol. 1986, 13, 319–324. [Google Scholar]
- Fawwaz, R.A.; Wang, T.S.T.; Srivastava, C.; Hardy, M.A. The use of radionuclides for tumor therapy. Nucl. Med. Biol. 1986, 13, 429–436. [Google Scholar]
- Schubiger, P.A.; Alberto, R.; Smith, A. Vehicles, chelators, and radionuclides: chossing the “building blocks” of an effective therapeutic radioimmunocojugate. Bioconjugate Chem. 1996, 7, 165–179. [Google Scholar] [CrossRef]
- Nosco, D.L.; Manning, R.G.; Fritzberg, A. Characterization of the new 99mTc dynamic renal imaging agent, 99mTc-MAG3 (abstr). J. Nucl. Med. 1986, 27, 939. [Google Scholar]
- Duncan, R.J.S.; Weston, P.D.; Wrigglesworth, R. A new reagent which may be used to introduce sulfhydryl groups into protein, and its use in the preparation of conjugates for immunoassay. Anal. Biochem. 1983, 132, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Winnard, P.J.; Chang, F.; Rusckowski, M.; Mardirossian, G.; Hnatowich, D.J. Preparation and use of NHS-MAG3 for the technetium-99m labeling of DNA. Nucl. Med. Biol. 1997, 24, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Hnatowich, D.J.; Qu, T.; Chang, F.; Ley, A.C.; Ladner, R.C.; Rusckowski, M. Labeling peptides with technetium-99m using a bifunctional chelator of a N-hydroxysuccinimide ester of mercatoacetyltriglycine. J. Nucl. Med. 1998, 39, 56–64. [Google Scholar] [PubMed]
- Rusckowski, M.; Qu, T.; Pullman, J.; Marcel, R.; Ley, A.C.; Ladner, R.C.; Hnatowich, D.J. Imflammation and infection imaging with a 99mTc-neutrophil elastase inhibitor in monkeys. J. Nucl. Med. 2000, 41, 363–374. [Google Scholar] [PubMed]
- Zhang, Y.; Liu, N.; Zhu, Z.; Rusckowski, M.; Hnatowich, D.J. Influence of different chelators (HYNIC, MAG3 and DTPA) on tumor cell accumulation and mouse biodistribution of technetium-99m labeled to antisense DNA. Eur. J. Nucl. Med. 2000, 27, 1700–1707. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhang, S.; He, J.; Zhu, Z.; Rusckowski, M.; Hnatowich, D.J. Improving the labeling of S-Acetyl NHS-MAG-conjugated morpholino oligomers. Bioconjugate Chem. 2002, 13, 893–897. [Google Scholar] [CrossRef]
- Hnatowich, D.J.; Chang, F.; Lei, K.; Qu, T.; Rusckowski, M. The influence of temperature and alkaline pH on the labeling of free and conjugated MAG3 with technetium-99m. Appl. Radiat. Isot. 1997, 48, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Mang’era, K.O.; Liu, G.; Yi, W.; Liu, N.; Gupat, S.; Rusckowski, M.; Hnatowich, D.J. Initial investigation of 99mTc-labeled morpholinos for radiopharmaceutical applications. Eur. J. Nucl. Med. 2001, 28, 1682–1689. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Mang’era, K.; Liu, N.; Gupta, S.; Rusckowski, M.; Hnatowich, D.J. Tumor pretargeting in mice using 99mTc-labeled morpholino, a DNA analogue. J. Nucl. Med. 2002, 43, 384–391. [Google Scholar] [PubMed]
- Liu, G.; Dou, S.; He, J.; Yin, D.; Gupta, S.; Zhang, S.; Wang, Y.; Rusckowski, M.; Hnatowich, D.J. Radiolableing of MAG3-morpholino oligomers with 188Re at high labeling efficiency and specific radioactivity for tumor pretargeting. Appl. Radiat. Isotopes 2006, 64, 971–978. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, G.; Hnatowich, D.J. Methods for MAG3 conjugation and 99mTc radiolableing of biomolecules. Nat. Method. 2006, 1, 1477–1480. [Google Scholar]
- Ram, S.; Merriwether, W.; Buchsbaum, D.J. Synthesis and biodistribution of peptide based 99mTc/186Re-MAGIPG-D612 monoclonal antibody in nude mice bearing colon cancer xenografts. Cancer Biother. Radio. 1997, 12, 55–62. [Google Scholar] [CrossRef]
- Liu, G.; Cheng, D.; Dou, S.; Chen, X.; Liang, M.; Pretorius, H.; Rusckowski, M.; Hnatowich, D.J. Replacing 99mTc with 111In improves MORF/cMORF pretargeting by reducing intestinal accumulation. Mol. Image. Biol. 2009, 11, 303–307. [Google Scholar] [CrossRef]
- Hnatowich, D.J.; Layne, W.W.; Childs, R.L.; Lanteigne, D.; Davis, M.A. Radioactive labeling of antibody: a simple and efficient method. Science 1983, 220, 613–615. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; University of Massachusetts Medical School, Worcester, MA 01655, USA. Unpublished observations.
- Childs, R.L.; Hnatowich, D.J. Optimum conditions for labeling of DTPA-coupled antibodies with technetium-99m. J. Nucl. Med. 1985, 26, 293–299. [Google Scholar]
- Hnatowich, D.J.; Winnard, P.; Virzi, F.; Fogarasi, M.; Sano, T.; Smith, C.L.; Cantor, C.R.; Rusckowski, M. Technetium-99m labeling of DNA oligonucleotides. J. Nucl. Med. 1995, 36, 2306–2314. [Google Scholar]
- Hovinen, J. Labeling of oligonucleotides with DTPA and DOTA on solid phase. Nucleos. Nucleot. Nucl. 2007, 26, 1459–1462. [Google Scholar] [CrossRef]
- Reilly, R.M.; Scollard, D.A.; Wang, J.; Mondal, H.; Chen, P.; Henderson, L.A.; Bowen, B.M.; Vallis, K.A. A kit formulated under good manufacturing practices for labeling human epidermal growth factor with 111In for radiotherapeutic applications. J. Nucl. Med. 2004, 45, 4701–4708. [Google Scholar]
- Brechbiel, M.W.; Gansow, O.A.; Atcher, R.W.; Schlom, J.; Esteban, J.; Simpson, D.; Colcher, D. Synthesis of 1-(p-isothiocyanatobenzyl) derivatives of DTPA and EDTA. Antibody labeling and tumor-imaging studies. Inorg. Chem. 1986, 25, 2772–2781. [Google Scholar] [CrossRef]
- Brockmann, J.; Rosch, F. Determination of stability constants in Y-DTPA-peptide-systems: Evaluation of a radiochemical method using n. c. a. Yttrium-88. Radiochim. Acta 1999, 87, 79–85. [Google Scholar]
- Merkel, O.M.; Librizzi, D.; Pfestroff, A.; Schurrat, T.; Béhé, M.; Kissel, T. In vivo SPECT and Real-Time Gamma camera imaging of biodistribution and pharmacokinetics of siRNA delivery using an optimized radiolabeling and purification procedure. Bioconjugate Chem. 2009, 20, 174–182. [Google Scholar] [CrossRef]
- Tolmachev, V.; Nilsson, F.Y.; WidstrÖm, C.; Andersson, K.; Rosik, D.; Gedda, L.; Wennborg, A.; Orlova, A. 111In-Benzyl-DTPA–ZHER2:342, an affibody-based conjugate for in vivo imaging HER2 expression in malignant tumors. J. Nucl. Med. 2006, 47, 846–853. [Google Scholar] [PubMed]
- Kozak, R.W.; Raubitschek, A.; Mirzadeh, S.; Brechbiel, M.W.; Junghans, R.P.; Gansow, O.A.; Waldmann, T.A.; Junghaus, R. Nature of the bifunctional chelating agent used for radioimmunotherapy with yttrium-90 monoclonal antibodies: critical factors in determining in vivo survival and organ toxicity. Cancer Res. 1989, 49, 2639–2644. [Google Scholar] [PubMed]
- Persson, M.; Tolmachev, V.; Andersson, K.; Gedda, L.; Sandström, M.; Carlsson, J. [177Lu]pertuzumab: experimental studies on targeting of HER-2 positive tumor cells. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 1457–1462. [Google Scholar] [CrossRef]
- Schlesinger, J.; Fischer, C.; Koezle, I.; Vonhoff, S.; Klussmann, S.; Bergmann, R. Radiosynthesis of new [90Y]-DOTA-Based malemide reagents suitable for the prelabeling of thiol-bearing L-oligonucleotides and peptides. Bioconjugate Chem. 2009, 20, 1340–1348. [Google Scholar] [CrossRef]
- Leon-Rodriguez, L.M.; Kovacs, Z. The synthesis and chelation chemistry of DOTA-peptide conjugates. Bioconjugate Chem. 2008, 19, 391–402. [Google Scholar] [CrossRef]
- Liu, S. The role of coordination chemistry in the development of target specific radiopharmaceuticals. Chem. Soc. Rev. 2004, 33, 445–461. [Google Scholar] [CrossRef]
- Schlesinger, J.; Koezle, I.; Bergmann, R.; Tamburini, S.; Bolzati, C.; Tisato, F.; Noll, B.; Klussmann, S.; Vonhoff, S.; Wuest, F.; Pietzsch, H.; Steinbach, J. An 86Y-labeled mirror-image oligonucleotide: influence of Y-DOTA isomers on the biodistribution in rats. Bioconjugate Chem. 2008, 19, 928–939. [Google Scholar] [CrossRef]
- Liu, C.; Liu, G.; Liu, N.; Zhang, Y.; He, J.; Rusckowsi, M.; Hnatowich, D.J. Radiolabeling morpholino with 90Y, 111In, 188Re and 99m Tc. Nucl. Med. Bio. 2003, 30, 207–214. [Google Scholar] [CrossRef]
- Kemerink, G.J.; Liu, X.; Kieffer, D.; Ceyssens, S.; Mortelmans, L.; Verbruggen, A.M.; Steinmetz, N.; Green, A.; Verbeke, K. Safety, biodistribution, and dosimetry of 99mTc-HYNIC-annexin V, a novel human recombinant annexin V for human application. J. Nucl. Med. 2003, 44, 947–952. [Google Scholar] [PubMed]
- Babich, J.W.; Solomon, H.; Pike, M.C.; Kroon, D.; Graham, W.; Abrams, M.J.; Tompkins, R.G.; Rubin, R.H.; Fischman, A.J. Technetium-99m-labeleed hydrazine nicotinamide derivatized chemotactic peptide analogs for imaging focal sites of bacterial infection. J. Nucl. Med. 1993, 34, 1967–1974. [Google Scholar]
- Nicholson, T.; Zubieta, J. Complexes of rhenium with benzoylazo and related ligands. Crystal and molecular structures of the "green chelate" benzoylazo complex [ReCl2(PPh3)2(NNCOC6H4Cl)], of the analogous l-azophthalazine chelate complex [ReCl2(PPh3)2(NNC8H5N2)] and of the cis-dichloro organodiazenido complexes of the type [ReCl2(PPh3)2(NNR)L] (L =NCCH3, NH3,C5H5N). A comparison to the structure of the trans-dichloro dimethyl formamide derivative [ReCl2(PPh3)2(NNCO2CH3)(Me2NCHO)]. The structural characterization of the mixed hydrazido(l-) hydrazido(2-) complexes [ReCl2(PPh3)2(NNHR)(NHNHR')] (R = R' = -COC6H5; R = -COC6H5, R' = -CO2CH3). Polyhedron 1998, 7, 171–185. [Google Scholar] [CrossRef]
- Abrams, M.J.; Larsen, S.K.; Shaikh, S.N.; Zubieta, J. Investigations of technetium-organohydrazine coordination chemistry. The crystal and molecular structures of [TcCl2(C8H5N4)(PPh3)2]·0.75C7H8 and [TcNCl2(PPh3)2]·0.25CH2Cl2. Inorg. Chim. Acta. 1991, 185, 7–15. [Google Scholar] [CrossRef]
- Archer, C.M.; Dilworth, J.R.; Jobanputra, P.; Thompson, R.M.; McPartin, M.; Povey, D.C.; Smith, G.W.; Kelly, J.D. Development of new technetium cores containing technetium-nitrogen multiple bonds. Synthesis and characterization of some diazenido-, hydrazido- and imido- complexes of technetium. Polyhedron 1990, 9, 1497–1502. [Google Scholar] [CrossRef]
- Archer, C.M.; Dilworth, J.R.; Jobanputra, P.; Thompson, R.M; McPartin, M.; Hiller, W. Technetium diazenido complexes. Part 1. Synthesis and structures of [TcCl(NNC6H4Cl-4)2(PPh3)2] and TcCl(NNPh)(Ph2PCH2CH2PPh2)2][PF6]·H2O. J. Chem. Soc. Dalton Trans. 1993, 897–904. [Google Scholar]
- Nicholson, T.; Cook, J.; Davison, A.; Rose, D.J.; Maresca, K.P.; Zubieta, J.A.; Jones, A.G. The synthesis and characterization of [MCl3(N=NC5H4NH)(HN=NC5H4N)] from [MO4]-{where M = Re, Tc}, organodiazenido, organodiazene-chelate complexes. The X-ray structure of [ReCl3(N=NC5H4NH)(HN=NC5H4N)]. Inorg. Chim. Acta. 1996, 252, 421–426. [Google Scholar] [CrossRef]
- Hirsch-Kuchma, M.; Nicholson, T.; Davison, A.; Jones, A.G. Group 7 ‘organohydrazide’ chemistry: classification of ligand type based on crystal structural data. J. Chem. Soc. Dalton Trans. 1997, 3, 3189–3192. [Google Scholar] [CrossRef]
- Rose, D.J.; Maresca, K.P.; Nicholson, T.; Davison, A.; Jones, A.G.; Babich, J.; Fischman, A.; Graham, W.; DeBord, J.R.; Zubieta, J. Synthesis and characterization of organohydrazino complexes of technetium, rhenium, and molybdenum with the {M(η1-HxNNR)(η2-HyNNR)} core and their relationship to radiolabeled organohydrazine-derivatized chemotactic peptides with diagnostic applications. J. Inorg. Chem. 1998, 37, 2701–2716. [Google Scholar] [CrossRef]
- Abrams, M.J.; Juweid, M.; TenKate, C.I.; Schwartz, D.A.; Hauser, M.M.; Gaul, F.E.; Fuccello, A.J.; Rubin, R.H.; Strauss, H.W.; Fischman, A.J. Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J. Nucl. Med. 1990, 31, 2022–2208. [Google Scholar]
- Liu, G.; Hnatowich, D.J. Labeling biomolecules with radiorhenium-a review of the bifunctional chelators. Anticancer Agents Med. Chem. 2007, 7, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.M.; Jeong, H.J.; Heo, Y.J.; Moon, H.B.; Bom, H.S.; Kim, C.G. Intratumoral injection of 188Re labeled cationic polyethylenimine conjugates: a preliminary report. J. Korean Med. Sci. 2004, 19, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Claessens, R.A.; Boerman, O.C.; Koenders, E.B.; Oyen, W.J.; Van der Meer, J.M.; Corstens, F.H. Technetium-99m labeled hydrazinonicotinamide human non-specific polyclonal immunoglobulin G for detection of infectious foci: a comparison with two other technetium-labelled immunoglobulin preparations. Eur. J. Nucl. Med. 1996, 23, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Claessens, R.A.; Koenders, E.B.; Oyen, W.J.G.; Corstens, F.H. Retention of technetium-99m in infectious foci in rats after release from technetium-99m labeled human non-specific polyclonal immunoglobulin G: a dual-label study with hydrazinonicotinamide and iminothiolano immunoglobulin. Eur. J. Nucl. Med. 1996, 23, 1536–1539. [Google Scholar] [CrossRef] [PubMed]
- Dams, E.T.; Oyen, W.J.; Boerman, O.C.; Claessens, R.A.; Wymenga, A.B.; Van der Meer, J.W.; Corstens, F.H. Technitium-99m labeled to human immunoglobulin G through the nicotinyl hydrazine derivative: a clinical study. J. Nucl. Med. 1998, 39, 119–124. [Google Scholar]
- Dams, E.T.; Oyen, W.J.; Boerman, O.C.; Storm, G.; Laverman, P.; Koender, E.B.; Van der Meer, J.W.; Corstens, F.H. Technetium-99m-labeled liposomes to image experimental colitis in rabbits: comparison with technetium-99m-HMPAO-granulocytes and technetium-99m-HYNIC IgG. J. Nucl. Med. 1998, 39, 2172–2178. [Google Scholar] [PubMed]
- Decristoforo, C.; Mather, S.J. 99m-Technetium labeled peptide-HYNIC conjugates. The effects of lipophilicity and stability on biodistribution. Nucl. Med. Biol. 1999, 26, 389–396. [Google Scholar] [CrossRef]
- Decristoforo, C.; Mather, S.J. Preparation, 99mTc-labeling, and in vitro characterization of HYNIC and N3S modified RC-160 and [Tyr3] octreotide. Bioconjugate Chem. 1999, 10, 431–438. [Google Scholar] [CrossRef]
- Larson, S.K.; Solomon, H.F.; Caldwell, G.; Abrams, M.J. [99mTc]tricine: a useful precursor complex for the radiolabeling of hydrazinonicotinate protein conjugates. Bioconjugate Chem. 1995, 6, 635–638. [Google Scholar] [CrossRef]
- Babich, J.W.; Solomon, H.; Pike, M.C.; Kroon, D.; Graham, W.; Abrams, M.J; Tompkins, R.G.; Rubin, R.H.; Fischman, A.J. 99mTc-labeled hydrazine nicotinamide derivatized chemotactic peptides for imaging focal sites of bacterial infection. J. Nucl. Med. 1993, 34, 1964–1974. [Google Scholar]
- Babich, J.W.; Fischman, A.J. Influence of co-ligand on the distribution of 99mTc labeled hydrazinonicotinic acid derivatized chemotactic peptides in normal rats. Nucl. Med. Biol. 1995, 22, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Babich, J.W.; Graham, W.; Barrow, S.A; Fischman, A.J. Comparison of the infection imaging properties of a 99mTc labeled chemotactic peptide with 111In IgG. Nucl. Med. Biol. 1995, 22, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Babich, J.W.; Tompkins, R.G.; Graham, W.; Barrow, S.A.; Fischman, A.J. Localization of radiolabeled chemotactic peptide at focal sites of Escherichia coli infection in rabbits: evidence for a receptor-specific mechanism. J. Nucl. Med. 1997, 38, 1316–1322. [Google Scholar] [PubMed]
- Blankenberg, F.G.; Katsikis, P.D.; Tait, J.F.; Davis, R.E.; Naumovski, L.; Ohtsuki, K.; Kopiwoda, S.; Abrams, M.J.; Strauss, H.W. Imaging of apoptosis (programmed cell death) with 99mTc annexin V. J. Nucl. Med. 1999, 40, 184–191. [Google Scholar] [PubMed]
- Callahan, R.; Barrow, S.A.; Abrams, M.J.; Rubin, R.H.; Fischman, A.J. Biodistribution and dosimetry of technetium-99m-hydrazino nicotinamide IgG: comparison with indium-111-DTPA-IgG. J. Nucl. Med. 1996, 37, 843–846. [Google Scholar] [PubMed]
- Fischman, A.J.; Rauh, D.; Soloman, O.C.; Babich, J.W.; Tompkins, R.G.; Kroon, D.; Strauss, H.W.; Rubin, R.H. In vivo bioactivity and biodistribution of chemotactic peptide analogs in nonhuman primates. J. Nucl. Med. 1993, 34, 2130–2134. [Google Scholar] [PubMed]
- Rusckowski, M.; Qu, T.; Gupta, S.; Ley, A.; Hnatowich, D.J. A comparison in monkeys of 99mTc labeled to a peptide by 4 methods. J. Nucl. Med. 2001, 42, 1870–1877. [Google Scholar] [PubMed]
- Liu, S.; Edwards, D.S.; Looby, R.J.; Harris, A.R.; Poirier, M.J.; Barrett, J.A.; Heminway, S.J.; Carroll, T.R. Labeling a hydrazine nicotinamide-modified cyclic IIb/IIIa receptor antagonist with 99mTc using aminocarboxylates as coligands. Bioconjugate Chem. 1996, 7, 63–71. [Google Scholar] [CrossRef]
- Decristoforo, C.; Mather, S.J. 99mTc-somatostatin analogues effect of labeling methods and peptide sequence. Eur. J. Nucl. Med. 1999, 26, 869–876. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Liu, C.; Vanderheyden, J.; Liu, G.; Dou, S.; Rusckowski, M.; Hnatowich, D.J. Radiolabelling morpholinos with 188Re tricarbonyl provides improved in vitro and in vivo stability to re-oxidation. Nucl. Med. Comm. 2004, 25, 731–736. [Google Scholar] [CrossRef]
- Auzeloux, P.; Papon, J.; Azim, E.M.; Bore, M.; Pasqualini, R.; Veyre, A.; Madelmont, J.C. A potential melanoma tracer: synthesis, radiolabeling, and biodistribution in mice of a new nitridotechnetium bis(aminothiol) derivative pharmacomodulated by a N-(diethylaminoethyl)benzamide. J. Med. Chem. 2000, 43, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Qu, T.; Wang, Y.; Zhu, Z.; Rusckowski, M.; Hnatowich, D.J. Different chelators and different peptides together influence the in vitro and mouse in vivo properties of 99Tcm. Nucl. Med. Comm. 2001, 22, 203–215. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liu, Y.; Liu, G.; Hnatowich, D.J. A Brief Review of Chelators for Radiolabeling Oligomers. Materials 2010, 3, 3204-3217. https://doi.org/10.3390/ma3053204
Liu Y, Liu G, Hnatowich DJ. A Brief Review of Chelators for Radiolabeling Oligomers. Materials. 2010; 3(5):3204-3217. https://doi.org/10.3390/ma3053204
Chicago/Turabian StyleLiu, Yuxia, Guozheng Liu, and Donald J. Hnatowich. 2010. "A Brief Review of Chelators for Radiolabeling Oligomers" Materials 3, no. 5: 3204-3217. https://doi.org/10.3390/ma3053204
APA StyleLiu, Y., Liu, G., & Hnatowich, D. J. (2010). A Brief Review of Chelators for Radiolabeling Oligomers. Materials, 3(5), 3204-3217. https://doi.org/10.3390/ma3053204