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Abstract: The chemical synthesis of gold nanoparticles (NP) by using gold (III) chloride 

trihydrate (HAuCl·3H2O) and sodium citrate as a reducing agent in aqueous conditions at 

100 °C is presented here. Gold nanoparticles areformed by a galvanic replacement 

mechanism as described by Lee and Messiel. Morphology of gold-NP was analyzed by 

way of high-resolution transmission electron microscopy; results indicate a six-fold 

icosahedral symmetry with an average size distribution of 22 nm. In order to understand 

the mechanical behaviors, like hardness and elastic moduli, gold-NP were subjected to 

nanoindentation measurements—obtaining a hardness value of 1.72 GPa and elastic 

modulus of 100 GPa in a 3–5 nm of displacement at the nanoparticle’s surface.  
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1. Introduction  

The synthesis and fabrication of metallic nanoparticles has been approached with high success by 

using wet-chemistry methods when targeting specific applications (i.e., Catalysis, Cancer, and  

Optics) [1–3]. Reactions like the galvanic replacement, as proposed by Lee and Meisel, seem to be 

ideal in achieving large frequency spherical-like nanoparticles, using metallic salt precursors [4]. Three 

basic shapes are formed on monometallic nanoparticles: decahedral, cubo-octahedral, and icosahedral. 

Their final morphology has to do with the lowest surface energy γ in the (111)-plane, however it 

implies that large internal core-strain values are necessary; leading to the conclusion that nanoparticle 

surface are constituted by γ(111) <γ(100) <γ(110) as indicated by Elechiguerra et al. [5].  

Nanoparticles geometry and facets are made out of (111) planes as observed in icosahedron; and is 

attributed to lowest surface energy γ(111) of nucleation in (111)- plane. This implies large facets, 

whereas decahedron has moderate internal strain and smaller facets made of (111) and (100)  

planes [6]. Theoretical investigations for heat of formation, reactivity, kinetics and mechanical 

behavior are possible to calculate using molecular dynamic computational methods. Recently, Casillas 

et al. were able to do a dynamic simulation on gold twinned nanoparticles with five-fold symmetry, by 

applying dynamic stress at different directions and locations. This indicates the formation of 

dislocations and stacking faults in the range of 0 to 4 GPa of external stress applied [7].  

Carlton and Ferreira presented a similar study using in situ HRTEM technique [8] by deforming a 

silver nanoparticle with the aid of a sample holder equipped with a nanoindenter manipulator. HRTEM 

images reflect a dislocation type a/2 {1 1 0} on {1 1 1} type plane of nanoparticle, where a correlation 

between high resolution images and mechanical deformation is present. Indications of staking faults 

and dislocations were also observed in their study. In similar fashion, a study to determine elastic 

moduli in spherical silicon nanoparticles—using the nanoindentation technique—was presented by 

Mook et al. [9]. In their study it was assumed that there was uniform and rigid contact between 

nanoindenter tip and substrate, thus contribution of stress-strain comes from silicon nanoparticle only 

and the elastic modulus was calculated using average true-strain/true-stress relationships methods [10]. 

Here, the usage of nanoindentation technique through Continuous Stiffness Measurement (CSM) 

method as described by Li et al. [11] is used to measure mechanical properties on gold nanoparticles 

(Au-NP) with characteristics of six-fold symmetry as revealed by HRTEM images.  

2. Results and Discussion  

2.1. High Resolution Transmission Electron Microscopy 

Morphology, average size and symmetry of gold nanoparticles (Au-NP) were investigated by field 

emission gun electron microscopy techniques. Images were taken at 300 kV with a current set to  

10 μA. The equipment used was a Hitachi H-9500 equipped with EDX, X-twin lenses and CCD 

camera. Interpretation of the images and measurements was done using Digital Micro computational 

package. Results indicate average size diameter of 22 nm with a six-fold symmetry, as presented in 

Figure 1a,b. It was understood during HRTEM measurements that Au-NP morphological surface is 

very sensitive, thermodynamically speaking, to electron gun dosage since it creates some coalescence 

effect between them, as shown in Figure 1b. Yacaman et al. has reported this effect at temperatures 
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ranging from 283 K to 830 K by applying energetic effects from electron beam due to the interactions 

with nanoparticles and electrons (phonons) [12].  

Figure 1. (a) HRTEM image indicating the agglomeration of Au-NP. (b) 5 nm of 

resolution HRTEM image on Au-NP six-fold symmetry is observed. (c) Coalescence effect 

start to occurring after 2 min of observation, due to high electron beam dosage, typical 

formation of neck-type between walls of neighbor Au-NP’s.  

 

2.2. X-ray Diffraction and Infrared Absorption  

For further characterization purposes, Au-NP was subjected to both measurement techniques. 

Powder X-ray diffraction was performed using a Panalytical XPert PRO machine, Cu-Kα radiation, step 

size of 0.016° and step time of 30 s. Infrared absorption was done using a benchtop Thermo Nicolet 

model nexus 470-FTIR and OMNIC package. In Figure 2a, a comparison of IR spectra is presented for 

gold (III) chloride trihydrate before reaction and Au-NP formation. Two main broad peaks are found at 

3450 and 1650 cm−1. For XRD principal reflections are (111), (300), (330) and (421). Broader 

shoulder was found at 2θ = 25°—corresponding to liquidity of the sample and texture created by  

Au-NP when deposited onto holder as presented in Figure 2b.  

Neck-type coalescence after  

5 min of observation  

A 

B 

C 
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Figure 2. (a) Fourier Transform Infrared spectra of colloidal gold (red) and Au-NP (blue) 

Inset: Photographic image indicating change in coloration. (b) X-ray diffraction peaks 

indicating principal reflections at (111), (300), (330), (421). 

a b 

2.3. Mechanical Nanoindentation 

Mechanical nanoindentation as a method to study mechanic-structural properties in nanoparticles 

has brought so much attention in the past five years [13,14]. Investigations of nano-regime for specific 

nanostructures (i.e., nanoparticles, nanowires, nanorods) and their comparison with bulk materials 

seem to be the objective when understanding structure/function relationships and mechanical behavior.  

The Young modulus and hardness of the Au-NP were obtained using Agilent Nano Indenter (inset 

in Figure 3) G200—equipped with a standard configuration and DCM indentation head. All 

measurements were performed using Continuous Stiffness Measurement (CSM) method as described 

by Li et al. [15]. 

Equipment was calibrated using a standard fused silica with the following test parameters: 

Berkovich diamond indenter with tip radius of 20 nm, deep limit of 35 nm, strain rate target of  

0.05 1/s, harmonic displacement target of 1 nm and a frequency target of 75 Hz.  

Mechanical behavior of Au-NP was subjected to study using nanoindentation as described above in 

order to measure hardness (H), elastic modulus (E), and elastic stiffness (S). Traditionally, S could be 

determined from the slope of the load- displacement data acquired during unload [16]. However, using 

this approach, one can obtain the S values and H, E can only be determined when maximum 

penetration depth is reached, thus CSM option enables a continuous measure of S during loading—and 

not just at the point of initial unloads [17]. The latter is accomplished by superimposing a small 

oscillation on the primary loading signal and analyzing the resulting response of the system by means 

of a frequency-specific amplifier. Equation 1 presents the mathematical model used to determine CSM. 
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ω represents the excitation frequency. If the displacement amplitude (Zo), phase angle (∅), and 

excitation amplitude (Fo) is measured and determined machine parameters, such as load-frame 

stiffness Kf, support springs stiffness Ks, and mass m (See inset of Figure 3a)—the hardness and elastic 
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modulus as a continuous function of surface penetration can be obtained. Therefore, CSM option is 

useful to evaluate mechanical behavior on thin films, as well for this case when gold nanoparticles are 

mounting over silicon substrates. Samples for nanoindentation measurements were prepared by 

depositing one drop of colloidal solution over clean silicon wafer area, letting dry at room temperature 

under glove box conditions in order to avoid contaminants. The data from loads is presented in  

Figure 3. Inset presents an enlargement of 2.5 nm to 6 nm displacement on penetration depth, where a 

hardness value of 1.72 ± 0.03 GPa is obtained, which is close to bulk phase found experimentally to be 

1.11 ± 0.03 GPa as presented by Volinsky et al. [18].  

Figure 3. Measurements of hardness and function of displacement from CSM 

nanoindentation of Au-NP. Inset: Specific region between 2.5–6.0 nm of displacement, 

indicating a 1.72 ± 0.03 GPa value. Horizontal dotted line corresponds to values found for 

gold in bulk phase [18]. 

 

The contribution for elastic modulus is presented in Figure 4, with a specific average value  
100 ± 2 GPa—higher in comparison to bulk materials as well presented by Volinsky et al. [18].  

Unfortunately, one of the nanoindenter equipment limitations is the capacity to do in situ 

microstructural observations during the mechanical testing. In order to record direction of dislocation, 

as presented by others Casillas [7], Ferreira [8] and Deneen [15], when using electron microscopy 

techniques, no further discussion can be made about dislocations, stacking faults, bulk phase change 

and twin boundaries on this systems of nanoparticles.  
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Figure 4. Measurements of elastic modulus as function of displacement from CSM 

nanoindentation of Au-NP. Inset: Specific region between 1.0–4.0 nm of displacement, 

indicating a 100 ± 2 GPa value. Horizontal dotted line corresponds to values found for gold 

in bulk phase [18]. 

 

3. Experimental Section  

Gold nanoparticles were synthesized by using a mixture of gold (III) chloride trihydrate 

(HAuCl4
.3H2O), sodium hydroxide (NaOH), sodium citrate (C6H5Na3O7) and distilled water. A 

solution of 2.5 mM of HAuCl4
.3H2O was prepared by mixing 0.05 g of gold (III) chloride trihydrate in 

50 mL of deionized water. A second solution of 6.6 Mm sodium hydroxide (NaOH) was prepared by 

mixing 0.0264 g of NaOH in 100mL of deionized water. The pH of the 10 mL gold solution was 

controlled by adding NaOH until the pH reached 6.6. The solution was heated to 85 °C under vigorous 

stirring for 30 min. Then a solution of 5 mM of sodium citrate (C6H5Na3O7) was prepared by mixing 

0.073 g of sodium citrate with 50 mL of deionized water and heating 10 mL solution of sodium citrate 

to around 85 °C before adding it to the gold solution under vigorous mixing. The reaction was 

maintained at 85 °C for approximately 20 min. This step reduced the gold (Au+3→Au°) to produce the 

nanoparticles and the solution turned ruby red. The galvanic reaction is produced in agreement to: 

OHONaHCNaClAuNaOHONaHCOHHAuCl 27256
0

735624 443   (2) 

4. Conclusions  

Mechanical properties of Au-NP are presented here by means of nanoindentation with the 

continuous stiffness method. Morphological aspects of gold nanoparticles were studied by way of 

HRTEM techniques, indicating a six-fold symmetry nanoparticle type, with average size of 22 nm. 

Using the nanoindentation technique it was possible to measure the Elastic modulus and hardness 
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values which are found to be E = 100 ± 2 GPa with an standard deviation of 3.6353 and H = 1.72 ± 

0.03 GPa with standard deviation of 0.0306 respectively, indicating higher mechanical strength when 

compared to bulk phase. Unfortunately, the nanoindenter equipment used to perform measurements is 

not equipped with an imaging interface, which is needed to detect any microstructural change due to 

external forces. Therefore, a detailed understanding of atomistic behavior is not presented here, as it is 

presented in literature [8,15,19]. A trivial conclusion could be the formation of stacking faults and 

dislocations preferentially on the <111> direction of nanoparticles. For this reason, further work is 

under progress by using molecular dynamics computational methods to simulate mechanical testing 

and comparison of theoretical and experimental data. 
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