PbSe-Based Colloidal Core/Shell Heterostructures for Optoelectronic Applications
Abstract
:1. Introduction
2. Theoretical Prediction of the Electronic Properties of QD Heterostructures
2.1. Electronic Structure of PbSe/PbSexS1–x (0 ≤ x ≤ 1) QDs
2.2. Electronic Structure of PbSe/CdSe QDs
3. Synthesis, Structural, and Compositional Characterization of PbSe/CdSe and PbSe/PbSexS1–x (0 ≤ x ≤ 1) Colloidal Core/Shell QD Heterostructures
3.1. Small-Sized PbSe/PbS Core/Shell Colloidal QDs with Band-Gap Energy in the Range of 1.0–1.4 eV
Types | Air-free | Air-exposed | |||||
---|---|---|---|---|---|---|---|
Pb 4f7/2 (Pb-Se/S) BE | Pb 4f7/2 (Pb-O) BE | Pb 4f7/2 (Pb-Se/S) BE | Pb 4f7/2 (Pb-O) BE | Se 3d BE | Se 2s BE | S 2s BE | |
PbSe | 138.42 | 139.38 | 138.67 | 139.61 | 227.80 | – | – |
PbSe/PbS | 137.18 | 138.16 | 137.31 | 138.55 | – | 227.80 | 224.58 |
3.2. Large PbSe/PbSexS1–x Core/Shell Colloidal QDs with the Band-Gap Energy in the Range of 0.62–1.0 eV
3.3. PbSe/CdSe Core/Shell Colloidal QDs with Band-Gap Energy in the Range of 0.8–1.1 eV
4. Optical Properties of PbSe/PbSexS1–x (0 ≤ x ≤1) and PbSe/CdSe QD Heterostructures
4.1. Continuous-Wave Room-Temperature Photoluminescence Measurements in PbSe/PbSexS1–x and PbSe/CdSe QDs
4.2. Thermally Activated Processes in PbSe/PbSexS1–x and PbSe/CdSe QDs
4.3. Temperature Dependent Time-Resolved Photoluminescence of PbSe/PbSexS1–x (0 ≤ x ≤ 1) and PbSe/CdSe QDs
5. Applications
6. Future Outlook
7. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kang, I.; Wise, F.W. Electronic structure and optical properties of PbS and PbSe quantum dots. OSA J. Opt. Soc. Am. B 1997, 14, 1632–1646. [Google Scholar] [CrossRef]
- Du, H.; Chen, C.; Krishnan, R.; Krauss, T.D.; Harbold, J.M.; Wise, F.W.; Thomas, M.G.; Silcox, J. Optical properties of colloidal PbSe nanocrystals. Nano Lett. 2002, 2, 1321–1324. [Google Scholar] [CrossRef]
- Wehrenberg, B.L.; Wang, C.; Guyot-Sionnest, P. Interband and intraband optical studies of PbSe colloidal quantum dots. J. Phys. Chem. B 2002, 106, 10634–10640. [Google Scholar] [CrossRef]
- Talapin, D.V.; Murray, C.B. Pbse nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 2005, 310, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Madelung, O. Semiconductors: Data Handbook, 3rd ed.; Springer-Verlag: Berlin, Gemany, 2004. [Google Scholar]
- Romero, H.E.; Drndic, M. Coulomb blockade and hopping conduction in PbSe quantum dots. Phys. Rev. Lett. 2005, 95, 156801. [Google Scholar] [CrossRef] [PubMed]
- Wise, F.W. Lead salt quantum dots: The limit of strong quantum confinement. Acc. Chem. Res. 2000, 33, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Harbold, J.M.; Du, H.; Krauss, T.D.; Cho, K.-S.; Murray, C.B.; Wise, F.W. Time-resolved intraband relaxation of strongly confined electrons and holes in colloidal PbSe nanocrystals. Phys. Rev. B 2005, 72, 195312. [Google Scholar] [CrossRef]
- Brumer, M.; Kigel, A.; Amirav, L.; Sashchiuk, A.; Solomesch, O.; Tessler, N.; Lifshitz, E. PbSe/PbS and PbSe/PbSexS1–x core/shell nanocrystals. Adv. Funct. Mater. 2005, 15, 1111–1116. [Google Scholar] [CrossRef]
- Pietryga, J.M.; Schaller, R.D.; Werder, D.; Stewart, M.H.; Klimov, V.I.; Hollingsworth, J.A. Pushing the band gap envelope: Mid-infrared emitting colloidal PbSe quantum dots. J. Am. Chem. Soc. 2004, 126, 11752–11753. [Google Scholar] [CrossRef] [PubMed]
- Nozik, A.J. Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett. 2010, 10, 2735–2741. [Google Scholar] [CrossRef] [PubMed]
- Nozik, A.J. Quantum dot solar cells. Phys. E Low Dimens. Syst. Nanostructures 2002, 14, 115–120. [Google Scholar] [CrossRef]
- Tang, J.; Kemp, K.W.; Hoogland, S.; Jeong, K.S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.; Debnath, R.; Cha, D.; et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Ip, A.H.; Thon, S.M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Debnath, R.; Levina, L.; Rollny, L.R.; Carey, G.H.; Fischer, A.; et al. Hybrid passivated colloidal quantum dot solids. Nat. Nano 2012, 7, 577–582. [Google Scholar] [CrossRef]
- Ma, W.; Swisher, S.L.; Ewers, T.; Engel, J.; Ferry, V.E.; Atwater, H.A.; Alivisatos, A.P. Photovoltaic performance of ultrasmall PbSe quantum dots. ACS Nano 2011, 5, 8140–8147. [Google Scholar] [CrossRef] [PubMed]
- Barkhouse, D.A.R.; Debnath, R.; Kramer, I.J.; Zhitomirsky, D.; Pattantyus-Abraham, A.G.; Levina, L.; Etgar, L.; Grätzel, M.; Sargent, E.H. Depleted bulk heterojunction colloidal quantum dot photovoltaics. Adv. Mater. 2011, 23, 3134–3138. [Google Scholar] [CrossRef] [PubMed]
- Etgar, L.; Yanover, D.; Čapek, R.K.; Vaxenburg, R.; Xue, Z.; Liu, B.; Nazeeruddin, M.K.; Lifshitz, E.; Grätzel, M. Core/shell PbSe/PbS qds tio 2 heterojunction solar cell. Adv. Functual 2013, 23, 2736–2741. [Google Scholar] [CrossRef]
- Brumer, M.; Sirota, M.; Kigel, A.; Sashchiuk, A.; Galun, E.; Burshtein, Z.; Lifshitz, E. Nanocrystals of PbSe core, PbSe/PbS, and PbSe/PbSexS1–x core/shell as saturable absorbers in passively q-switched near-infrared lasers. Appl. Opt. 2006, 45, 7488–7497. [Google Scholar] [CrossRef] [PubMed]
- Sirota, M.; Galun, E.; Krupkin, V.; Glushko, A.; Kigel, A.; Brumer, M.; Sashchiuk, A.; Amirav, L.; Lifshitz, E. Nanophotonic materials. In IV–VI Semiconductor Nanocrystals for Passive Q-switch in IR; Andrews, D.L., Cao, G.Z., Gaburro, Z., Eds.; SPIE: Denver, CO, USA, 2004; pp. 9–16. [Google Scholar]
- Wang, R.Y.; Feser, J.P.; Lee, J.-S.; Talapin, D.V.; Segalman, R.; Majumdar, A. Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett. 2008, 8, 2283–2288. [Google Scholar] [CrossRef] [PubMed]
- Petta, J.R.; Johnson, A.C.; Taylor, J.M.; Laird, E.A.; Yacoby, A.; Lukin, M.D.; Marcus, C.M.; Hanson, M.P.; Gossard, A.C. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 2005, 309, 2180–2184. [Google Scholar] [CrossRef] [PubMed]
- Loss, D.; DiVincenzo, D.P. Quantum computation with quantum dots. Phys. Rev. A 1998, 57, 120. [Google Scholar] [CrossRef]
- Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Dubertret, B. Quantum dots: Dna detectives. Nat. Mater. 2005, 4, 797–798. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Nie, S. Next-generation quantum dots. Nat. Biotechnol. 2009, 27, 732–733. [Google Scholar] [CrossRef] [PubMed]
- Tischler, J.G.; Kennedy, T.A.; Glaser, E.R.; Efros, A.L.; Foos, E.E.; Boercker, J.E.; Zega, T.J.; Stroud, R.M.; Erwin, S.C. Band-edge excitons in PbSe nanocrystals and nanorods. Phys. Rev. B 2010, 82, 245303. [Google Scholar] [CrossRef]
- Rubin-Brusilovski, A.; Maikov, G.; Kolan, D.; Vaxenburg, R.; Tilchin, J.; Kauffmann, Y.; Sashchiuk, A.; Lifshtiz, E. Influence of alloying on the optical properties of IV–VI nanorods. J. Phys. Chem. C 2012, 116, 18983–18989. [Google Scholar] [CrossRef]
- Casavola, M.; van Huis, M.A.; Bals, S.; Lambert, K.; Hens, Z.; Vanmaekelbergh, D. Anisotropic cation exchange in PbSe/CdSe core/shell nanocrystals of different geometry. Chem. Mater. 2011, 24, 294–302. [Google Scholar] [CrossRef]
- Boercker, J.E.; Clifton, E.M.; Tischler, J.G.; Foos, E.E.; Zega, T.J.; Twigg, M.E.; Stroud, R.M. Size and temperature dependence of band-edge excitons in PbSe nanowires. J. Phys. Chem. Lett. 2011, 527–531. [Google Scholar]
- Sashchiuk, A.; Amirav, L.; Bashouti, M.; Krueger, M.; Sivan, U.; Lifshitz, E. Pbse nanocrystal assemblies: Synthesis and structural, optical, and electrical characterization. Nano Lett. 2003, 4, 159–165. [Google Scholar] [CrossRef]
- Mokari, T.; Habas, S.E.; Zhang, M.; Yang, P. Synthesis of lead chalcogenide alloy and core/shell nanowires. Angew. Chem. Int. Ed. 2008, 47, 5605–5608. [Google Scholar] [CrossRef]
- Bashouti, M.; Lifshitz, E. Pbs sub-micrometer structures with anisotropic shape: Ribbons, wires, octapods, and hollowed cubes. Inorg. Chem. 2007, 47, 678–682. [Google Scholar] [CrossRef] [PubMed]
- Lifshitz, E.; Bashouti, M.; Kloper, V.; Kigel, A.; Eisen, M.S.; Berger, S. Synthesis and characterization of PbSe quantum wires, multipods, quantum rods, and cubes. Nano Lett. 2003, 3, 857–862. [Google Scholar] [CrossRef]
- Schliehe, C.; Juarez, B.H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C.; et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 2010, 329, 550–553. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.-S.; Talapin, D.V.; Gaschler, W.; Murray, C.B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.; Bartnik, A.C.; Wise, F.W.; Murray, C.B. Synthesis of monodisperse PbSe nanorods: A case for oriented attachment. J. Am. Chem. Soc. 2010, 132, 3909–3913. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhou, X.; Wang, L.; Tian, X.; Wang, Y.; Pi, Z. Preparation and tunable photoluminescence of alloyed cdSxse1−x nanorods. J. Mater. Sci. 2009, 44, 3015–3019. [Google Scholar] [CrossRef]
- Bealing, C.R.; Baumgardner, W.J.; Choi, J.J.; Hanrath, T.; Hennig, R.G. Predicting nanocrystal shape through consideration of surface-ligand interactions. ACS Nano 2012, 6, 2118–2127. [Google Scholar] [CrossRef] [PubMed]
- Lobo, A.; Borchert, H.; Talapin, D.V.; Weller, H.; Möller, T. Surface oxidation of CdTe nanocrystals—A high resolution core-level photoelectron spectroscopy study. Colloids Surf. A Physicochem. Eng. Asp. 2006, 286, 1–7. [Google Scholar] [CrossRef]
- Efros, A.L.; Rosen, M. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 2000, 30, 475–521. [Google Scholar] [CrossRef]
- Nirmal, M.; Norris, D.J.; Kuno, M.; Bawendi, M.G.; Efros, A.L.; Rosen, M. Observation of the “Dark exciton” In CdSe quantum dots. Phys. Rev. Lett. 1995, 75, 3728. [Google Scholar] [CrossRef] [PubMed]
- Kigel, A.; Brumer, M.; Maikov, G.; Sashchiuk, A.; Lifshitz, E. The ground-state exciton lifetime of PbSe nanocrystal quantum dots. Superlattices Microstruct. 2009, 46, 272–276. [Google Scholar] [CrossRef]
- Nozik, A.J.; Beard, M.C.; Luther, J.M.; Law, M.; Ellingson, R.J.; Johnson, J.C. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 2010, 110, 6873–6890. [Google Scholar] [CrossRef] [PubMed]
- Nair, G.; Geyer, S.M.; Chang, L.-Y.; Bawendi, M.G. Carrier multiplication yields in PbS and PbSe nanocrystals measured by transient photoluminescence. Phys. Rev. B 2008, 78, 125325. [Google Scholar] [CrossRef]
- Schaller, R.D.; Klimov, V.I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601. [Google Scholar] [CrossRef] [PubMed]
- Ellingson, R.J.; Beard, M.C.; Johnson, J.C.; Yu, P.; Micic, O.I.; Nozik, A.J.; Shabaev, A.; Efros, A.L. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 2005, 5, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Trinh, M.T.; Houtepen, A.J.; Schins, J.M.; Hanrath, T.; Piris, J.; Knulst, W.; Goossens, A.P.L.M.; Siebbeles, L.D.A. In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. Nano Lett. 2008, 8, 1713–1718. [Google Scholar] [CrossRef] [PubMed]
- McGuire, J.A.; Joo, J.; Pietryga, J.M.; Schaller, R.D.; Klimov, V.I. New aspects of carrier multiplication in semiconductor nanocrystals. Acc. Chem. Res. 2008, 41, 1810–1819. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Park, S.; Connor, S.T.; Mokari, T.; Cui, Y.; Gaffney, K.J. Efficient multiple exciton generation observed in colloidal PbSe quantum dots with temporally and spectrally resolved intraband excitation. Nano Lett. 2009, 9, 1217–1222. [Google Scholar] [CrossRef] [PubMed]
- Beard, M.C.; Midgett, A.G.; Law, M.; Semonin, O.E.; Ellingson, R.J.; Nozik, A.J. Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett. 2009, 9, 836–845. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Kim, W.J.; Sahoo, Y.; Cartwright, A.N.; Prasad, P.N. Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor. Appl. Phys. Lett. 2008, 92, 031107–031103. [Google Scholar] [CrossRef]
- Trinh, M.T.; Polak, L.; Schins, J.M.; Houtepen, A.J.; Vaxenburg, R.; Maikov, G.I.; Grinbom, G.; Midgett, A.G.; Luther, J.M.; Beard, M.C.; et al. Anomalous independence of multiple exciton generation on different group IV−VI quantum dot architectures. Nano Lett. 2011, 11, 1623–1629. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, P.D.; Boercker, J.E.; Foos, E.E.; Lumb, M.P.; Smith, A.R.; Tischler, J.G.; Melinger, J.S. Enhanced multiple exciton generation in quasi-one-dimensional semiconductors. Nano Lett. 2011, 11, 3476–3481. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.E.; Beard, M.C.; Norman, A.G.; Ahrenkiel, S.P.; Johnson, J.C.; Yu, P.; Mićić, O.I.; Ellingson, R.J.; Nozik, A.J. Pbte colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 2006, 128, 3241–3247. [Google Scholar] [CrossRef] [PubMed]
- Sykora, M.; Koposov, A.Y.; McGuire, J.A.; Schulze, R.K.; Tretiak, O.; Pietryga, J.M.; Klimov, V.I. Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals. ACS Nano 2010, 4, 2021–2034. [Google Scholar] [CrossRef] [PubMed]
- Chappell, H.E.; Hughes, B.K.; Beard, M.C.; Nozik, A.J.; Johnson, J.C. Emission quenching in PbSe quantum dot arrays by short-term air exposure. J. Phys. Chem. Lett. 2011, 2, 889–893. [Google Scholar] [CrossRef]
- Yanover, D.; Vaxenburg, R.; Tilchin, J.; Rubin-Brusilovski, A.; Zaiats, G.; Čapek, R.K.; Sashchiuk, A.; Lifshitz, E. Significance of small-sized PbSe/PbS core/shell colloidal quantum dots for optoelectronic applications. J. Phys. Chem. C 2014, 118, 17001–17009. [Google Scholar] [CrossRef]
- Kovalenko, M.V.; Bodnarchuk, M.I.; Zaumseil, J.; Lee, J.-S.; Talapin, D.V. Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. J. Am. Chem. Soc. 2010, 132, 10085–10092. [Google Scholar] [CrossRef] [PubMed]
- Bae, W.K.; Joo, J.; Padilha, L.A.; Won, J.; Lee, D.C.; Lin, Q.; Koh, W.; Luo, H.; Klimov, V.I.; Pietryga, J.M. Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine. J. Am. Chem. Soc. 2012, 134, 20160–20168. [Google Scholar] [CrossRef] [PubMed]
- Hughes, B.K.; Ruddy, D.A.; Blackburn, J.L.; Smith, D.K.; Bergren, M.R.; Nozik, A.J.; Johnson, J.C.; Beard, M.C. Control of PbSe quantum dot surface chemistry and photophysics using an alkylselenide ligand. ACS Nano 2012, 6, 5498–5506. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Kirstein, S.; Möhwald, H.; Rogach, A.L.; Kornowski, A.; Eychmüller, A.; Weller, H. Strongly photoluminescent CdTe nanocrystals by proper surface modification. J. Phys. Chem. B 1998, 102, 8360–8363. [Google Scholar] [CrossRef]
- Kloper, V.; Osovsky, R.; Kolny-Olesiak, J.; Sashchiuk, A.; Lifshitz, E. The growth of colloidal cadmium telluride nanocrystal quantum dots in the presence of cd0 nanoparticles. J. Phys. Chem. C 2007, 111, 10336–10341. [Google Scholar] [CrossRef]
- Moreels, I.; Fritzinger, B.; Martins, J.C.; Hens, Z. Surface chemistry of colloidal PbSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 15081–15086. [Google Scholar] [CrossRef] [PubMed]
- Abel, K.A.; FitzGerald, P.A.; Wang, T.-Y.; Regier, T.Z.; Raudsepp, M.; Ringer, S.P.; Warr, G.G.; van Veggel, F.C.J.M. Probing the structure of colloidal core/shell quantum dots formed by cation exchange. J. Phys. Chem. C 2012, 116, 3968–3978. [Google Scholar] [CrossRef]
- Fritzinger, B.; Capek, R.K.; Lambert, K.; Martins, J.C.; Hens, Z. Utilizing self-exchange to address the binding of carboxylic acid ligands to CdSe quantum dots. J. Am. Chem. Soc. 2010, 132, 10195–10201. [Google Scholar] [CrossRef] [PubMed]
- Tracy, J.B.; Weiss, D.N.; Dinega, D.P.; Bawendi, M.G. Exchange biasing and magnetic properties of partially and fully oxidized colloidal cobalt nanoparticles. Phys. Rev. B 2005, 72, 064404. [Google Scholar] [CrossRef]
- Mukherjee, B.; Peterson, A.; Subramanian, V.R. 1D CdS/PbS heterostructured nanowire synthesis using cation exchange. Chem. Commun. 2012, 48, 2415–2417. [Google Scholar] [CrossRef]
- Smith, A.M.; Nie, S. Bright and compact alloyed quantum dots with broadly tunable near-infrared absorption and fluorescence spectra through mercury cation exchange. J. Am. Chem. Soc 2011, 133, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.-H.; Protesescu, L.; Kovalenko, M.V.; Loi, M.A. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots. Phys. Chem. Chem. Phys. 2014, 16, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liang, H.; Vidal, F.; Rosei, F.; Vomiero, A.; Ma, D. Size dependence of temperature-related optical properties of PbS and PbS/CdS core/shell quantum dots. J. Phys. Chem. C 2014, 118, 20585–20593. [Google Scholar] [CrossRef]
- Pietryga, J.M.; Werder, D.J.; Williams, D.J.; Casson, J.L.; Schaller, R.D.; Klimov, V.I.; Hollingsworth, J.A. Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. J. Am. Chem. Soc. 2008, 130, 4879–4885. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gibbs, M.; Perkins, C.L.; Tolentino, J.; Zarghami, M.H.; Bustamante, J.; Law, M. Robust, functional nanocrystal solids by infilling with atomic layer deposition. Nano Lett. 2011, 11, 5349–5355. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Luther, J.M.; Zheng, H.; Wu, Y.; Alivisatos, A.P. Photovoltaic devices employing ternary PbSxSe1–x nanocrystals. Nano Lett. 2009, 9, 1699–1703. [Google Scholar] [CrossRef] [PubMed]
- Sashchiuk, A.; Yanover, D.; Rubin-Brusilovski, A.; Maikov, G.I.; Capek, R.K.; Vaxenburg, R.; Tilchin, J.; Zaiats, G.; Lifshitz, E. Tuning of electronic properties in IV–VI colloidal nanostructures by alloy composition and architecture. Nanoscale 2013, 5, 7724–7745. [Google Scholar] [CrossRef] [PubMed]
- Efros, A.L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D.J.; Bawendi, M. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys. Rev. B 1996, 54, 4843–4856. [Google Scholar] [CrossRef]
- Brovelli, S.; Schaller, R.D.; Crooker, S.A.; García-Santamaría, F.; Chen, Y.; Viswanatha, R.; Hollingsworth, J.A.; Htoon, H.; Klimov, V.I. Nano-engineered electron–hole exchange interaction controls exciton dynamics in core–shell semiconductor nanocrystals. Nat. Commun. 2011, 2, 280. [Google Scholar] [CrossRef] [PubMed]
- Kigel, A.; Brumer, M.; Maikov, G.I.; Sashchiuk, A.; Lifshitz, E. Thermally activated photoluminescence in lead selenide colloidal quantum dots. Small 2009, 5, 1675–1681. [Google Scholar] [CrossRef] [PubMed]
- Shabaev, A.; Hellberg, C.S.; Efros, A.L. Efficiency of multiexciton generation in colloidal nanostructures. Acc. Chem. Res. 2013, 46, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Vaxenburg, R.; Lifshitz, E.; Efros, A.L. Suppression of auger-stimulated efficiency droop in nitride-based light emitting diodes. Appl. Phys. Lett. 2013, 102, 031120–031125. [Google Scholar] [CrossRef]
- Delerue, C.; Allan, G.; Pijpers, J.J.H.; Bonn, M. Carrier multiplication in bulk and nanocrystalline semiconductors: Mechanism, efficiency, and interest for solar cells. Phys. Rev. B 2010, 81, 125306. [Google Scholar] [CrossRef]
- Padilha, L.A.; Stewart, J.T.; Sandberg, R.L.; Bae, W.K.; Koh, W.-K.; Pietryga, J.M.; Klimov, V.I. Aspect ratio dependence of auger recombination and carrier multiplication in PbSe nanorods. Nano Lett. 2013, 13, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Trinh, M.T.; Limpens, R.; de Boer, W.D.A.M.; Schins, J.M.; Siebbeles, L.D.A.; Gregorkiewicz, T. Direct generation of multiple excitons in adjacent silicon nanocrystals revealed by induced absorption. Nat. Photonics 2012, 6, 316–321. [Google Scholar] [CrossRef]
- An, J.M.; Franceschetti, A.; Dudiy, S.V.; Zunger, A. The peculiar electronic structure of PbSe quantum dots. Nano Lett. 2006, 6, 2728–2735. [Google Scholar] [CrossRef] [PubMed]
- An, J.M.; Franceschetti, A.; Zunger, A. The excitonic exchange splitting and radiative lifetime in PbSe quantum dots. Nano Lett. 2007, 7, 2129–2135. [Google Scholar] [CrossRef]
- Liu, H.; Guyot-Sionnest, P. Photoluminescence lifetime of lead selenide colloidal quantum dots. J. Phys. Chem. C 2010, 114, 14860–14863. [Google Scholar] [CrossRef]
- Ouyang, J.; Vincent, M.; Kingston, D.; Descours, P.; Boivineau, T.; Zaman, M.B.; Wu, X.; Yu, K. Noninjection, one-pot synthesis of photoluminescent colloidal homogeneously alloyed CdSes quantum dots. J. Phys. Chem. C 2009, 113, 5193–5200. [Google Scholar] [CrossRef]
- Zhong, X.; Han, M.; Dong, Z.; White, T.J.; Knoll, W. Composition-tunable ZnxCd1–xSe nanocrystals with high luminescence and stability. J. Am. Chem. Soc. 2003, 125, 8589–8594. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.E.; Nie, S. Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 2003, 125, 7100–7106. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.K.; Luther, J.M.; Semonin, O.E.; Nozik, A.J.; Beard, M.C. Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity. ACS Nano 2010, 5, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Maikov, G.I.; Vaxenburg, R.; Sashchiuk, A.; Lifshitz, E. Composition-tunable optical properties of colloidal IV–VI quantum dots, composed of core/shell heterostructures with alloy components. ACS Nano 2010, 4, 6547–6556. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ren, X.; Kahen, K.; Hahn, M.A.; Rajeswaran, M.; Maccagnano-Zacher, S.; Silcox, J.; Cragg, G.E.; Efros, A.L.; Krauss, T.D. Non-blinking semiconductor nanocrystals. Nature 2009, 459, 686–689. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Daou, T.J.; Texier, I.; Kim Chi, T.T.; Liem, N.Q.; Reiss, P. Highly luminescent CuInS2/ZnS core/shell nanocrystals: Cadmium-free quantum dots for in vivo imaging. Chem. Mater. 2009, 21, 2422–2429. [Google Scholar] [CrossRef]
- Osovsky, R.; Cheskis, D.; Kloper, V.; Sashchiuk, A.; Kroner, M.; Lifshitz, E. Continuous-wave pumping of multiexciton bands in the photoluminescence spectrum of a single CdTe-CdSe core-shell colloidal quantum dot. Phys. Rev. Lett. 2009, 102, 197401. [Google Scholar] [CrossRef] [PubMed]
- Oron, D.; Kazes, M.; Banin, U. Multiexcitons in type-II colloidal semiconductor quantum dots. Phys. Rev. B 2007, 75, 035330. [Google Scholar] [CrossRef]
- Vaxenburg, R.; Lifshitz, E. Alloy and heterostructure architectures as promising tools for controlling electronic properties of semiconductor quantum dots. Phys. Rev. B 2012, 85, 075304. [Google Scholar] [CrossRef]
- Abel, K.A.; Qiao, H.; Young, J.F.; van Veggel, F.C.J.M. Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots. J. Phys. Chem. Lett. 2010, 1, 2334–2338. [Google Scholar] [CrossRef]
- Lambert, K.; Geyter, B.D.; Moreels, I.; Hens, Z. PbTe|CdTe core|shell particles by cation exchange, a HR-TEM study. Chem. Mater. 2009, 21, 778–780. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.C.; Robel, I.; Pietryga, J.M.; Klimov, V.I. Infrared-active heterostructured nanocrystals with ultralong carrier lifetimes. J. Am. Chem. Soc. 2010, 132, 9960–9962. [Google Scholar] [CrossRef] [PubMed]
- Bartnik, A.C.; Efros, A.L.; Koh, W.K.; Murray, C.B.; Wise, F.W. Electronic states and optical properties of PbSe nanorods and nanowires. Phys. Rev. B 2010, 82, 195313. [Google Scholar] [CrossRef]
- De Geyter, B.; Justo, Y.; Moreels, I.; Lambert, K.; Smet, P.F.; Van Thourhout, D.; Houtepen, A.J.; Grodzinska, D.; de Mello Donega, C.; Meijerink, A.; et al. The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots. ACS Nano 2010, 5, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Allan, G.; Delerue, C. Confinement effects in PbSe quantum wells and nanocrystals. Phys. Rev. B 2004, 70, 245321. [Google Scholar] [CrossRef]
- Zhou, S.; Dong, L.; Popov, S.; Friberg, A.T. Radiative properties of carriers in CdSe-CdS core-shell heterostructured nanocrystals of various geometries. J. Eur. Opt. Soc. Rap. Publ. 2013, 8. [Google Scholar] [CrossRef]
- Cragg, G.E.; Efros, A.L. Suppression of auger processes in confined structures. Nano Lett. 2009, 10, 313–317. [Google Scholar] [CrossRef]
- Wei, S.-H.; Zunger, A. Electronic and structural anomalies in lead chalcogenides. Phys. Rev. B 1997, 55, 13605. [Google Scholar] [CrossRef]
- Knapp, R.A. Photoelectric properties of lead sulfide in the near and vacuum ultraviolet. Phys. Rev. 1963, 132, 1891. [Google Scholar] [CrossRef]
- Preier, H. Recent advances in lead-chalcogenide diode lasers. Appl. Phys. A 1979, 20, 189–206. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, Q.; Li, X.; Liang, J.; Colvin, V.L.; Wang, Y.; Yu, W.W. PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence. Langmuir 2011, 27, 9583–9587. [Google Scholar] [CrossRef] [PubMed]
- Yanover, D.; Čapek, R.K.; Rubin-Brusilovski, A.; Vaxenburg, R.; Grumbach, N.; Maikov, G.I.; Solomeshch, O.; Sashchiuk, A.; Lifshitz, E. Small-sized PbSe/PbS core/shell colloidal quantum dots. Chem. Mater. 2012, 24, 4417–4423. [Google Scholar] [CrossRef]
- Dai, Q.; Wang, Y.; Li, X.; Zhang, Y.; Pellegrino, D.J.; Zhao, M.; Zou, B.; Seo, J.; Wang, Y.; Yu, W. Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals. ACS Nano 2009, 3, 1518–1524. [Google Scholar] [CrossRef] [PubMed]
- Moreels, I.; Lambert, K.; de Muynck, D.; Vanhaecke, F.; Poelman, D.; Martins, J.; Allan, G.; Hens, Z. Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chem. Mater. 2007, 19, 6101–6106. [Google Scholar] [CrossRef]
- Murray, C.B.; Shouheng, S.; Gaschler, W.; Doyle, H.; Betley, T.A.; Kagan, C.R. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 2001, 45, 47–56. [Google Scholar] [CrossRef]
- Houtepen, A.J.; Koole, R.; Vanmaekelbergh, D.; Meeldijk, J.; Hickey, S.G. The hidden role of acetate in the PbSe nanocrystal synthesis. J. Am. Chem. Soc. 2006, 128, 6792–6793. [Google Scholar] [CrossRef] [PubMed]
- Jasieniak, J.; Califano, M.; Watkins, S.E. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano 2011, 5, 5888–5902. [Google Scholar] [CrossRef] [PubMed]
- Grinbom, G.A.; Saraf, M.; Saguy, C.; Bartnik, A.C.; Wise, F.; Lifshitz, E. Density of states in a single PbSe/PbS core-shell quantum dot measured by scanning tunneling spectroscopy. Phys. Rev. B 2010, 81, 245301. [Google Scholar] [CrossRef]
- Garrett, M.D.; Dukes, A.D., III; McBride, J.R.; Smith, N.J.; Pennycook, S.J.; Rosenthal, S.J. Band edge recombination in CdSe, CdS and CdSxSe1−x alloy nanocrystals observed by ultrafast fluorescence upconversion: The effect of surface trap states. J. Phys. Chem. C 2008, 112, 12736–12746. [Google Scholar] [CrossRef]
- Huang, Y.H.; Cheng, C.L.; Chen, T.T.; Chen, Y.F.; Tsen, K.T. Studies of stokes shift in InxGa1–XN alloys. J. Appl. Phys. 2007, 101. [Google Scholar] [CrossRef]
- Swafford, L.A.; Weigand, L.A.; Bowers, M.J.; McBride, J.R.; Rapaport, J.L.; Watt, T.L.; Dixit, S.K.; Feldman, L.C.; Rosenthal, S.J. Homogeneously alloyed CdSxSe1–x nanocrystals: Synthesis, characterization, and composition/size-dependent band gap. J. Am. Chem. Soc. 2006, 128, 12299–12306. [Google Scholar] [CrossRef] [PubMed]
- Hyun, B.-R.; Zhong, Y.-W.; Bartnik, A.C.; Sun, L.; Abruña, H.D.; Wise, F.W.; Goodreau, J.D.; Matthews, J.R.; Leslie, T.M.; Borrelli, N.F. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS Nano 2008, 2, 2206–2212. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Brzozowski, L.; Barkhouse, D.A.R.; Wang, X.; Debnath, R.; Wolowiec, R.; Palmiano, E.; Levina, L.; Pattantyus-Abraham, A.G.; Jamakosmanovic, D.; et al. Quantum dot photovoltaics in the extreme quantum confinement regime: The surface-chemical origins of exceptional air- and light-stability. ACS Nano 2010, 4, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Krauss, T.D.; Wise, F.W. Raman-scattering study of exciton-phonon coupling in PbS nanocrystals. Phys. Rev. B 1997, 55, 9860. [Google Scholar] [CrossRef]
- Grodzińska, D.; Evers, W.H.; Dorland, R.; van Rijssel, J.; van Huis, M.A.; Meijerink, A.; de Mello Donegá, C.; Vanmaekelbergh, D. Two-fold emission from the s-shell of PbSe/CdSe core/shell quantum dots. Small 2011, 7, 3493–3501. [Google Scholar] [CrossRef] [PubMed]
- Harbold, J.M.; Wise, F.W. Photoluminescence spectroscopy of PbSe nanocrystals. Phys. Rev. B 2007, 76, 125304. [Google Scholar] [CrossRef]
- Lifshitz, E.; Brumer, M.; Kigel, A.; Sashchiuk, A.; Bashouti, M.; Sirota, M.; Galun, E.; Burshtein, Z.; Le Quang, A.Q.; Ledoux-Rak, I.; et al. Air-stable PbSe/PbS and PbSe/PbSexS1–x core/shell nanocrystal quantum dots and their applications. J. Phys. Chem. B 2006, 110, 25356–25365. [Google Scholar] [CrossRef] [PubMed]
- An, J.M.; Califano, M.; Franceschetti, A.; Zunger, A. Excited-state relaxation in PbSe quantum dots. J. Chem. Phys. 2008, 128, 164720–164727. [Google Scholar] [CrossRef] [PubMed]
- Lifshitz, E.; Vaxenburg, R.; Maikov, G.I.; Rubin-Brusilovski, A.; Yanover, D.; Tilchin, J.; Sashchiuk, A. The influence of alloy composition on the electronic properties of IV–VI core/shell colloidal heterostructures. Isr. J. Chem. 2012, 52, 1037–1052. [Google Scholar] [CrossRef]
- Moreels, I.; Lambert, K.; Smeets, D.; de Muynck, D.; Nollet, T.; Martins, J.C.; Vanhaecke, F.; Vantomme, A.; Delerue, C.; Allan, G.; et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 2009, 3, 3023–3030. [Google Scholar] [CrossRef] [PubMed]
- Oron, D.; Aharoni, A.; de Mello Donega, C.; van Rijssel, J.; Meijerink, A.; Banin, U. Universal role of discrete acoustic phonons in the low-temperature optical emission of colloidal quantum dots. Phys. Rev. Lett. 2009, 102, 177402. [Google Scholar] [CrossRef] [PubMed]
- Gurioli, M.; Vinattieri, A.; Colocci, M.; Deparis, C.; Massies, J.; Neu, G.; Bosacchi, A.; Franchi, S. Temperature dependence of the radiative and nonradiative recombination time in GaAs/AlxGa1–x as quantum-well structures. Phys. Rev. B 1991, 44, 3115. [Google Scholar] [CrossRef]
- Chun Hsiung, W.; Tzung, T.C.; Yang, F.C.; Mei, L.H.; Chih, W.L.; Pi, T.C. Recombination dynamics in CdTe/CdSe type-II quantum dots. Nanotechnology 2008, 19, 115702. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Guyot-Sionnest, P. Slow electron cooling in colloidal quantum dots. Science 2008, 322, 929–932. [Google Scholar] [CrossRef] [PubMed]
- Cirloganu, C.M.; Padilha, L.A.; Lin, Q.; Makarov, N.S.; Velizhanin, K.A.; Luo, H.; Robel, I.; Pietryga, J.M.; Klimov, V.I. Enhanced carrier multiplication in engineered quasi-type-II quantum dots. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Neo, D.C.J.; Cheng, C.; Stranks, S.D.; Fairclough, S.M.; Kim, J.S.; Kirkland, A.I.; Smith, J.M.; Snaith, H.J.; Assender, H.E.; Watt, A.A.R. Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells. Chem. Mater. 2014, 26, 4004–4013. [Google Scholar] [CrossRef]
- Grumbach, N.; Rubin-Brusilovski, A.; Maikov, G.I.; Tilchin, E.; Lifshitz, E. Manipulation of carrier–Mn2+ exchange interaction in CdTe/CdSe colloidal quantum dots by controlled positioning of Mn2+ impurities. J. Phys. Chem. C 2013, 117, 21021–21027. [Google Scholar] [CrossRef]
- Chikan, V. Challenges and prospects of electronic doping of colloidal quantum dots: Case study of CdSe. J. Phys. Chem. Lett. 2011, 2, 2783–2789. [Google Scholar] [CrossRef]
- Ma, G. Background-free in vivo time domain optical molecular imaging using colloidal quantum dots. ACS Appl. Mater. Interfaces 2013, 5, 2835–2844. [Google Scholar] [CrossRef] [PubMed]
- Pichaandi, J.; van Veggel, F.C.J.M. Near-infrared emitting quantum dots: Recent progress on their synthesis and characterization. Coord. Chem. Rev. 2014, 263–264, 138–150. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaiats, G.; Yanover, D.; Vaxenburg, R.; Tilchin, J.; Sashchiuk, A.; Lifshitz, E. PbSe-Based Colloidal Core/Shell Heterostructures for Optoelectronic Applications. Materials 2014, 7, 7243-7275. https://doi.org/10.3390/ma7117243
Zaiats G, Yanover D, Vaxenburg R, Tilchin J, Sashchiuk A, Lifshitz E. PbSe-Based Colloidal Core/Shell Heterostructures for Optoelectronic Applications. Materials. 2014; 7(11):7243-7275. https://doi.org/10.3390/ma7117243
Chicago/Turabian StyleZaiats, Gary, Diana Yanover, Roman Vaxenburg, Jenya Tilchin, Aldona Sashchiuk, and Efrat Lifshitz. 2014. "PbSe-Based Colloidal Core/Shell Heterostructures for Optoelectronic Applications" Materials 7, no. 11: 7243-7275. https://doi.org/10.3390/ma7117243
APA StyleZaiats, G., Yanover, D., Vaxenburg, R., Tilchin, J., Sashchiuk, A., & Lifshitz, E. (2014). PbSe-Based Colloidal Core/Shell Heterostructures for Optoelectronic Applications. Materials, 7(11), 7243-7275. https://doi.org/10.3390/ma7117243