Synthesis and Structural Characterization of Silver Nanoparticles Stabilized with 3-Mercapto-1-Propansulfonate and 1-Thioglucose Mixed Thiols for Antibacterial Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ag-3MPS-TG Nanoparticles Synthesis and Purification
2.2. Structural Characterization
2.2.1. X-ray Absorption Spectroscopy
2.2.2. X-ray Photoelectron Spectroscopy
2.3. Antibacterial Activity
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Synthesis of AgNPs
3.2.1. Synthesis of AgNPs-3MPS
3.2.2. Synthesis of AgNPs-3MPS-TGs
3.3. Spectroscopic Methods
3.3.1. UV–Visible Spectroscopy and Dynamic Light Scattering
3.3.2. Transmission Electron Microscopy
3.3.3. X-ray Absorption Spectroscopy
3.3.4. X-ray Photoemission Spectroscopy
3.4. Microbiology
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pendleton, J.N.; Gorman, S.P.; Gilmore, B.F. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti-Infect. Ther. 2013, 11, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Huh, A.J.; Kwon, Y.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 2011, 156, 128–145. [Google Scholar] [CrossRef] [PubMed]
- Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver nanoparticles as potential antibacterial agents. Molecules 2015, 20, 8856–8874. [Google Scholar] [CrossRef] [PubMed]
- Durán, N.; Durán, M.; Bispo de Jesus, M.; Seabra, A.B.; Fávaro, W.J.; Nakazato, G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 789–799. [Google Scholar]
- Singh, R.; Shedbalkar, U.U.; Wadhwani, S.A.; Chopade, B.A. Bacteriagenic silver nanoparticles: Synthesis, mechanism, and applications. Appl. Microbiol. Biotechnol. 2015, 99, 4579–4593. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Kon, K.; Ingle, A.; Duran, N.; Galdiero, S.; Galdiero, M. Broad-spectrum bioactivities of silver nanoparticles: The emerging trends and future prospects. Appl. Microbiol. Biotechnol. 2014, 98, 1951–1961. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Lamana, J.; Slaveykova, V.I. Silver nanoparticle behaviour in lake water depends on their surface coating. Sci. Total Environ. 2016, 573, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Porcaro, F.; Battocchio, C.; Antoccia, A.; Fratoddi, I.; Venditti, I.; Fracassi, A.; Luisetto, I.; Russo, M.V.; Polzonetti, G. Synthesis of functionalized gold nanoparticles capped with 3-mercapto-1-propansulfonate and 1-thioglucose mixed thiols and “in vitro” bioresponse. Colloids Surf. B Biointerfaces 2016, 142, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. Chem. Commun. 1994, 7, 801–802. [Google Scholar] [CrossRef]
- Zhao, P.; Li, N.; Astruc, D. State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 2013, 257, 638–665. [Google Scholar] [CrossRef]
- Cametti, C.; Fratoddi, I.; Venditti, I.; Russo, M.V. Dielectric relaxations of ionic thiol-coated noble metal nanoparticles in aqueous solutions: Electrical characterization of the interface. Langmuir 2011, 27, 7084–7090. [Google Scholar] [CrossRef] [PubMed]
- Katti, K.K.; Kattumuri, V.; Bhaskaran, S.; Katti, K.V.; Kannan, R. Facile and general Method for synthesis of sugar coated gold nanoparticles. Int. J. Green Nanotechnol. Biomed. 2009, 1, B53–B59. [Google Scholar] [CrossRef] [PubMed]
- Fratoddi, I.; Venditti, I.; Battocchio, C.; Polzonetti, G.; Cametti, C.; Russo, M.V. Core shell hybrids based on noble metal nanoparticles and conjugated polymers: Synthesis and characterization. Nanoscale Res. Lett. 2011, 6, 98. [Google Scholar] [CrossRef] [PubMed]
- Mobilio, S.; Boscherini, F.; Meneghini, C. Synchrotron Radiation Basics, Methods and Applications, 1st ed.; Springer: Berlin, Germany, 2014; pp. 213–240. [Google Scholar]
- Liu, F.; Wechsler, D.; Zhang, P. Alloy-structure-dependent electronic behavior and surface properties of Au–Pd nanoparticles. Chem. Phys. Lett. 2008, 461, 254–259. [Google Scholar] [CrossRef]
- Koningsberger, D.C.; Mojet, B.L.; Dorssen, G.E.; Van Ramaker, D.E. XAFS spectroscopy; fundamental principles and data analysis. Top. Catal. 2000, 10, 144–155. [Google Scholar]
- Padmos, J.D.; Zhang, P. Surface structure of organosulfur stabilized silver nanoparticles studied with X-ray absorption spectroscopy. J. Phys. Chem. C 2012, 116, 23094–23101. [Google Scholar] [CrossRef]
- Calvin, S.; Miller, M.M.; Goswami, R.; Cheng, S.F.; Mulvaney, S.P.; Whitman, L.J.; Harris, V.G. Determination of crystallite size in a magnetic nanocomposite using extended X-ray absorption fine structure. J. Appl. Phys. 2003, 94, 778–783. [Google Scholar] [CrossRef]
- Battocchio, C.; Meneghini, C.; Fratoddi, I.; Venditti, I.; Russo, M.V.; Aquilanti, G.; Maurizio, C.; Bondino, F.; Matassa, R.; Rossi, M.; et al. Silver nanoparticles stabilized with thiols: A close look at the local chemistry and chemical structure. J. Phys. Chem. C 2012, 116, 19571–19578. [Google Scholar] [CrossRef]
- Jentys, A. Estimation of mean size and shape of small metal particles by EXAFS. Phys. Chem. Chem. Phys. 1999, 1, 4059–4063. [Google Scholar] [CrossRef]
- Zhang, S.; Leem, G.; Lee, T.R. Monolayer-protected gold nanoparticles prepared using long-chain alkanethioacetates. Langmuir 2009, 15, 13855–13860. [Google Scholar] [CrossRef] [PubMed]
- NIST X-ray Photoelectron Spectroscopy Database; version 4.1; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2012. Available online: http://srdata.nist.gov/xps/ (accessed on 12 November 2016).
- Battocchio, C.; Porcaro, F.; Mukherjee, S.; Magnano, E.; Nappini, S.; Fratoddi, I.; Quintiliani, M.; Russo, M.V.; Polzonetti, G. Gold nanoparticles stabilized with aromatic thiols: Interaction at the molecule–metal interface and ligand arrangement in the molecular shell investigated by SR-XPS and NEXAFS. J. Phys. Chem. C 2014, 118, 8159–8168. [Google Scholar] [CrossRef]
- Vitale, F.; Vitaliano, R.; Battocchio, C.; Fratoddi, I.; Giannini, C.; Piscopiello, E.; Guagliardi, A.; Cervellino, A.; Polzonetti, G.; Russo, M.V.; et al. Synthesis and microstructural investigations of organometallic Pd(II) thiol-gold nanoparticles hybrids. Nanoscale Res. Lett. 2008, 3, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Venditti, I.; Fontana, L.; Fratoddi, I.; Battocchio, C.; Cametti, C.; Sennato, S.; Mura, F.; Sciubba, F.; Delfini, M.; Russo, M.V. Direct interaction of hydrophilic gold nanoparticles with dexamethasone drug: Loading and release study. J. Colloid Interface Sci. 2014, 418, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Venditti, I.; Fratoddi, I.; Palazzesi, C.; Prosposito, P.; Casalboni, M.; Cametti, C.; Battocchio, C.; Polzonetti, G.; Russo, M.V. Self-assembled nanoparticles of functional copolymers for photonic applications. J. Colloid Interface Sci. 2010, 348, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Quintiliani, M.; Bassetti, M.; Pasquini, C.; Battocchio, C.; Rossi, M.; Mura, F.; Matassa, R.; Fontana, L.; Russo, M.V.; Fratoddi, I. Network assembly of gold nanoparticles linked through fluorenyl dithiol bridges. J. Mater. Chem. C 2014, 2, 2517–2527. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Bunker, G. Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy, 1st ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 125–134. [Google Scholar]
- Spreadborough, J.; Christian, J.W. High-temperature X-ray diffractometer. J. Sci. Instrum. 1959, 36, 116–118. [Google Scholar] [CrossRef]
- Zabinsky, S.I.; Rehr, J.J.; Ankudinov, A.; Albers, R.C.; Eller, M.J. Multiple-scattering calculations of X-ray-absorption spectra. Phys. Rev. B 1995, 52, 2995–3009. [Google Scholar] [CrossRef]
- Swift, P.; Shuttleworth, D.; Seah, M.P. Quantification of AES and XPS. In Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy; Briggs, D., Seah, M.P., Eds.; John Wiley & Sons: Chichester, UK, 1983; pp. 201–251. [Google Scholar]
- Shirley, D.A. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef]
- Soupene, E.; van Heeswijk, W.C.; Plumbridge, J.; Stewart, V.; Bertenthal, D.; Lee, H.; Prasad, G.; Paliy, O.; Charernnoppakul, P.; Kustu, S. Physiological studies of Escherichia coli strain MG1655: Growth defects and apparent cross-regulation of gene expression. J. Bacteriol. 2003, 185, 5611–5626. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, I.; Hilpert, K.; Hancock, R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Molar Ratio | DLS | ||
---|---|---|---|---|
Ag | 3MPS | TG | Size (nm); Z Potential (mV) | |
AgNPs-3MPS | 1 | 4 | / | 10 ± 2; −33 ± 2 |
AgNPs-3MPS-TG1 | 1 | 4 | 0.1 | 3 ± 1; −40 ± 5 |
AgNPs-3MPS-TG2 | 1 | 4 | 0.5 | 6 ± 2; −38 ± 4 |
Sample | Shell | Bond | CN | R (Å) | σ2 (Å2) | ∆E0 (eV) | R-Factor | Diameter (nm) |
---|---|---|---|---|---|---|---|---|
Ag-Foil | I | Ag–Ag | 12 * | 2.86 (1) | 0.0092 (4) | 3.1 (1) | 0.009 | ∞ |
AgNPs-3MPS | I | Ag–Ag | 11.2 (4) | 2.85 (1) | 0.010 (1) | 2.8 (1) | 0.010 | 13 (1) |
AgNPs-3MPS-TG1 | I | Ag–Ag | 11.1 (3) | 2.85 (1) | 0.010 (1) | 2.8 (1) | 0.013 | 11 (1) |
AgNPs-3MPS-TG2 | I | Ag–Ag | 10.8 (4) | 2.85 (1) | 0.010 (1) | 3.0 (1) | 0.013 | 9 (1) |
RS-Ag | BE (eV) | Ni/Ntot |
AgNPs-3MPS | 161.33 | 0.8 |
AgNPs-3MPS-TG1 | 161.53 | 0.7 |
Sulfonates | BE (eV) | Ni/Ntot |
AgNPs-3MPS | 169.06 | 1 |
AgNPs-3MPS-TG1 | 168.31 | 1 |
O=C, –SO3– | BE (eV) | Ni/Ntot | Atomic (%) |
AgNPs-3MPS | 532.25 | 0.46 | 30.17 |
AgNPs-3MPS-TG1 | 532.03 | 0.56 | 31.37 |
AgNPs-3MPS-TG2 | 532.29 | 1.09 | 43.89 |
C–OH | BE (eV) | Ni/Ntot | Atomic (%) |
AgNPs-3MPS | 533.6 | 0.07 | 4.71 |
AgNPs-3MPS-TG1 | 533.5 | 0.23 | 12.85 |
AgNPs-3MPS-TG2 | 533.73 | 0.39 | 15.84 |
Strain | IC50 | IC90 | ||||
---|---|---|---|---|---|---|
AgNPs-3MPS | AgNPs-3MPS-TG1 | AgNPs-3MPS-TG2 | AgNPs-3MPS | AgNPs-3MPS-TG1 | AgNPs-3MPS-TG2 | |
E. coli ATCC47076 | 55 ± 2.2 | 27 ± 1.5 | 33 ± 2.3 | 122 ± 2.9 | 56 ± 3.2 | 119 ± 2.4 |
S. aureus ATCC25923 | >128 | 59 ± 2.4 | 62 ± 3.3 | >128 | >128 | >128 |
K. pneumoniae ATCC27736 | >128 | 122 ± 2.6 | >128 | >128 | >128 | >128 |
A. baumannii ATCC19606T | >128 | >128 | >128 | >128 | >128 | >128 |
P. aeruginosa ATCC15692 | 98 ± 3.6 | 25 ± 3.2 | 88 ±2.6 | 119 ± 3.1 | 31 ± 2.5 | 120 ± 2.7 |
E. faecalis ATCC29212 | 126 ± 1.2 | 39 ± 2.4 | 28 ± 2.2 | >128 | 59 ± 2.3 | >128 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porcaro, F.; Carlini, L.; Ugolini, A.; Visaggio, D.; Visca, P.; Fratoddi, I.; Venditti, I.; Meneghini, C.; Simonelli, L.; Marini, C.; et al. Synthesis and Structural Characterization of Silver Nanoparticles Stabilized with 3-Mercapto-1-Propansulfonate and 1-Thioglucose Mixed Thiols for Antibacterial Applications. Materials 2016, 9, 1028. https://doi.org/10.3390/ma9121028
Porcaro F, Carlini L, Ugolini A, Visaggio D, Visca P, Fratoddi I, Venditti I, Meneghini C, Simonelli L, Marini C, et al. Synthesis and Structural Characterization of Silver Nanoparticles Stabilized with 3-Mercapto-1-Propansulfonate and 1-Thioglucose Mixed Thiols for Antibacterial Applications. Materials. 2016; 9(12):1028. https://doi.org/10.3390/ma9121028
Chicago/Turabian StylePorcaro, Francesco, Laura Carlini, Andrea Ugolini, Daniela Visaggio, Paolo Visca, Ilaria Fratoddi, Iole Venditti, Carlo Meneghini, Laura Simonelli, Carlo Marini, and et al. 2016. "Synthesis and Structural Characterization of Silver Nanoparticles Stabilized with 3-Mercapto-1-Propansulfonate and 1-Thioglucose Mixed Thiols for Antibacterial Applications" Materials 9, no. 12: 1028. https://doi.org/10.3390/ma9121028
APA StylePorcaro, F., Carlini, L., Ugolini, A., Visaggio, D., Visca, P., Fratoddi, I., Venditti, I., Meneghini, C., Simonelli, L., Marini, C., Olszewski, W., Ramanan, N., Luisetto, I., & Battocchio, C. (2016). Synthesis and Structural Characterization of Silver Nanoparticles Stabilized with 3-Mercapto-1-Propansulfonate and 1-Thioglucose Mixed Thiols for Antibacterial Applications. Materials, 9(12), 1028. https://doi.org/10.3390/ma9121028