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Abstract: The goal of this paper is to analyse the effect of adding Al on the non-steady pearlite growth
occurring in a Fe–C–Mn system. The results are discussed in terms of the partitioning of elements
across the austenite/ferrite and austenite/cementite interfaces, and the modification of the pearlite
driving force related to the change in carbon activity in austenite.
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1. Introduction

The decomposition of austenite is one of the most technologically important phase
transformations, since the kinetics of these reactions determine to a large degree the properties of
the steel. From a fundamental point of view, seminal works of Hillert [1], Mehl [2], and Hultgren [3]
allow us to understand the kinetics of austenite-to-pearlite transformation in Fe–C alloys. On the
other hand, a number of attempts have been made to study the effect of ternary additions on the
kinetics of pearlite transformation [4–8]. This addition alters the formation of pearlite by affecting
the nucleation and growth rates [2]. All alloying elements in steels, with the exception of Co, retard
pearlite transformation kinetics [8].

Nevertheless, the role of an austenite stabiliser such as Mn deserves special attention. The addition
of Mn induces at specific three-phase austenite (γ) + ferrite (α) + cementite (θ) regions, where austenite
and pearlite coexist in equilibrium [9]. Hutchinson et al. [10] studied the isothermal growth of
partitioned pearlite in a series of high-purity Fe–C–Mn alloys. They reported two types of pearlite
morphologies and determined the Mn distribution across the interface and in the product phases by
the use of analytical transmission electron microscopy (ATEM). The authors concluded that for the
alloy transformed within the (α + θ) two-phase field, the Mn contents inherited by the growing α

and θ were remarkably constant for much of the reaction. This is consistent with the fact that the
driving force for the reaction is constant; hence, pearlite grows under steady-state conditions [1,10].
Thus, pearlite reaction proceeds with constant interlamellar spacing and a growth rate, consuming
100% of the parent austenite. In the case of the alloy transformed within the (γ + α + θ) three-phase
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field, the Mn contents inherited by the growing α and θ both increased with time, which is explained
on the basis of the driving force continuously decreasing while the reaction takes place, thereby
decreasing the growth rate and increasing the interlamellar spacing, also leading to a pearlite volume
fraction lower than 100% [1,10,11]. Cahn and Hagel used the name of divergent pearlite to describe this
pearlitic morphology [11]; later, Hillert provided a thermodynamic description of this experimental
observation [1].

Additionally, the partitioning of the substitutional solutes between ferrite and cementite has
a strong effect on the growth mechanism. It is now generally agreed that, during pearlite growth,
the partitioning of alloying elements between ferrite and cementite occurs at low supersaturations,
and the growth is controlled by boundary diffusion. By contrast, at high supersaturations, pearlite
growth occurs without any partitioning of the alloying element, and the growth is controlled by carbon
volume diffusion. These two growth modes are known as partition local equilibrium (PLE) and as
non-partition local equilibrium (NPLE), respectively [12–14]. Hultgren coined the term “para-pearlite”
for any eutectoid structure in which the partitioning of substitutional elements between product phases
cannot be expected, and “ortho-pearlite” for structures in which the alloying element partitioning
occurs according to phase equilibria [3]. Austenite stabiliser elements, e.g., Ni, have low solubility
in cementite and will encourage the non-partitioning reaction. By contrast, those elements which
are strong ferrite formers, e.g., Cr, Mo, are soluble in cementite, and hence are likely to exhibit a
partitioning type reaction at a higher transformation temperature [15].

Our goal in this paper is to analyze the role that the addition of Al has on divergent pearlite in a
Fe–C–Mn system. This aim will be accomplished following a two-fold strategy—firstly, by analyzing
the growth rate, the interlamellar spacing variation with the reaction time, and the evolution of the
α and θ composition measured at the interface with the austenite during the reaction. These three
aspects can help us to study and quantify the divergence phenomenon. Secondly, the change in the
driving force, which is related to the change in the carbon activity in austenite, will be tracked.

2. Materials and Experimental Procedure

Two high-purity alloys were prepared by vacuum induction melting and supplied as 20 kg
ingots by Acerinox Company. Ingots were homogenised at 1050 ◦C for 24 h and further hot-forged
and annealed to ensure uniformity in the composition of the steel. The chemical compositions for
the Fe–C–Mn and the Fe–C–Mn–Al (henceforth Mn-steel and Al-steel) are presented in Table 1.
Fe composition is to balance (bal.).

Table 1. Chemical composition in wt % and at % for the Mn-steel and Al-steel.

Steel Unit C Mn Al Fe

Al-steel
wt % 0.63 9.82 4.60 bal.
at % 2.74 9.30 8.86 bal.

Mn-steel
wt % 0.65 9.72 - bal.
at % 2.98 9.66 - bal.

The thermodynamic calculations in both cases were performed using Thermo-Calc and TCFE
7 databases. Isothermal heat treatments were performed in cylindrical samples 6 mm in diameter
and 20 mm in length using a tube furnace. Samples were subsequently water quenched to room
temperature. A 2% picral solution was used to reveal the microstructure for observation via optical
microscopy (OM) and scanning electron microscopy (SEM). SEM characterization was performed with
a Hitachi S 4800 J field emission gun scanning electron microscope (FEG-SEM) operating at 10 kV.

The Mn and Al concentration across the γ/α and γ/θ interfaces was performed by means of
Analytical Transmission Electron Microscopy (ATEM). A JEOL 3000F TEM equipped with an Oxford
INCA energy dispersive X-ray spectrometer (EDS) system was used. Standard 3 mm diameter TEM
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disks were mechanically thinned and then electropolished using a 10 vol % perchloric/acetic acid
solution at room temperature and a potential of 40 V.

3. Results and Discussion

On the basis of the isopleth section for Al-steel (see Figure 1), the isothermal heat treatments
were performed at 670 ◦C at different times with the aim of obtaining interrupted stages of divergent
pearlite formation. Additionally, the isothermal sections for the selected temperature are shown in
Figure 1b,c, where it is observed that the alloy composition lies within the three-phase field. In the
case of Mn-steel, the selected temperature was 600 ◦C (see Figure 2) following an equivalent reasoning
as the above for Al-steel as it was reported elsewhere [16].
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Figure 1. (a) Isopleth section of the Fe–C–Mn–Al system at 0.0930 Mn–0.0886 Al (molar fraction),
showing that at 670 ◦C the alloy composition (represented by the solid circle) is located within the
three-phase (γ + α + θ) field region. Isothermal section at 670 ◦C for the studied steel at (b) 0.0886 Al
(molar fraction) and (c) 0.0930 Mn (molar fraction) fixed. The blue dotted line is the carbon isoactivity
line at the early stages of the transformation (act0) and the black dashed lines are the extrapolated
γ/(γ + α) and γ/(γ + θ) phase boundaries (κ symbolises Kappa-carbide and it does not participate in
reactions in this study).
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lines are the extrapolated γ/(γ + α) and γ/(γ + θ) phase boundaries.

An example of the microstructure obtained after isothermal heat treatment at 670 ◦C for 3 and
13 days in Al-steel are presented in Figure 3a,b. After 13 days, the achieved volume fraction of
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pearlite was around 30%. It is worth mentioning that, at 670 ◦C, the Al-steel was located outside
the Hultgren extrapolation (see Figure 1b,c), which is the area enclosed by the extrapolation of the
γ/(γ + α) and γ/(γ + θ) phase boundaries [3,17]. For this situation, it was assumed that proeutectoid
ferrite must be the first product to form, and pearlite will be formed when the composition of the
remaining austenite reaches the curve Acm in the phase diagram, i.e., the pair carbon content and
temperature values at which primary cementite stars to form. Some authors reported recently that
almost fully pearlitic microstructures can be obtained, even for austenite compositions lying outside
the Hultgren area [18,19]. It was concluded that pearlite can form over a much wider span of average
austenite carbon concentrations than those defined by the Hultgren extrapolation, provided that some
amount of the more favourable proeutectoid phase is present. Once initiated, pearlite can grow into
austenite having any composition inside the (α + θ) two-phase field. Pearlite formation outside of
the Hultgren extrapolation is most readily observed in coarse-grained austenite, where the amount
of proeutectoid constituent is minimised relative to that of pearlite, according to the hypothesis that
austenite grain size affects the final volume fractions of proeutectoid phase and pearlite. Following
the same reasoning, the prior austenite grain size used in this work was very large (450 ± 50 µm),
with the intention of diminishing the nucleation sites for proeutectoid ferrite and hence promoting
the pearlite formation. From Figure 3c,d, it is evident that the volume fraction of proeutectoid ferrite
(F) is negligible (<1%) and that lamellar pearlite is obtained as the major constituent. In addition,
lamellar divergence can be perceived across the pearlitic nodules, being more pronounced with longer
isothermal decomposition times.
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Figure 3. Optical micrographs showing the microstructural evolution during pearlite reaction for the
Al-steel after heat treatment at 670 ◦C for (a,c) 3 days and (b,d) 13 days. In (c,d), it is evident that the
volume fraction of proeutectoid ferrite (F) is negligible; moreover, over the reaction time, divergent
pearlite can be highlighted. In (a,b), the dark areas correspond to pearlite, and the matrix is austenite.
The lamellar structure in (c,d) corresponds to pearlite. Proeutectoid ferrite (F) is highlighted.

In order to confirm that, for the experimental conditions selected, pearlite is growing under a
non-steady state regime, the growth rate of pearlite must be evaluated. Growth rate measurements
were carried out using the method proposed by Cahn and Hagel [11] and used by other authors to
characterise divergent pearlite [10]. The results for the growth kinetics of the pearlite formation in
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Al-steel at 670 ◦C (as well as for the Mn-steel at 600 ◦C) are presented in Figure 4a. It is shown that the
growth rate for both steels decreases as the transformation proceeds, indicating that the growth is under
non-steady state conditions. Figure 4 shows the evolution of the pearlite growth rates for the Mn-steel
and the Al-steel. For the sake of easier comparison, Figure 4b shows normalised pearlite growth rates
by the minimum growth rate measured (G/Gmin). The prevailing tendency of the experimental data
shown in Figure 4b is the straight line. The slope indicates that the non-steady-state growth is the
governing pearlite growth mechanism in these two systems. It can be concluded, therefore, that the
non-steady-state growth is less pronounced in Al-steel as compared with the Mn-alloy. With a very
similar volume fraction of pearlite, the pearlite kinetics are faster in the Fe–C–Mn system than in the
Fe–C–Mn–Al system.
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Fe–C–Mn–Al system and at 600 ◦C for the Fe–C–Mn system; (b) growth rate vs. pearlite volume
fraction for the Mn- and Al-steel.

As mentioned above, the divergence might be explained by considering the evolution of the
local austenite composition at the γ/α and γ/θ interfaces during the reaction. Therefore, the study
of the partitioning of the alloying elements between austenite and the growing pearlite must be
addressed. An example for the analysis procedure of an interface is presented in Figure 5. Figure 5a
shows a TEM image for γ/α and γ/θ interfaces obtained after decomposition at 670 ◦C for three
days. The corresponding selected area diffraction pattern is shown in Figure 5b, where α and θ are
indexed. (As an additional comment, α and θ hold the typical crystallographic orientation relationship
(Isaichev’s relationship) reported in the literature [20–22]). The Al and Mn concentrations in each
phase (γ, α, and θ) are collected in Figure 5c. This graph presents the partitioning trends of Mn
(solid points) and Al (hollow points) across the interface for samples treated at 670 ◦C for 3 days.
The ATEM results summarizing the Mn and Al redistribution profiles across the relevant interfaces
at different holding times at 670 ◦C are collected in Figure 6 for both Al- and Mn-steels. The Mn
and Al values in both phases (α and θ) reported in Figure 6a and in Figure 6b are the average of
2–3 interfaces, where 5–8 individual measurements were done along the mid rib of a lamella, and the
errors bars correspond to the standard deviation of these measurements. The final equilibrium values
obtained with the Thermo-Calc software for both alloying elements in the pearlitic phases are plotted
together with the experimental values. In addition, the LE values for the ferrite phase were calculated
according to [23,24]. However, it was not possible to calculate the theoretical LE values for cementite,
since the alloy is not supersaturated with respect to this phase, i.e., it lies outside of the γ/(γ + θ)
phase boundary.



Materials 2016, 9, 998 6 of 10
Materials 2016, 9, 998  6 of 10 

 

 
Figure 5. (a) TEM image showing the γ/α and γ/θ interfaces in pearlite obtained at 670 °C after 3 days. 
White dashed lines indicate where the measurements were carried out; (b) the corresponding selected 
area diffraction pattern for the pearlite colony presented in (a)—(white) the diffraction spots from 
ferrite and (red) from cementite; (c) ATEM measurements of Mn and Al across the γ/α and γ/θ 
interfaces. 

Based on the experimental ATEM measurements, it is concluded here that Mn increases in Al-
steel during transformation in both α and θ, reaching the full equilibrium value after 13 days. This 
observed partitioning trend is in good agreement with the results reported by other authors [10,16]. 
On the other hand, in the case of Al-steel, the Al content in cementite is negligible as it could be 
expected due to its low solubility [25,26]. The concentration of Al in ferrite remains approximately 
constant and close to the LE values. 

The results shown in Figure 6 reveal a substantial difference in the partitioning of Mn and Al 
during pearlite growth in both Al- and Mn-steels. Meanwhile, equilibrium compositions in ferrite 
and cementite are reached for the case of Mn-steel; for the case of Al-steel, the Al equilibrium 
composition in ferrite is not reached after 13 days. Therefore, the analysis of the evolution of local 
compositions at the γ/α and γ/θ interfaces during growth in Al-steel is not conclusive for determining 
the divergence in Al-steel according to the expectation of the LE hypothesis [1]. An alternative 
method is required. 

Figure 5. (a) TEM image showing the γ/α and γ/θ interfaces in pearlite obtained at 670 ◦C after
3 days. White dashed lines indicate where the measurements were carried out; (b) the corresponding
selected area diffraction pattern for the pearlite colony presented in (a)—(white) the diffraction spots
from ferrite and (red) from cementite; (c) ATEM measurements of Mn and Al across the γ/α and
γ/θ interfaces.Materials 2016, 9, 998  7 of 10 

 

 
Figure 6. (a) Mn and Al concentrations (solid and hollow squares, respectively) for the Al-steel and 
Mn concentration (triangles) for the Mn-steel in cementite and (b) in ferrite during different holding 
times at 670 °C. Theoretical values predicted by Thermo-Calc are also represented: solid lines are the 
equilibrium values for Al and Mn in cementite and in ferrite. LE values are given by the dotted lines. 

It is well accepted that the reaction of divergent pearlite is observed when the composition of 
the parent austenite is located within the (γ + α + θ) three-phase region. The fact that the equilibrium 
composition of the austenite differs from the bulk composition leads to a continuous change on the 
austenite carbon composition that causes a reduction in the driving force for this transformation. As 
a result, the interlamellar spacing increases, the growth rate decreases, and the partitioning extent 
increases with reaction time until austenite reaches equilibrium [1,10,11,16]. 

At the beginning of the transformation the LE conditions across the γ/α and γ/θ can be described 
by a single carbon isoactivity line (act0) that passes through the bulk composition. Then, the 
composition for ferrite and cementite can be read from the phase diagram selecting the adequate tie-
lines. The growing pearlite has a higher C content than the alloy; hence, it draws C from the parent 
austenite leaving a C-depleted zone. This leads to a reduction in the activity of C in the vicinity of the 
interface. As the transformation progresses, the LE conditions prevailing at the interface change 
continuously, and can be described by C isoactivity lines corresponding to lower C activities. The LE 
values of the growing ferrite and cementite will change in accordance with the variation in the 
operative carbon isoactivity line and their corresponding tie-lines as the reaction proceeds. When 
austenite reaches the equilibrium composition with respect to carbon (defined by the corner the stable 
γ phase field), the LE reaction mode will cease and the composition for the last-formed pearlite would 
be described by the final carbon isoactivity line (actF) and the associated tie-lines. Therefore, there is a 
close relationship between the change in the carbon activity and the observation of the divergence 
phenomenon. The evaluation between the initial and the final state through the carbon isoactivity 
value could be an effective way to study and justify divergent pearlite formation. In some way, this 
change in carbon activity is related to the available driving force for the reaction. 

It is well-known that the chemical potential of carbon in austenite at the alloy composition (ߤ௧) 
and at the end of transformation (ߤ௧ி) could be described as a function of the carbon activity (ܽ ) as 
follows: ߤ௧ = ߤ  ܴܶܽ௧ (1) ߤ௧ி = ߤ  ܴܶܽ௧ி (2) 

Figure 6. (a) Mn and Al concentrations (solid and hollow squares, respectively) for the Al-steel and
Mn concentration (triangles) for the Mn-steel in cementite and (b) in ferrite during different holding
times at 670 ◦C. Theoretical values predicted by Thermo-Calc are also represented: solid lines are the
equilibrium values for Al and Mn in cementite and in ferrite. LE values are given by the dotted lines.

Based on the experimental ATEM measurements, it is concluded here that Mn increases in Al-steel
during transformation in both α and θ, reaching the full equilibrium value after 13 days. This observed
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partitioning trend is in good agreement with the results reported by other authors [10,16]. On the other
hand, in the case of Al-steel, the Al content in cementite is negligible as it could be expected due to its
low solubility [25,26]. The concentration of Al in ferrite remains approximately constant and close to
the LE values.

The results shown in Figure 6 reveal a substantial difference in the partitioning of Mn and Al
during pearlite growth in both Al- and Mn-steels. Meanwhile, equilibrium compositions in ferrite and
cementite are reached for the case of Mn-steel; for the case of Al-steel, the Al equilibrium composition
in ferrite is not reached after 13 days. Therefore, the analysis of the evolution of local compositions at
the γ/α and γ/θ interfaces during growth in Al-steel is not conclusive for determining the divergence
in Al-steel according to the expectation of the LE hypothesis [1]. An alternative method is required.

It is well accepted that the reaction of divergent pearlite is observed when the composition of the
parent austenite is located within the (γ + α + θ) three-phase region. The fact that the equilibrium
composition of the austenite differs from the bulk composition leads to a continuous change on the
austenite carbon composition that causes a reduction in the driving force for this transformation.
As a result, the interlamellar spacing increases, the growth rate decreases, and the partitioning extent
increases with reaction time until austenite reaches equilibrium [1,10,11,16].

At the beginning of the transformation the LE conditions across the γ/α and γ/θ can be
described by a single carbon isoactivity line (act0) that passes through the bulk composition. Then, the
composition for ferrite and cementite can be read from the phase diagram selecting the adequate
tie-lines. The growing pearlite has a higher C content than the alloy; hence, it draws C from the parent
austenite leaving a C-depleted zone. This leads to a reduction in the activity of C in the vicinity of
the interface. As the transformation progresses, the LE conditions prevailing at the interface change
continuously, and can be described by C isoactivity lines corresponding to lower C activities. The LE
values of the growing ferrite and cementite will change in accordance with the variation in the operative
carbon isoactivity line and their corresponding tie-lines as the reaction proceeds. When austenite
reaches the equilibrium composition with respect to carbon (defined by the corner the stable γ phase
field), the LE reaction mode will cease and the composition for the last-formed pearlite would be
described by the final carbon isoactivity line (actF) and the associated tie-lines. Therefore, there is a
close relationship between the change in the carbon activity and the observation of the divergence
phenomenon. The evaluation between the initial and the final state through the carbon isoactivity
value could be an effective way to study and justify divergent pearlite formation. In some way, this
change in carbon activity is related to the available driving force for the reaction.

It is well-known that the chemical potential of carbon in austenite at the alloy composition (µt0
C )

and at the end of transformation (µtF
C ) could be described as a function of the carbon activity (aC)

as follows:
µt0

C = µ0 + RTat0
C (1)

µtF
C = µ0 + RTatF

C (2)

where µ0 represents the chemical potential of carbon in austenite in a standard state. At the beginning
and end of the transformation, the standard state for carbon is considered to be the same. The change
in chemical potential of carbon in austenite during the pearlite reaction (∆µ = µtF

C − µt0
C ), which is

directly related to the available driving force for the reaction, could be expressed as

∆µ = RTln

(
atF

C
at0

C

)
(3)

For this purpose, the activity of carbon for Al- and Mn-steel, among other alloys reported in
literature where divergent pearlite was identified, has been calculated and is listed here in Table 2.

From the results presented in Table 2, it can be deduced that the change in carbon isoactivity
presented in this work is half an order of magnitude lower than in other works where divergent
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pearlite was observed. It might be concluded from the results listed in Table 2 that the driving force for
divergent pearlite is significantly lowered with the addition of Al to a Mn-steel, which is clearly found
in a non-steady state pearlite growth regime. Based on the experimental data and observations of this
work, the divergence phenomenon in a Fe–C–Mn–Al steel treated at 670 ◦C is subtle. In spite of the
fact that the alloy composition lies within the three-phase region, the small change in carbon activity
(driving force), the small differences in Mn and Al concentrations in the pearlitic phases, and the slight
differences in the growth rate make it difficult to clearly observe divergent pearlite.

Table 2. Values for the activity of carbon in the austenite at the beginning (act0) and at the end (actF) of
the divergent pearlite transformation for different system alloys and isothermal temperatures (T), all of
which were transformed in the γ + α + θ three-phase field. ∆ac and a* are the difference between actF

and act0, and the ratio between actF and act0 (actF/act0), respectively.

Alloy (wt %) T (◦C) act0 actF ∆ac a* ∆µ (J·mol−1) Reference

Fe–0.6C–5.2Mn 650 0.250 0.182 −0.068 0.728 −2439 [11]
Fe–0.6C–5.2Mn 625 0.300 0.156 −0.144 0.520 −4869 [11]

Fe–1C–5Mn 680 0.420 0.214 −0.206 0.509 −5339 [27]
Fe–0.6C–4.7Mn 650 0.260 0.182 −0.078 0.700 −2744 [10]

Fe–0.55C–5.4Mn 625 0.270 0.156 −0.114 0.577 −4080 [10]
Fe–0.49C–6.3Mn 600 0.270 0.132 −0.138 0.489 −5197 [10]
Fe–0.42C–6.8Mn 575 0.265 0.109 −0.156 0.411 −6256 [10]
Fe–0.66C–9.74Mn 600 0.320 0.130 −0.190 0.406 −6543 [16]

Fe–0.6C–9.8Mn–4.6Al 670 0.150 0.130 −0.020 0.867 −1123 CW **

** CW stands for current work.

4. Conclusions

In summary, the results presented in this work and the corresponding analysis and discussion,
allow us to obtain the following main conclusions:

1. Pearlite can nucleate from a much wider span of average austenite carbon concentrations than
those defined by the Hultgren extrapolation, provided that some amount of the more favourable
proeutectoid phase is present. Once initiated, pearlite can grow into austenite having any
composition inside the α + θ two-phase field and the γ + α + θ three-phase field. As has been
reported previously by the authors [16,19], the flux balance ahead of the interface allows lamellar
pearlite formation outside Hultgren extrapolation.

2. The experimental ATEM measurements allow us to conclude that Mn increases in Al-steel during
transformation in both ferrite and cementite, reaching the full equilibrium value after 13 days.
On the other hand, in the case of Al-steel, the Al content in cementite is negligible, as was expected
due to its low solubility. The concentration of Al in ferrite remains approximately constant and
close to the LE values.

3. The change in carbon activity in Al-steel is smaller than that for the Mn-steel in the same
(γ + α + θ) three-phase region of the corresponding phase diagram, which explains the lower
driving force for the pearlite reaction.

4. All these results allow us to conclude that divergent pearlite can be observed not only when the
alloy composition lies within the (γ + α + θ), but also when the change in carbon activity is large
enough to make the divergent microstructure noticeable.
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