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Abstract: In the aerospace and aviation sectors, the damage tolerance concept has been applied widely
so that the modeling analysis of fatigue crack growth has become more and more significant. Since the
process of crack propagation is highly nonlinear and determined by many factors, such as applied
stress, plastic zone in the crack tip, length of the crack, etc., it is difficult to build up a general and
flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial
neural network (ANN) is considered a powerful tool for establishing the nonlinear multivariate
projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue
crack calculation algorithm based on a radial basis function (RBF)-ANN is proposed to study this
relationship from the experimental data. In addition, a parameter called the equivalent stress intensity
factor is also employed as training data to account for loading interaction effects. The testing data
is then placed under constant amplitude loading with different stress ratios or overloads used for
model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with
our proposed algorithm. The current investigation shows that the ANN-based approach can deliver
a better agreement with the experimental data than the other two models, which supports that the
RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it
implies that the proposed algorithm is possibly a sophisticated and promising method to compute
fatigue crack growth in terms of loading interaction effects.

Keywords: fatigue crack growth; artificial neural network; nonlinear multivariable function;
retardation; loading interaction

1. Introduction

As the damage tolerance concept is now widely accepted and applied in the aerospace and
aviation industries, it has become increasingly important to analyze how a fatigue crack grows. Linear
elastic fracture mechanics (LEFM), moreover, is the fundamental theory for establishing the analytical
model of fatigue crack propagation. Paris and Erdogan [1] correlate the stress intensity factor (SIF)
range with the fatigue crack growth rate, and propose this seminal model as Equation (1).

da
dN

“ CP p∆KqmP (1)

where ∆K is the SIF range and CP and mP are the fitting parameters. This equation shows a linear
relationship between da/dN and ∆K in the log-log coordinate. However, a major limitation of the Paris
equation is that CP has to change along with the variation of the stress ratio (R). Additionally, it is only
applicable to the linear region without the consideration of the threshold SIF (∆Kth) and the critical
SIF (Kc).
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To perfect the Paris equation, many researchers have attempted to make modifications in order to
involve more nonlinear factors. Forman et al. [2] take the effects of R and Kc into consideration and
propose a modified model as shown in Equation (2).

da
dN

“
CF p∆KqmF

p1´ RqKc ´ ∆K
(2)

where CF and mF are the fitting parameters. Furthermore, based on the Paris equation, some researchers
develop more general formulas by employing additional parameters to account for nonlinearity, such
as the NASGRO formula [3] in Equation (3):

da
dN

“ CNa

„

p1´ f q
p1´ Rq

∆K
n

´

1´ ∆Kth
∆K

¯PNa

´

1´ Kmax
Kc

¯qNa
(3)

where CNa, PNa and qNa are the fitting parameters; and f is Newman’s [4] crack opening function
determined by the experimental measurement.

The series of models discussed above are put forward to illustrate the nonlinear relationship
between the crack growth rate and the SIF range for constant amplitude loadings. Moreover, many
researchers have investigated the loading interaction effect, which is complicated and of great
significance to the variable amplitude loading. In this paper, the constant amplitude loading with
overload, which is the typical and simple variable amplitude loading, is studied. Wheeler proposes
a plastic-zone-based model [5] to describe the crack growth retardation caused by overload as shown
in Equation (4).

$

&

%

´

da
dN

¯

VA
“ γ da

dN

γ “
´

rp,i
λ

¯m (4)

where γ is the retardation factor; rp,i is the size of current plastic zone; λ is the distance between the
current crack tip and the edge of the plastic zone caused by overload; and m is the fitting parameter.
De Koning [6] also develops a plastic-deformation-based model to deal with the overload effect.
Wheeler’s and Koning’s models support that the plastic zone (monotonic plastic zone or reversed
plastic zone) is the key parameter to correlate with loading interaction effects in the fatigue crack
growth calculation.

Most studies focus on accurately quantifying the nonlinear relationship between the crack growth
rate and the driving parameters by using an explicit and simple function. To achieve these goals, many
studies have been undertaken to introduce more parameters to construct a formula which can fit the
experimental data better. However, the current formulas are not flexible enough to positively handle
all the situations.

Overall, the process of fatigue crack growth is a nonlinear and multivariable problem under
both constant and variable amplitude loading. Fortunately, the artificial neural network (ANN) has
an excellent ability to fit the nonlinear multivariable relationship, which makes it a sophisticated and
promising approach to the fatigue crack growth problem. ANN is a family of algorithms based on the
imitation of biological neural networks. It has the strong ability to estimate the tendency of nonlinear
and multivariable functions based on a large amount of data [7]. Thanks to these advantages, ANN is
widely applied to damage estimation in the material sciences [8–10]. Furthermore, it is used to deal
with some fracture problems including creep, fatigue and even corrosion fatigue [11–15].

A novel ANN-based algorithm is proposed in this paper to evaluate the process of fatigue crack
growth. In the following sections, the ANN is first established and its training outlined. While establishing
the ANN, the equivalent SIF is used to account for the influence of the loading history. Subsequently,
the ANN-centered algorithm is developed and validated by using experimental data under the constant
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amplitude loading with different stress ratios or overloads. Some classical models are also employed
for comparison. In the final section, some conclusions and considerations are given.

2. Methodology

2.1. Radial Basis Function Artificial Neural Network

In the 1980s, ANN technology became popular for dealing with practical problems. As it is
inspired by biological neural networks, it shares some features with the human brain, particularly
learning by example. Radial basis F = function (RBF) network is a type of ANN which uses radial
basis function as the activation function. Because of the RBF network’s ability to produce optimal
approximate solutions and local learning, it is used in function approximation, system control, etc. [16].
The RBF ANN structure is displayed in Figure 1, where {x1, x2 . . . xm0} is the input vector; m0 is the
dimension of the vector; w1, w2, . . . , wn are the connection weights between the middle layer and
the output layer; and N is the number of the radial basis functions in the middle layer. As shown in
Figure 1, the RBF ANN consists of three layers: the input layer, the middle layer and the output layer.
The input layer is composed of m0 source points which connect the ANN to the external environment.
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The second layer is the only hidden layer in the RBF network. Its function is to transform the
input space into the hidden space nonlinearly. The hidden layer consists of N cells that can be defined
mathematically by the radial function shown in Equation (5). The RBF network is good at local
approximation because the radial function in the hidden layer responds to theinput partially.

ϕj pxq “ ϕ
`

||x´ xj||
˘

, j “ 1, 2, ¨ ¨ ¨ ¨ ¨ ¨ , N (5)

where xj means the center of the radial function defined by the jth source point; and x is the signal
which directly acts on the input layer. Additionally, the Gaussian function is the most widely used
radial function, and the cells in the hidden layer can be defined as in Equation (6) shown below.

ϕj pxq “ ϕ
`

x´ xj
˘

“ exp

˜

´
1

2σj
2 ||x´ xj||2

¸

j “ 1, 2, ¨ ¨ ¨ ¨ ¨ ¨ , N (6)

where σj is the width of the jth xj-centered Gaussian function, xj is the center of the jth basis function,
||x ´ xj|| is the vector norm of x ´ xj which means the distance between x and xj. Finally, the nodal
points in the output layer will generate the output data.

RBF ANN is one type of feedforward static neural network. The feedforward network is the
simplest network as the information can only move in one direction. The original feedforward
network is a single perceptron layer network based on other networks consisting of multiple layers of
computational units such as the RBF network. The RBF network is able to fit a continuous nonlinear
process in a satisfied precision by automatically adjusting the weight of the functions in the hidden
layer. Some studies indicate that the ANN has advantages in dealing with nonlinear problems.
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Ghandehari et al. [17] discuss the advantages of RBF over the back propagation (BP) network, which
is the most widely used and popular feedforward network. Fathi and Aghakouchak [18], as well as
Abdalla and Hawileh [19] applied the RBF network to fatigue crack problems successfully. In this paper,
the RBF network was chosen due to its multiple advantages; in view of the RBF network’s capacity, it
is suitable for establishing the function between fatigue crack growth and the driving parameters.

2.2. The Establishment and Training of the Artificial Neural Network (ANN)

In this section, the MATLAB (©1984–2011 MathWorks. All rights reserved, MathWorks, Natick,
MA, USA) software is used to establish and train the RBF-ANN as shown in Figure 2. First of all,
a multi-input single-output RBF-ANN is established by analyzing the physical process of fatigue crack
growth. The raw experimental data then need to be preprocessed before training the ANN. The data
preprocessing includes two steps: the first step is to take the logarithm of ∆K and da/dN to reduce the
influence from the order of the magnitude; the second step is to normalize the data from the first step.
After preprocessing, the experimental data have been transformed into a number of vectors, which are
used to train the ANN. ANN can be trained automatically by using the MATLAB toolbox. During the
training, some parameters can be tuned for optimization, including: the mean square error (MSE)
goal, expansion speed of RBF, maximum number of neurons, etc. For example, the MSE goal controls
the fitting accuracy. By comparing the output with the testing data and balancing the accuracy and
efficiency, the optimal tuning parameters can be determined.
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2.2.1. The Constant Amplitude Loading

The experimental data [20] are plotted in Figure 3. The x-axis is the SIF range; the y-axis is the
crack growth rate; and the different kinds of dots represent the testing data with different stress ratios.
It can be seen that the testing data do not follow a perfect linear tendency.

With the experimental data in Figure 3, the ANN can be trained following the procedure in
Figure 2. For the constant amplitude loading, the plasticity, on behalf of the historical load, is
proportional to the current loading. The SIF and stress ratio are therefore chosen to be the inputs, and
the crack growth rate is the output. The training vectors are preprocessed to make them suitable for the
ANN. During training, the ANN can learn deeply from the limited data and establish the continuous
function between the inputs and the output.

The fitting surface by well-trained ANN and the testing data are shown in Figure 4. The blue dots
represent the training data, and the red crosses are the data for validation. It can be observed that the
fitting surface can match all the experimental data well, even though they are not perfectly log-linear.
The nonlinearity of the data can be studied by the ANN so that its prediction has a higher accuracy
than the tradition log-linear formulas. Moreover, the ANN can offer a continuous predicting surface in
the domain of definition based on the limited and discrete training data. This example shows ANN’s
advantage in fitting and extrapolating the crack growth rate under constant amplitude loading with
different stress ratios.
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2.2.2. Single Overload

For the variable amplitude loading, the load interaction effects cannot be ignored, because the
influence of historical loading sequence is dependent on the current load cycle. Single overload, as the
simplest and most typical variable amplitude loading, is investigated in this paper to demonstrate the
loading interaction effect.

As is well known, an applied overload can lead to fatigue crack growth retardation or even
crack arrest. This phenomenon is caused by the loading interaction effect, and its existence
obviously stimulates nonlinear damage accumulation. Wheeler [5], De Koning [6] and many other
researchers [21–27] have introduced additional parameters to describe the influence of the historical
loading sequence. Wheeler [5] models the retardation by correlating the plastic zone size ahead of the
crack tip with the crack growth rate. Topper and Yu [28] use the plasticity-induced crack closure to
explain this phenomenon. Above all, the plasticity ahead of the crack tip is a reasonable parameter to
account for the loading interaction effect. In this paper, a concept “equivalent stress intensity factor”,
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which is derived from the equivalent plastic zone, is employed as input data to handle the nonlinear
damage accumulation. The details are discussed in Section 3.2.1.

2.3. A Fatigue Life Prediction Method

There are three steps to calculating the fatigue crack length. First the crack increment within
one load cycle is computed; the the crack length, the geometric factor, and the SIF are subsequently
updated, thereby preparing the inputs for the next cycle. In repeating this process, the fatigue crack
propagation is simulated cycle by cycle. The framework is shown in Equations (7) and (8).
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(7)

where aI is crack length in the Ith cycle; a0 is the initial crack length; g(∆Kj, R, . . . ) denotes the general
relationship between the crack growth rate and applied load; daj is the increment during the jth cycle;
∆σ is the stress amplitude; Q is the geometric factor while w is the width of the specimen. Furthermore,
once the failure criterion or the critical crack length is provided, the fatigue life can be determined.

In this study, the ANN is used to quantify the relationship between the loading and the crack
increment per cycle instead of the traditional equation. Equation (7) can therefore be transformed into
Equation (8).

aI “ a0 `

I
ÿ

j“1

fANN
`

∆Kj, R, ¨ ¨ ¨
˘

(8)

where fANN (∆K, R, . . . ) represents a general ANN function describing the relationship between
driving parameters and crack growth rate. Generally, the driving parameters would include SIF range
(∆K), stress ratios, plastic zone, etc. Additionally, an ANN-based framework for fatigue crack growth
calculation can be established. The flow chart is shown in Figure 5.
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3. Validation and Comparison

3.1. Validation and Comparison of the Constant Loading with Different Stress Ratios

3.1.1. ANN Training

As the ANN can quantify the relationship from experimental data, it is significant to select the
suitable data for the training. In this section, the testing data [20] of 7075-T6 aluminum alloy is used to
train the ANN globally. The information of the experiment is listed in Table 1.

Table 1. The experimental information of Al7075-T6.

Material Al7075-T6

Specimen type Middle cracked tension specimen
Specimen length 889 mm
Specimen width 305 mm

Specimen thickness 2.28 mm
Initial crack length 2.5 mm

Loading type Tension-tension, constant amplitude

With these experimental data the relationship between the loading and fatigue crack growth rate
can be fitted by the ANN.

At first, the ANN is trained by all five sets of the experimental data with different stress ratios.
The fitting curves are plotted with the original data in Figure 6. In this figure, the x-axis is the stress
ratios (from 0 to 1); the y-axis is the SIF in logarithmic coordinate; and the z-axis is the crack growth
rate in logarithmic coordinate. The blue cycles represent the experimental data; and the dark blue
lines are the ANN prediction. It is observed clearly that the curves fit the experimental data well.
Additionally, the projections of the fitting curves are also provided.
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Figure 6. The fitting curves of ANN trained with all data.

To observe the fitting accuracy clearly, Figure 7 displays the prediction and the experimental
data in a 2D plot. From the picture it can be seen that the nonlinear fitting curves by ANN can fit the
experimental data well.
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Figure 7. The fitting by ANN vs. the testing data for Al7075-T6.

In this part the impact from data size on the fitting performance is investigated. This time the
training vectors only include thre sets of experimental data with stress ratios 0.02, 0.33 and 0.75; the
other experimental data are used for validation. The ANN prediction and the experimental data are
shown in Figure 8. In this picture only the purple crosses are the experimental data used to train the
ANN. It is obvious that the fitting accuracy is still satisfactory compared with Figure 8.

Materials 2016, 9, 483 8 of 20 

 
Figure 7. The fitting by ANN vs. the testing data for Al7075-T6. 

In this part the impact from data size on the fitting performance is investigated. This time the 
training vectors only include thre sets of experimental data with stress ratios 0.02, 0.33 and 0.75; the 
other experimental data are used for validation. The ANN prediction and the experimental data are 
shown in Figure 8. In this picture only the purple crosses are the experimental data used to train the 
ANN. It is obvious that the fitting accuracy is still satisfactory compared with Figure 8. 

 
Figure 8. The fitting curves of ANN trained with part of data. 

Forman’s equation is also utilized to calculate fatigue crack growth under different stress ratios 
to make a comparison. Table 2 shows the calibration indices of Equation (9). The fitting parameters 
are calibrated with the global database. The prediction by Equation (9) is displayed in Figure 9. It can 
be concluded that the predictions by Forman’s equation are linear in log-log coordinate while the 
ANN prediction curves are nonlinear. 

Table 2. The fitting indices of Al7075-T6. 

The Fitting Indexes Number
r 0.796 

Chi-Square 0.000513 
RMSE 1.47 × 10−5 

SSE 7.52× 10−8 
DC 0.796 

100 101 102
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Kmax (MPa*m0.5)

da
 (m

m
)

 

 
fitting curve R=0.02
experimental data R=0.02
fitting curve R=0.1
experimental data R=0.1
fitting curve R=0.33
experimentdal data R=0.33
fitting curve R=0.5
experimentdal data R=0.5
fitting curve R=0.75
experimental data R=0.75

1
2

3
4

5

0
0.2

0.4
0.6

0.8

-20

-15

-10

-5

lnKmax (MPa*m0.5)
R

ln
da

 (m
m

)

Figure 8. The fitting curves of ANN trained with part of data.

Forman’s equation is also utilized to calculate fatigue crack growth under different stress ratios to
make a comparison. Table 2 shows the calibration indices of Equation (9). The fitting parameters are
calibrated with the global database. The prediction by Equation (9) is displayed in Figure 9. It can be
concluded that the predictions by Forman’s equation are linear in log-log coordinate while the ANN
prediction curves are nonlinear. where r is the coefficient of association; RMSE is the root-mean-square
error; SSE is the sum of squares for error and DC is the determination coefficient.

da
dN

“
2.9838ˆ 10´9 ˆ ∆K3.5241

p1´ RqKc ´ ∆K
(9)
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Table 2. The fitting indices of Al7075-T6.

The Fitting Indexes Number

r 0.796
Chi-Square 0.000513

RMSE 1.47 ˆ 10´5

SSE 7.52 ˆ 10´8

DC 0.796
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With the good performance of ANN under the discrete R values, it is reasonable that the ANN
can deliver a good fitting surface within the continuous domain as shown in Figure 4.

Furthermore, additional material is utilized to test the ANN. Figure 10 shows the fitting surface
by ANN and experimental data of Al2024-T315 [21]. Four sets of experimental data (stress ratios: 0,
0.1, 0.33 and 0.5) are all used to train the ANN globally.
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To observe the fitting accuracy clearly, Figure 11 shows the prediction and the experimental
data in a 2D plot. From the figure it can be seen that the nonlinear fitting curves by ANN can fit the
experimental data well.Materials 2016, 9, 483 10 of 20 
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3.1.2. Crack Growth Calculation under Constant Amplitude Loading

With the well-trained ANN, the algorithm for the crack propagation is programmed by MATLAB
and the flow chart is shown in Figure 12. At first, a loading spectrum is generated and the parameters
are initialized. The input vector is then prepared following the same procedure in Section 2.2. After that,
this vector is entered into the well-trained ANN and the crack increment is worked out. With the crack
increment in the current cycle, the crack length gets updated for the next iteration. When the whole
loop is repeated until the last cycle, the simulation of the fatigue crack propagation is accomplished.
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To validate the ANN-centered algorithm, the experimental data of Al7075-T6 are used [20].
The ANN has been trained with the da/dN-∆K data as shown in Figure 4. Some additional data
(a-N curves) are then utilized to compare with the model prediction. In Table 3, the testing information
of these a-N curves are listed. Moreover, Forman’s equation also serves as a comparison.

Table 3. Loading information for the a-N curves.

R σmin σmax

0.33 51.2 MPa 155 MPa
0.5 69 MPa 138 MPa
0.7 168.7 MPa 241 MPa

In Figure 13, the x-axis is the cycle number, and the y-axis is the length of the crack. The experimental
data and the predictions by the two different models are all visualized in different lines. It is obvious
that the performance of ANN is better than Forman’s model.
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Once the failure criterion is given, the corresponding fatigue life can be determined. Assuming that the
critical crack length is 0.008 m, 0.01 m, and 0.012 m, the corresponding errors of the two models are shown
in Table 4. It is evident that the accuracy and stability of ANN is much better than Forman’s equation.

Table 4. The errors of the results by two models for Al7075-T6.

ac R ANN Algorithm Forman Algorithm

0.008
0.33 ´4.72% ´20.85%
0.5 ´2.18% 4.73%
0.75 ´1.20% ´34.34%

0.01
0.33 ´2.59% ´21.38%
0.5 ´6.06% ´8.48%
0.75 ´1.61% ´37.10%

0.012
0.33 ´3.97% ´23.10%
0.5 ´10.92% ´4.76%
0.75 ´2.03% ´38.07%
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Furthermore, additional testing data in D16 aluminum alloy are used for model validation.
The information of the experiment is listed in Table 5 [29]. Similarly, the ANN is trained with the crack
growth rate data (da/dN-∆K) under three stress ratios. The 3D fitting surface and the 2D projections of
the ANN are shown in Figures 14 and 15, respectively.

Table 5. The experimental information of D16 aluminum alloy.

Specimen Material D16 Aluminum Alloy

Crack type Middle cracked tension specimen
Specimen length 500 mm
Specimen width 100 mm

Specimen thickness 0.04 mm
Initial crack length 10 mm

Loading type Tension-tension, constant amplitude
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Forman’s model is still employed for comparison. The calibrated equation is Equation (10) and
the fitting indices are listed in Table 6. Figure 16 shows the fitting lines of Forman’s equation.

da
dN

“
1.5903ˆ 10´9 ˆ ∆K3.2215

p1´ RqKc ´ ∆K
(10)
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Table 6. The fitting indices of D16.

Index Number

r 0.984
Chi-Square 1.93 ˆ 10´6

RMSE 7.80 ˆ 10´8

SSE 9.24 ˆ 10´13

DC 0.964
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Similarly, the experimental data of D16 are used to validate the algorithm. Some additional data
(a-N curves) are utilized to compare with the model prediction. In Table 7 the testing information of
these a-N curves are listed. In Figure 17 the experimental data and the predictions by the two different
models are plotted together. It is clear that the results of the proposed model match the testing data
better than those by Forman’s model.
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Table 7. Loading information for the a-N curves.

R σmin σmax

0.75 105 MPa 140 MPa
0.33 96 MPa 32 MPa

0 64 MPa 0 MPa

Assuming that the critical crack length is 0.015 m, 0.018 m, and 0.020 m, the relative errors of the two
models are compared in Table 8. It is clear that the proposed model has very high accuracy and stability.

Table 8. The errors of the results by two models.

ac R ANN Algorithm Forman Algorithm

0.015
0 ´1.40% 120.95%

0.33 ´1.32% 96.60%
0.75 2.90% 15.46%

0.018
0 ´1.13% 111.78%

0.33 ´3.26% 82.71%
0.75 2.16% 10.82%

0.02
0 1.05% 105.70%

0.33 ´1.69% 80.00%
0.75 2.46% 8.61%

3.2. Validation and Comparison of the Constant Loading with a Few Overloads

3.2.1. Equivalent Stress Intensity Factor

It is indicated that the plasticity ahead of the crack tip affects fatigue crack growth behavior.
The retardation effects due to overload can be correlated with the plastic deformation. The plastic state
caused by the previous loads is traced. Subsequently, the equivalent stress intensity factor is calculated,
which is based on the equivalent plastic zone concept. The general expression of the equivalent plastic
zone can be written as:

a0 `

i
ÿ

j“1

daj `Deq,i “ max

$

&

%

a0 `

i
ÿ

j“1

daj ` di, a0 `

i´1
ÿ

j“1

daj `Deq,i´1

,

.

-

(11)

where Deq.i means the size of equivalent plastic zone in the ith cycle; a0 means the initial crack length;
da means the crack increment; di means the current plastic zone size in the ith cycle; a0 `

ři
j“1 daj

means the crack length in the ith cycle; i means the current cycle number. A schematic sketch is
given to illustrate the equivalent plastic zone concept. The loading sequential process and the
corresponding plastic state variation are shown in Figure 18. The dashed zigzag lines represent
the loading history. The large plastic zones have been formed at “t1,” and the crack tip is “O1” at that
moment. The monotonic and reverse plastic zones can be expressed as Equation (12) [30]:

$

’

&

’

%

dm “
π
8

´

Kmax
σy

¯2

dr “
π
8

´

Kmax´Kop
2σy

¯2 (12)

where dm is the monotonic plastic zone size; and dr is the reverse plastic zone size. The current load
is applied at “t2” and the new crack tip is “O2”. The large forward and reverse plastic zones, which
are the dotted ellipses, form during the largest load cycle in the previous loading history. Before “t2”,
the following plastic zones do not reach their boundaries respectively even though the crack grows.
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The solid ellipses represent the equivalent plastic zones ahead of the crack tip O2. In addition, the
actual contour of the plastic zone is butterfly-shaped instead of round; theoretically, however, their
diameters along the crack direction are identical, as shown in Figure 18. In the current investigation,
the equivalent plastic zone is in directly proportional to the circular diametric distance and the
proportionality coefficient is equal to or slightly greater than 1. Equation (12) can be rewritten as:
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where Dm,eq,i and Dr,eq,i are the equivalent monotonic and reverse plastic zone in ith cycle respectively;
Ψ is the geometry modification factor of plastic zone.
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The equivalent stress intensity factors KE can be calculated by solving the following equation:

KE “ σS

b

πDm,eq,i (14)

where Dm,eq,i means the plastic zone in this cycle and σs means the yield limit.

3.2.2. Single Overload

Unlike the constant amplitude loading case, the algorithm for the single overload needs an
additional parameter called equivalent stress intensity factor to account for the nonlinear loading
interaction effect. To obtain this parameter, the equivalent plastic zone has to be calculated. Figure 19
shows the procedure to calculate the equivalent plastic zone, where Dm,eq,i means the plastic zone
which characterizes the influence of the history load. Once Dm,eq,i is estimated following the flow
chart, the equivalent SIF can be calculated by using Equation (14). Then the ANN can get trained
by using the training data vectors, in which the equivalent SIF, SIF and stress ratios are inputs and
the corresponding crack growth rate is the output. Additionally, all the training data have to be
preprocessed following the procedure in Section 2.2. At last the fatigue crack growth with retardation
can be estimated.
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The experimental data in D16 aluminum alloy [29] are employed to validate the model. The basic
information about the experiment can be seen in Table 5. da/dN-∆K curve serves as the training vector,
and the a-N curve is used to validate the whole prediction algorithm.

As shown in Figure 20, the x-axis is the equivalent SIF; the y-axis is the Kmax; and the z-axis is the
crack growth rate. The red small triangles are the experimental data; the blue curve represents the
well-trained ANN; and three broken curves are its projections. It is obvious that the curve by ANN
can fit the highly nonlinear tendency of the experimental data perfectly.
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Fatigue crack growth with the overload effect is thus simulated as shown in Figure 21. The extra
experimental information for a-N curve is listed in Table 9, where the Sol is the overload stress level.
The prediction by Wheeler’s model is also given for comparison.
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Table 9. Applied loading for D16 specimen.

Type of Loading Smin Smax ∆S R Sol

CA + single overload 0 MPa 64 MPa 64 MPa 0 128 MPa

The figure shows that there is an overload applied when the crack length reaches 0.01 m. After that,
a conspicuous retardation phenomenon can be seen. The slope of the curve decreases dramatically
until the crack grows out of the retardation effect area after another 60,000 cycles. The prediction by
the ANN-based approach has a very good agreement with the testing data in this figure. However, the
curve by Wheeler’s model stops growing after the overload is applied. Ribeiro et al. [31] indicate
that Wheeler’s model has some difficulties in crack growth calculation when the overload is larger
than twice that of the σmax. However, the approach proposed in this paper does not have this kind of
problem which makes it more generally applicable.

3.2.3. Multiply Overloads

Other testing data for different materials are employed here for the model validation [32].
The information of this experiment is listed in Table 10.

Table 10. The experimental information of 350 WT steel.

Specimen Material 350 WT Steel

Crack Type Center Cracked Tension Specimen

Specimen length 300 mm
Specimen width 100 mm

Specimen thickness 5 mm
Initial crack length 20 mm

Type of loading Tension-tension, Constant amplitude with overload

Smin 11.4 MPa
Smax 114 MPa
Sol 190.95 MPa

Similarly, the ANN is trained by the experimental data and the result is shown in Figure 22.
The small red tangles are the experimental data; the blue curve is the fitting by the ANN; and the
three broken curves are its projections. It is seen that the ANN delivers a good fitting.
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The predictions made by the ANN-based approach and Wheeler’s model are visualized in
Figure 23 with the experimental data as well. Both the methods give good agreements with the testing
data. The proposed model performs slightly better around the 150,000th cycle.
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From the validations above, it can be concluded that the proposed method can deal with the
nonlinear and multivariable fatigue damage accumulation process successfully.

4. Conclusions and Future Work

In this paper, a novel method to predict the fatigue crack growth based on a radial basis function
(RBF)-artificial neural network (ANN) is developed. The ANN-centered algorithm is also validated by
comparison with the experimental data under the constant and variable amplitude loading of different
materials. Forman’s and Wheeler’s models are also employed for comparisons. It is clear that the
proposed model has very high accurate and stable performance in all the examples.

All the validations above prove the advantages of the ANN-based algorithm in nonlinear fatigue
crack growth problems. This method still has some limitations that need further investigation.
One major issue is that the size of the training data has a significant impact on the prediction accuracy.
The other is that the method may be time consuming and computationally expensive due to its
cycle-by-cycle nature.
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