Controlling Pickering Emulsion Destabilisation: A Route to Fabricating New Materials by Phase Inversion
Abstract
:1. Introduction
2. Detaching Particles from Fluid Interfaces
2.1. Altering Particle Wettability
2.2. Competitive Displacement of Particles
2.3. Flocculating Drops and Particles
3. Transferring Mass between the Liquid Phases
3.1. Ostwald Ripening
3.2. Shrinking Drops
4. Coalescing Drops
4.1. Limited Coalescence During Emulsion Formation
4.2. Coalescence of Partially-Coated Drops after Emulsion Formation
4.3. Coalescence Dynamics
4.4. Inducing Coalescence by Shear or Compressive Stress
4.5. Partial and Arrested Coalescence
5. Harnessing Destabilisation to Fabricate Useful Materials
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ghosh, S.; Rousseau, D. Emulsion breakdown in foods and beverages. In Chemical Deterioration and Physical Instability of Food and Beverages; Woodhead Publishing: Cambridge, UK, 2010; pp. 260–295. [Google Scholar]
- Leal-Calderon, F.; Schmitt, V.; Bibette, J. Emulsion Science Basic Principles, 2nd ed.; Springer: New York, NY, USA, 2007. [Google Scholar]
- Schramm, L.L. Emulsions, Foams, and Suspensions: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Tcholakova, S.; Denkov, N.D.; Lips, A. Comparison of solid particles, globular proteins and surfactants as emulsifiers. Phys. Chem. Chem. Phys. 2008, 10, 1608–1627. [Google Scholar] [CrossRef] [PubMed]
- Ramsden, W. Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation).—Preliminary account. Proc. R. Soc. Lond. 1903, 72, 156–164. [Google Scholar] [CrossRef]
- Pickering, S.U. Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001–2021. [Google Scholar] [CrossRef]
- Aveyard, R.; Binks, B.P.; Clint, J.H. Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 2003, 100–102, 503–546. [Google Scholar] [CrossRef]
- Murray, B.S.; Durga, K.; Yusoff, A.; Stoyanov, S.D. Stabilization of foams and emulsions by mixtures of surface active food-grade particles and proteins. Food Hydrocoll. 2011, 25, 627–638. [Google Scholar] [CrossRef]
- He, L.; Lin, F.; Li, X.; Sui, H.; Xu, Z. Interfacial sciences in unconventional petroleum production: From fundamentals to applications. Chem. Soc. Rev. 2015, 44, 5446–5494. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, A.P.; Kilpatrick, P.K. The effects of inorganic solid particles on water and crude oil emulsion stability. Ind. Eng. Chem. Res. 2002, 41, 3389–3404. [Google Scholar] [CrossRef]
- Yan, N.; Masliyah, J.H. Characterization and demulsification of solids-stabilized oil-in-water emulsions part 1. Partitioning of clay particles and preparation of emulsions. Colloids Surf. A 1995, 96, 229–242. [Google Scholar] [CrossRef]
- Crossley, S.; Faria, J.; Shen, M.; Resasco, D.E. Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science 2010, 327, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, L.; Mouret, A.; Proust, A.; Schmitt, V.; Bauduin, P.; Aubry, J.-M.; Nardello-Rataj, V. Pickering emulsion stabilized by catalytic polyoxometalate nanoparticles: A new effective medium for oxidation reactions. Chem. Eur. J. 2012, 18, 14352–14358. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yang, H. A ph-switched pickering emulsion catalytic system: High reaction efficiency and facile catalyst recycling. Chem. Commun. 2015, 51, 7333–7336. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhou, T.; Zhang, W. A strategy for separating and recycling solid catalysts based on the ph-triggered pickering-emulsion inversion. Angew. Chem. Int. Ed. 2013, 52, 7455–7459. [Google Scholar] [CrossRef] [PubMed]
- Van Hee, P.; Hoeben, M.; Van der Lans, R.; Van Der Wielen, L. Strategy for selection of methods for separation of bioparticles from particle mixtures. Biotech. Bioeng. 2006, 94, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Osseo-Asare, K. Partitioning behavior of silica in the triton x-100/dextran/water aqueous biphasic system. J. Colloid Interface Sci. 2004, 272, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Binks, B.P.; Clint, J.H.; Fletcher, P.D.I.; Lees, T.J.G.; Taylor, P. Growth of gold nanoparticle films driven by the coalescence of particle-stabilized emulsion drops. Langmuir 2006, 22, 4100–4103. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.-L.; Velankar, S.S. Film climbing of particle-laden interfaces. Colloids Surf. A 2008, 315, 275–284. [Google Scholar] [CrossRef]
- Barg, S.; Binks, B.; Wang, H.; Koch, D.; Grathwohl, G. Cellular ceramics from emulsified suspensions of mixed particles. J. Porous Mater. 2012, 19, 859–867. [Google Scholar] [CrossRef]
- Binks, B.P. Macroporous silica from solid-stabilized emulsion templates. Adv. Mater. 2002, 14, 1824–1827. [Google Scholar] [CrossRef]
- Ikem, V.O.; Menner, A.; Bismarck, A. High-porosity macroporous polymers sythesized from titania-particle-stabilized medium and high internal phase emulsions. Langmuir 2010, 26, 8836–8841. [Google Scholar] [CrossRef] [PubMed]
- Hijnen, N.; Clegg, P.S. Assembling cellular networks of colloids via emulsions of partially miscible liquids: A compositional approach. Mater. Horiz. 2014, 1, 360–364. [Google Scholar] [CrossRef]
- Whitby, C.P.; Onnink, A.J. Rheological properties and structural correlations in particle-in-oil gels. Adv. Powder Tech. 2014, 25, 1185–1189. [Google Scholar] [CrossRef]
- Denkov, N.D.; Ivanov, I.B.; Kralchevsky, P.A.; Wasan, D.T. A possible mechanism of stabilization of emulsions by solid particles. J. Colloid Interface Sci. 1992, 150, 589–593. [Google Scholar] [CrossRef]
- Tang, J.; Quinlan, P.J.; Tam, K.C. Stimuli-responsive pickering emulsions: Recent advances and potential applications. Soft Matter 2015, 11, 3512–3529. [Google Scholar] [CrossRef] [PubMed]
- Binks, B.P.; Lumsdon, S.O. Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 2000, 16, 8622–8631. [Google Scholar] [CrossRef]
- Levine, S.; Bowen, B.D.; Partridge, S.J. Stabilization of emulsions by fine particles. 1. Partitioning of particles between continuous phase and oil-water interface. Colloids Surf. 1989, 38, 325–343. [Google Scholar] [CrossRef]
- Alargova, R.G.; Warhadpande, D.S.; Paunov, V.N.; Velev, O.D. Foam superstabilization by polymer microrods. Langmuir 2004, 20, 10371–10374. [Google Scholar] [CrossRef] [PubMed]
- Reynaert, S.; Moldenaers, P.; Vermant, J. Control over colloidal aggregation in monolayers of latex particles at the oil−water interface. Langmuir 2006, 22, 4936–4945. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, A.B.; Mejean, C.; Abkarian, M.; Stone, H.A. Microstructure, morphology, and lifetime of armored bubbles exposed to surfactants. Langmuir 2006, 22, 5986–5990. [Google Scholar] [CrossRef] [PubMed]
- Drelich, A.; Gomez, F.; Clausse, D.; Pezron, I. Evolution of water-in-oil emulsions stabilized with solid particles influence of added emulsifier. Colloids Surf. A 2010, 365, 171–177. [Google Scholar] [CrossRef]
- Katepalli, H.; John, V.T.; Bose, A. The response of carbon black stabilized oil-in-water emulsions to the addition of surfactant solutions. Langmuir 2013, 29, 6790–6797. [Google Scholar] [CrossRef] [PubMed]
- Vashisth, C.; Whitby, C.P.; Fornasiero, D.; Ralston, J. Interfacial displacement of nanoparticles by surfactant molecules in emulsions. J. Colloid Interface Sci. 2010, 349, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Vella, D.; Kim, H.-Y.; Aussillous, P.; Mahadevan, L. Dynamics of surfactant-driven fracture of particle rafts. Phys. Rev. Lett. 2006, 96, 178301. [Google Scholar] [CrossRef] [PubMed]
- Wilde, P.; Mackie, A.; Husband, F.; Gunning, P.; Morris, V. Proteins and emulsifiers at liquid interfaces. Adv. Colloid Interface Sci. 2004, 108, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Mackie, A.R.; Gunning, A.P.; Wilde, P.J.; Morris, V.J. Competitive displacement of β-lactoglobulin from the air/water interface by sodium dodecyl sulfate. Langmuir 2000, 16, 8176–8181. [Google Scholar] [CrossRef]
- Briggs, T.R. Emulsions with finely divided solids. J. Ind. Eng. Chem. 1921, 13, 1008–1010. [Google Scholar] [CrossRef]
- Lucassen-Reynders, E.H.; Tempel, M.V.D. Stabilization of water-in-oil emulsions by solid particles. J. Phys. Chem. 1963, 67, 731–734. [Google Scholar] [CrossRef]
- Horozov, T.S.; Binks, B.P. Particle-stabilized emulsions: A bilayer or a bridging monolayer? Angew. Chem. Int. Ed. 2006, 45, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.N.; Chan, H.K.; Mohraz, A. Characteristics of pickering emulsion gels formed by droplet bridging. Langmuir 2012, 28, 3085–3091. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Lask, M.; Kirkwood, J.; Fuller, G. Particle bridging between oil and water interfaces. Langmuir 2007, 23, 4837–4841. [Google Scholar] [CrossRef] [PubMed]
- French, D.J.; Taylor, P.; Fowler, J.; Clegg, P.S. Making and breaking bridges in a pickering emulsion. J. Colloid Interface Sci. 2015, 441, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Binks, B.P.; Lumsdon, S.O. Stability of oil-in-water emulsions stabilised by silica particles. Phys. Chem. Chem. Phys. 1999, 1, 3007–3016. [Google Scholar] [CrossRef]
- Horozov, T.S.; Binks, B.P.; Gottschalk-Gaudig, T. Effect of electrolyte in silicone oil-in-water emulsions stabilised by fumed silica particles. Phys. Chem. Chem. Phys. 2007, 9, 6398–6404. [Google Scholar] [CrossRef] [PubMed]
- Chuanuwatanakul, C.; Tallon, C.; Dunstan, D.E.; Franks, G.V. Controlling the microstructure of ceramic particle stabilized foams: Influence of contact angle and particle aggregation. Soft Matter 2011, 7, 11464–11474. [Google Scholar] [CrossRef]
- Whitby, C.P.; Khairul Anwar, H.; Hughes, J. Destabilising pickering emulsions by drop flocculation and adhesion. J. Colloid Interface Sci. 2016, 465, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Ashby, N.P.; Binks, B.P. Pickering emulsions stabilised by laponite clay particles. Phys. Chem. Chem. Phys. 2000, 2, 5640–5646. [Google Scholar] [CrossRef]
- Cates, M.E. Complex Fluids: The Physics of Emulsions. Available online: http://arxiv.org/abs/1209.2290 (accessed on 11 September 2012).
- Abkarian, M.; Subramaniam, A.B.; Kim, S.-H.; Larsen, R.J.; Yang, S.-M.; Stone, H.A. Dissolution arrest and stability of particle-covered bubbles. Phys. Rev. Lett. 2007, 99, 188301. [Google Scholar] [CrossRef] [PubMed]
- Meinders, M.B.J.; van Vliet, T. The role of interfacial rheological properties on ostwald ripening in emulsions. Adv. Colloid Interface Sci. 2004, 108–109, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Cervantes Martinez, A.; Rio, E.; Delon, G.; Saint-Jalmes, A.; Langevin, D.; Binks, B.P. On the origin of the remarkable stability of aqueous foams stabilised by nanoparticles: Link with microscopic surface properties. Soft Matter 2008, 4, 1531–1535. [Google Scholar] [CrossRef]
- Ettelaie, R.; Murray, B. Effect of particle adsorption rates on the disproportionation process in pickering stabilised bubbles. J. Chem. Phys. 2014, 140, 204713. [Google Scholar] [CrossRef] [PubMed]
- Ettelaie, R.; Murray, B.S. Evolution of bubble size distribution in particle stabilised bubble dispersions: Competition between particle adsorption and dissolution kinetics. Colloid Surf. A 2015, 475, 27–36. [Google Scholar] [CrossRef]
- Avendaño Juárez, J.; Whitby, C.P. Oil-in-water pickering emulsion destabilisation at low particle concentrations. J. Colloid Interface Sci. 2012, 368, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Binks, B.P.; Fletcher, P.D.I.; Holt, B.L.; Kuc, O.; Beaussoubre, P.; Wong, K. Compositional ripening of particle- and surfactant-stabilised emulsions: A comparison. Phys. Chem. Chem. Phys. 2010, 12, 2219–2226. [Google Scholar] [CrossRef] [PubMed]
- Clegg, P.S.; Herzig, E.M.; Schofield, A.B.; Horozov, T.S.; Binks, B.P.; Cates, M.E.; Poon, W.C.K. Colloid-stabilized emulsions: Behaviour as the interfacial tension is reduced. J. Phys. Condens. Matter 2005, 17, S3433. [Google Scholar] [CrossRef]
- Asekomhe, S.O.; Chiang, R.; Masliyah, J.H.; Elliott, J.A.W. Some observations on the contraction behavior of a water-in-oil drop with attached solids. Ind. Eng. Chem. Res. 2005, 44, 1241–1249. [Google Scholar] [CrossRef]
- Datta, S.S.; Shum, H.C.; Weitz, D.A. Controlled buckling and crumpling of nanoparticle-coated droplets. Langmuir 2010, 26, 18612–18616. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Melle, S.; Golemanov, K.; Fuller, G. Shape and buckling transitions in solid-stabilized drops. Langmuir 2005, 21, 10016–10020. [Google Scholar] [CrossRef] [PubMed]
- Aveyard, R.; Clint, J.H.; Nees, D.; Paunov, V.N. Compression and structure of monolayers of charged latex particles at air/water and octane/water interfaces. Langmuir 2000, 16, 1969–1979. [Google Scholar] [CrossRef]
- Aveyard, R.; Clint, J.H.; Nees, D.; Quirke, N. Structure and collapse of particle monolayers under lateral pressure at the octane/aqueous surfactant solution interface†. Langmuir 2000, 16, 8820–8828. [Google Scholar] [CrossRef]
- Vella, D.; Aussillous, P.; Mahadevan, L. Elasticity of an interfacial particle raft. Europhys. Lett. 2004, 68, 212–218. [Google Scholar] [CrossRef]
- Whitby, C.P.; Krebsz, M. Coalescence in concentrated pickering emulsions under shear. Soft Matter 2014, 10, 4848–4854. [Google Scholar] [CrossRef] [PubMed]
- Razavi, S.; Cao, K.D.; Lin, B.; Lee, K.Y.C.; Tu, R.S.; Kretzschmar, I. Collapse of particle-laden interfaces under compression: Buckling vs particle expulsion. Langmuir 2015, 31, 7764–7775. [Google Scholar] [CrossRef] [PubMed]
- Aveyard, R.; Binks, B.P.; Clint, J.H.; Fletcher, P.D.I.; Horozov, T.S.; Neumann, B.; Paunov, V.N.; Annesley, J.; Botchway, S.W.; Nees, D.; et al. Measurement of long-range repulsive forces between charged particles at an oil-water interface. Phys. Rev. Lett. 2002, 88, 246102. [Google Scholar] [CrossRef] [PubMed]
- Garbin, V.; Crocker, J.C.; Stebe, K.J. Forced desorption of nanoparticles from an oil–water interface. Langmuir 2012, 28, 1663–1667. [Google Scholar] [CrossRef] [PubMed]
- Arditty, S.; Whitby, C.P.; Binks, B.P.; Schmitt, V.; Leal-Calderon, F. Some general features of limited coalescence in solid-stabilized emulsions. Eur. Phys. J. E 2003, 11, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Wiley, R.M. Limited coalescence of oil droplets in coarse oil-in-water emulsions. J. Colloid Sci. 1954, 9, 427–437. [Google Scholar] [CrossRef]
- Frijters, S.; Günther, F.; Harting, J. Domain and droplet sizes in emulsions stabilized by colloidal particles. Phys. Rev. E 2014, 90, 042307. [Google Scholar] [CrossRef] [PubMed]
- Daware, S.V.; Basavaraj, M.G. Emulsions stabilized by silica rods via arrested demixing. Langmuir 2015, 31, 6649–6654. [Google Scholar] [CrossRef] [PubMed]
- Pauchard, V.; Roy, T. Blockage of coalescence of water droplets in asphaltenes solutions: A jamming perspective. Colloid Surf. A 2014, 443, 410–417. [Google Scholar] [CrossRef]
- Pauchard, V.; Rane, J.P.; Banerjee, S. Asphaltene-laden interfaces form soft glassy layers in contraction experiments: A mechanism for coalescence blocking. Langmuir 2014, 30, 12795–12803. [Google Scholar] [CrossRef] [PubMed]
- Whitby, C.P.; Fornasiero, D.; Ralston, J. Structure of oil-in-water emulsions stabilised by silica and hydrophobised titania particles. J. Colloid Interface Sci. 2010, 342, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Nallamilli, T.; Mani, E.; Basavaraj, M.G. A model for the prediction of droplet size in pickering emulsions stabilized by oppositely charged particles. Langmuir 2014, 30, 9336–9345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhang, L.; Sun, D. Influence of emulsification process on the properties of pickering emulsions stabilized by layered double hydroxide particles. Langmuir 2015, 31, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ma, A.; Liu, T.; Lu, C.; Wang, D.; Xu, H. Janus-like pickering emulsions and their controllable coalescence. Chem. Commun. 2013, 49, 10871–10873. [Google Scholar] [CrossRef] [PubMed]
- Priest, C.; Reid, M.D.; Whitby, C.P. Formation and stability of nanoparticle-stabilised oil-in-water emulsions in a microfluidic chip. J. Colloid Interface Sci. 2011, 363, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Manga, M.S.; Cayre, O.J.; Williams, R.A.; Biggs, S.; York, D.W. Production of solid-stabilised emulsions through rotational membrane emulsification: Influence of particle adsorption kinetics. Soft Matter 2012, 8, 1532–1538. [Google Scholar] [CrossRef]
- Fan, H.; Striolo, A. Mechanistic study of droplets coalescence in pickering emulsions. Soft Matter 2012, 8, 9533–9538. [Google Scholar] [CrossRef]
- Ata, S. Coalescence of bubbles covered by particles. Langmuir 2008, 24, 6085–6091. [Google Scholar] [CrossRef] [PubMed]
- Ata, S. The detachment of particles from coalescing bubble pairs. J. Colloid Interface Sci. 2009, 338, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Menchaca-Rocha, A.; Martínez-Dávalos, A.; Núñez, R.; Popinet, S.; Zaleski, S. Coalescence of liquid drops by surface tension. Phys. Rev. E 2001, 63, 046309. [Google Scholar] [CrossRef] [PubMed]
- Stover, R.L.; Tobias, C.W.; Denn, M.M. Bubble coalescence dynamics. AIChE J. 1997, 43, 2385–2392. [Google Scholar] [CrossRef]
- Ata, S.; Davis, E.S.; Dupin, D.; Armes, S.P.; Wanless, E.J. Direct observation of ph-induced coalescence of latex-stabilized bubbles using high-speed video imaging. Langmuir 2010, 26, 7865–7874. [Google Scholar] [CrossRef] [PubMed]
- Bournival, G.; Ata, S.; Wanless, E.J. The roles of particles in multiphase processes: Particles on bubble surfaces. Adv. Colloid Interface Sci. 2015, 225, 114–133. [Google Scholar] [CrossRef]
- Tan, S.-Y.; Ata, S.; Wanless, E.J. Direct observation of individual particle armored bubble interaction, stability, and coalescence dynamics. J. Phys. Chem. B 2013, 117, 8579–8588. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.L.; Giakoumatos, E.C.; Ata, S.; Webber, G.B.; Armes, S.P.; Wanless, E.J. Direct observation of giant pickering emulsion and colloidosome droplet interaction and stability. Langmuir 2012, 28, 16501–16511. [Google Scholar] [CrossRef] [PubMed]
- Taylor, G.I. The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 1934, 146, 501–523. [Google Scholar] [CrossRef]
- Bécu, L.; Benyahia, L. Strain-induced droplet retraction memory in a pickering emulsion. Langmuir 2009, 25, 6678–6682. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Y.; Tabor, R.F.; Ong, L.; Stevens, G.W.; Dagastine, R.R. Nano-mechanical properties of clay-armoured emulsion droplets. Soft Matter 2012, 8, 3112–3121. [Google Scholar] [CrossRef]
- Ferri, J.K.; Carl, P.; Gorevski, N.; Russell, T.P.; Wang, Q.; Boker, A.; Fery, A. Separating membrane and surface tension contributions in pickering droplet deformation. Soft Matter 2008, 4, 2259–2266. [Google Scholar] [CrossRef]
- Russell, J.T.; Lin, Y.; Böker, A.; Su, L.; Carl, P.; Zettl, H.; He, J.; Sill, K.; Tangirala, R.; Emrick, T.; et al. Self-assembly and cross-linking of bionanoparticles at liquid–liquid interfaces. Angew. Chemie Int. Ed. 2005, 44, 2420–2426. [Google Scholar] [CrossRef] [PubMed]
- Asare-Asher, S.; Connor, J.N.; Sedev, R. Elasticity of liquid marbles. J. Colloid Interface Sci. 2015, 449, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Whitby, C.P.; Fischer, F.E.; Fornasiero, D.; Ralston, J. Shear-induced coalescence of oil-in-water pickering emulsions. J. Colloid Interface Sci. 2011, 361, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Kruglyakov, P.M.; Nushtayeva, A.V.; Vilkova, N.G. Experimental investigation of capillary pressure influence on breaking of emulsions stabilized by solid particles. J. Colloid Interface Sci. 2004, 276, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Arditty, S.; Schmitt, V.; Giermanska-Kahn, J.; Leal-Calderon, F. Materials based on solid-stabilized emulsions. J. Colloid Interface Sci. 2004, 275, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Hermes, M.; Clegg, P.S. Yielding and flow of concentrated pickering emulsions. Soft Matter 2013, 9, 7568–7575. [Google Scholar] [CrossRef]
- Boode, K.; Walstra, P. Partial coalescence in oil-in-water emulsions. 1. Nature of the aggregation. Colloid Surf. A 1993, 81, 121–137. [Google Scholar] [CrossRef]
- Boode, K.; Walstra, P.; Degrootmostert, A.E.A. Partial coalescence in oil-in-water emulsions. 2. Influence of the properties of the fat. Colloid Surf. A 1993, 81, 139–151. [Google Scholar] [CrossRef]
- Fuller, G.T.; Considine, T.; Golding, M.; Matia-Merino, L.; MacGibbon, A. Aggregation behavior of partially crystalline oil-in-water emulsions: Part II—Effect of solid fat content and interfacial film composition on quiescent and shear stability. Food Hydrocolloids 2015, 51, 23–32. [Google Scholar] [CrossRef]
- Arima, S.; Ueno, S.; Ogawa, A.; Sato, K. Scanning microbeam small-angle X-ray diffraction study of interfacial heterogeneous crystallization of fat crystals in oil-in-water emulsion droplets. Langmuir 2009, 25, 9777–9784. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Norton, J.E.; Norton, I.T. Emulsifier effects on fat crystallisation. Food Struct. 2015, 4, 27–33. [Google Scholar] [CrossRef]
- Thivilliers-Arvis, F.; Laurichesse, E.; Schmitt, V.; Leal-Calderon, F. Shear-induced instabilities in oil-in-water emulsions comprising partially crystallized droplets. Langmuir 2010, 26, 16782–16790. [Google Scholar] [CrossRef] [PubMed]
- Frostad, J.M.; Collins, M.C.; Leal, L.G. Direct measurement of the interaction of model food emulsion droplets adhering by arrested coalescence. Colloid Surf. A 2014, 441, 459–465. [Google Scholar] [CrossRef]
- Pawar, A.B.; Caggioni, M.; Hartel, R.W.; Spicer, P.T. Arrested coalescence of viscoelastic droplets with internal microstructure. Faraday Disc. 2012, 158, 341–350. [Google Scholar] [CrossRef]
- Studart, A.R.; Shum, H.C.; Weitz, D.A. Arrested coalescence of particle-coated droplets into nonspherical supracolloidal structures. J. Phys. Chem. B 2009, 113, 3914–3919. [Google Scholar] [CrossRef] [PubMed]
- Pawar, A.B.; Caggioni, M.; Ergun, R.; Hartel, R.W.; Spicer, P.T. Arrested coalescence in pickering emulsions. Soft Matter 2011, 7, 7710–7716. [Google Scholar] [CrossRef]
- Morse, A.J.; Tan, S.-Y.; Giakoumatos, E.C.; Webber, G.B.; Armes, S.P.; Ata, S.; Wanless, E.J. Arrested coalescence behaviour of giant pickering droplets and colloidosomes stabilised by poly(tert-butylaminoethyl methacrylate) latexes. Soft Matter 2014, 10, 5669–5681. [Google Scholar] [CrossRef] [PubMed]
- Bremond, N.; Thiam, A.R.; Bibette, J. Decompressing emulsion droplets favors coalescence. Phys. Rev. Lett. 2008, 100, 024501. [Google Scholar] [CrossRef] [PubMed]
- Whitby, C.P.; Lotte, L.; Lang, C. Structure of concentrated oil-in-water pickering emulsions. Soft Matter 2012, 8, 7784–7789. [Google Scholar] [CrossRef]
- Tan, J.J.; Zhang, M.; Wang, J.; Xu, J.; Sun, D.J. Temperature induced formation of particle coated non-spherical droplets. J. Colloid Interface Sci. 2011, 359, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Binks, B.P.; Murakami, R. Phase inversion of particle-stabilized materials from foams to dry water. Nat. Mater. 2006, 5, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Shen, W.; Hapgood, K. Characterisation of liquid marbles in commercial cosmetic products. Adv. Powder Technol. 2016, 27, 33–41. [Google Scholar] [CrossRef]
- Binks, B.P.; Whitby, C.P. Silica particle-stabilized emulsions of silicone oil and water: Aspects of emulsification. Langmuir 2004, 20, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- Clegg, P.S.; Tavacoli, J.W.; Wilde, P.J. One-step production of multiple emulsions: Microfluidic, polymer-stabilized and particle-stabilized approaches. Soft Matter 2016, 12, 998–1008. [Google Scholar] [CrossRef] [PubMed]
- Binks, B.P.; Rodrigues, J.A. Types of phase inversion of silica particle stabilized emulsions containing triglyceride oil. Langmuir 2003, 19, 4905–4912. [Google Scholar] [CrossRef]
- Arditty, S.; Schmitt, V.; Lequeux, F.; Leal-Calderon, F. Interfacial properties in solid-stabilized emulsions. Eur. Phys. J. B 2005, 44, 381–393. [Google Scholar] [CrossRef]
- Zang, D.; Clegg, P.S. Relationship between high internal-phase pickering emulsions and catastrophic inversion. Soft Matter 2013, 9, 7042–7048. [Google Scholar] [CrossRef]
- Menner, A.; Ikem, V.; Salgueiro, M.; Shaffer, M.S.P.; Bismarck, A. High internal phase emulsion templates solely stabilised by functionalised titania nanoparticles. Chem. Commun. 2007, 41, 4274–4276. [Google Scholar] [CrossRef]
- Adelmann, H.; Binks, B.P.; Mezzenga, R. Oil powders and gels from particle-stabilized emulsions. Langmuir 2012, 28, 1694–1697. [Google Scholar] [CrossRef] [PubMed]
- Simovic, S.; Heard, P.; Hui, H.; Song, Y.; Peddie, F.; Davey, A.K.; Lewis, A.; Rades, T.; Prestidge, C.A. Dry hybrid lipid−silica microcapsules engineered from submicron lipid droplets and nanoparticles as a novel delivery system for poorly soluble drugs. Mol. Pharm. 2009, 6, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Vehring, R.; Foss, W.R.; Lechuga-Ballesteros, D. Particle formation in spray drying. J. Aerosol. Sci. 2007, 38, 728–746. [Google Scholar] [CrossRef]
- Whitby, C.P.; Scarborough, H.; Sian Ng, K.; Ngothai, Y. Spray drying particle-stabilised emulsions. In Proceedings of the Chemeca 2014, Perth, Australia, 28 September–1 October 2014.
- Destribats, M.; Gineste, S.; Laurichesse, E.; Tanner, H.; Leal-Calderon, F.; Heroguez, V.; Schmitt, V. Pickering emulsions: What are the main parameters determining the emulsion type and interfacial properties? Langmuir 2014, 30, 9313–9326. [Google Scholar] [CrossRef] [PubMed]
- White, K.A.; Schofield, A.B.; Wormald, P.; Tavacoli, J.W.; Binks, B.P.; Clegg, P.S. Inversion of particle-stabilized emulsions of partially miscible liquids by mild drying of modified silica particles. J. Colloid Interface Sci. 2011, 359, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Akartuna, I.; Aubrecht, D.M.; Kodger, T.E.; Weitz, D.A. Chemically induced coalescence in droplet-based microfluidics. Lab Chip 2015, 15, 1140–1144. [Google Scholar] [CrossRef] [PubMed]
- Fryd, M.M.; Mason, T.G. Self-limiting droplet fusion in ionic emulsions. Soft Matter 2014, 10, 4662–4673. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Ershov, D.; Krebs, T.; Schroen, K.; Cohen Stuart, M.A.; van der Gucht, J.; Sprakel, J. Manipulating and quantifying temperature-triggered coalescence with microcentrifugation. Lab Chip 2015, 15, 188–194. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whitby, C.P.; Wanless, E.J. Controlling Pickering Emulsion Destabilisation: A Route to Fabricating New Materials by Phase Inversion. Materials 2016, 9, 626. https://doi.org/10.3390/ma9080626
Whitby CP, Wanless EJ. Controlling Pickering Emulsion Destabilisation: A Route to Fabricating New Materials by Phase Inversion. Materials. 2016; 9(8):626. https://doi.org/10.3390/ma9080626
Chicago/Turabian StyleWhitby, Catherine P., and Erica J. Wanless. 2016. "Controlling Pickering Emulsion Destabilisation: A Route to Fabricating New Materials by Phase Inversion" Materials 9, no. 8: 626. https://doi.org/10.3390/ma9080626
APA StyleWhitby, C. P., & Wanless, E. J. (2016). Controlling Pickering Emulsion Destabilisation: A Route to Fabricating New Materials by Phase Inversion. Materials, 9(8), 626. https://doi.org/10.3390/ma9080626