Compatibilized Immiscible Polymer Blends for Gas Separations
Abstract
:1. Introduction
2. Miscible Polymer Blends for Gas Separations
3. Immiscible Polymer Blends in Gas Separation Membranes
Thermodynamics
4. Morphology Control and Compatibilizers for Gas Separation Membranes
5. Compatibilizers and Improvement in Mechanical Properties (Tensile Strength, Young’s Modulus, Elongation at Break, and Ductility)
6. Compatibilized Immiscible Polymer Blends and Commercial Gas Separation Membranes
7. Conclusions Future Directions
Acknowledgments
Conflicts of Interest
References
- Grand View Research. Available online: http://www.grandviewresearch.com/industry-analysis/oil-and-gas-separation-market (accessed on 2 June 2016).
- Sircar, S.; Golden, T.C. Purification of hydrogen by pressure swing adsorption. Sep. Sci. Technol. 2000, 35, 667–687. [Google Scholar] [CrossRef]
- Stocker, J.; Whysall, M.; Miller, G.Q. 30 Years of PSA Technology for Hydrogen Purification 2005; UOP LLC: Des Plaines, IL, USA, 1998. [Google Scholar]
- Smith, A.R.; Klosek, J. A review of air separation technologies and their integration with energy conversion processes. Fuel Process. Technol. 2001, 70, 115–134. [Google Scholar] [CrossRef]
- Takht Ravanchi, M.; Kaghazchi, T.; Kargari, A. Application of membrane separation processes in petrochemical industry: a review. Desalination 2009, 235, 199–244. [Google Scholar] [CrossRef]
- Budd, P.M.; McKeown, N.B. Highly permeable polymers for gas separation membranes. Polym. Chem. 2010, 1, 63–68. [Google Scholar] [CrossRef]
- Bastani, D.; Esmaeili, N.; Asadollahi, M. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. J. Ind. Eng. Chem. 2013, 19, 375–393. [Google Scholar] [CrossRef]
- Chung, T.S.; Jiang, L.Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007, 32, 483–507. [Google Scholar] [CrossRef]
- Baker, R.W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 2002, 41, 1393–1411. [Google Scholar] [CrossRef]
- Xiao, Y.; Low, B.T.; Hosseini, S.S.; Chung, T.S.; Paul, D.R. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review. Prog. Polym. Sci. 2009, 34, 561–580. [Google Scholar] [CrossRef]
- Baker, R. Membrane Technology and Applications, 3rd ed.; John Wiley & Sons: Chichester, UK, 2012. [Google Scholar]
- Luis, P.; Van Gerven, T.; Van der Bruggen, B. Recent developments in membrane-based technologies for CO2 capture. Prog. Energy Combust. Sci. 2012, 38, 419–448. [Google Scholar] [CrossRef]
- Mannan, H.A.; Mukhtar, H.; Murugesan, T.; Nasir, R.; Mohshim, D.F.; Mushtaq, A. Recent Applications of Polymer Blends in Gas Separation Membranes. Chem. Eng. Technol. 2013, 36, 1838–1846. [Google Scholar] [CrossRef]
- Yampolskii, Y. Polymeric gas separation membranes. Macromolecules 2012, 45, 3298–3311. [Google Scholar] [CrossRef]
- Spillman, R.W.; Grace, W.R. Economics of gas separation membranes. Chem. Eng. Prog. 1989, 85, 41–62. [Google Scholar]
- Aroon, M.; Ismail, A.; Matsuura, T.; Montazer-Rahmati, M. Performance studies of mixed matrix membranes for gas separation: A review. Sep. Purif. Technol. 2010, 75, 229–242. [Google Scholar] [CrossRef]
- Koros, W.J.; Mahajan, R. Pushing the limits on possibilities for large scale gas separation: which strategies? J. Membr. Sci. 2000, 175, 181–196. [Google Scholar] [CrossRef]
- Wijmans, J.G.; Baker, R.W. The solution-diffusion model: A review. J. Membr. Sci. 1995, 107, 1–21. [Google Scholar] [CrossRef]
- George, S.C.; Thomas, S. Transport phenomena through polymeric systems. Prog. Polym. Sci. 2001, 26, 985–1017. [Google Scholar] [CrossRef]
- Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991, 62, 165–185. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Sakaguchi, T.; Shiotsuki, M.; Sanda, F.; Freeman, B.D.; Masuda, T. Synthesis and Properties of F-Containing Poly(diphenylacetylene) Membranes. Macromolecules 2005, 38, 8327–8332. [Google Scholar] [CrossRef]
- Lively, R.P.; Dose, M.E.; Xu, L.; Vaughn, J.T.; Johnson, J.R.; Thompson, J.A.; Zhang, K.; Lydon, M.E.; Lee, J.S.; Liu, L.; et al. A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas. J. Membr. Sci. 2012, 423, 302–313. [Google Scholar] [CrossRef]
- Sanders, D.F.; Smith, Z.P.; Ribeiro, C.P.; Guo, R.; McGrath, J.E.; Paul, D.R.; Freeman, B.D. Gas permeability, diffusivity, and free volume of thermally rearranged polymers based on 3,3′-dihydroxy-4,4′-diamino-biphenyl (HAB) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA). J. Membr. Sci. 2012, 409, 232–241. [Google Scholar] [CrossRef]
- Park, H.B.; Jung, C.H.; Lee, Y.M.; Hill, A.J.; Pas, S.J.; Mudie, S.T.; Van Wagner, E.; Freeman, B.D.; Cookson, D.J. Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions. Science 2007, 318, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Chen, C.C.; Xu, L.; Cui, L.; Paul, D.R.; Koros, W.J. Sub-Tg Cross-Linking of a Polyimide Membrane for Enhanced CO2 Plasticization Resistance for Natural Gas Separation. Macromolecules 2011, 44, 6046–6056. [Google Scholar] [CrossRef]
- Ribeiro, C.P.; Freeman, B.D.; Paul, D.R. Pure- and mixed-gas carbon dioxide/ethane permeability and diffusivity in a cross-linked poly(ethylene oxide) copolymer. J. Membr. Sci. 2011, 377, 110–123. [Google Scholar] [CrossRef]
- Ordoñez, M.J.C.; Balkus, K.J.; Ferraris, J.P.; Musselman, I.H. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J. Membr. Sci. 2010, 361, 28–37. [Google Scholar] [CrossRef]
- Bae, T.H.; Lee, J.S.; Qiu, W.; Koros, W.J.; Jones, C.W.; Nair, S. A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal–Organic Framework Crystals. Angew. Chem. Int. Ed. 2010, 49, 9863–9866. [Google Scholar] [CrossRef] [PubMed]
- Perez, E.V.; Balkus, K.J.; Ferraris, J.P.; Musselman, I.H. Mixed-matrix membranes containing MOF-5 for gas separations. J. Membr. Sci. 2009, 328, 165–173. [Google Scholar] [CrossRef]
- Wijenayake, S.N.; Panapitiya, N.P.; Nguyen, C.N.; Hung, H.; Balkus, K.J., Jr.; Musselman, I.H.; Ferraris, J.P. Composite membranes with a highly selective polymer skin for hydrogen separation. Sep. Purif. Technol. 2014, 135, 190–198. [Google Scholar] [CrossRef]
- Wijenayake, S.N.; Panapitiya, N.P.; Versteeg, S.H.; Nguyen, C.N.; Goel, S.; Balkus, K.J.; Musselman, I.H.; Ferraris, J.P. Surface cross-linking of ZIF-8/polyimide mixed matrix membranes (MMMs) for gas separation. Ind. Eng. Chem. Res. 2013, 52, 6991–7001. [Google Scholar] [CrossRef]
- Ning, X.; Koros, W.J. Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation. Carbon 2014, 66, 511–522. [Google Scholar] [CrossRef]
- Rungta, M.; Xu, L.; Koros, W.J. Carbon molecular sieve dense film membranes derived from Matrimid® for ethylene/ethane separation. Carbon 2012, 50, 1488–1502. [Google Scholar] [CrossRef]
- Low, B.T.; Chung, T.S. Carbon molecular sieve membranes derived from pseudo-interpenetrating polymer networks for gas separation and carbon capture. Carbon 2011, 49, 2104–2112. [Google Scholar] [CrossRef]
- Paul, D.R. Creating New Types of Carbon-Based Membranes. Science 2012, 335, 413–414. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.S.; Teoh, M.M.; Chung, T.S. Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 2008, 49, 1594–1603. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Peng, N.; Chung, T.S. Carbon membranes from blends of PBI and polyimides for N 2/CH 4 and CO 2/CH 4 separation and hydrogen purification. J. Membr. Sci. 2009, 328, 174–185. [Google Scholar] [CrossRef]
- Khan, A.L.; Li, X.; Vankelecom, I.F.J. SPEEK/Matrimid blend membranes for CO2 separation. J. Membr. Sci. 2011, 380, 55–62. [Google Scholar] [CrossRef]
- Madaeni, S.S.; Mohammadi Nooripour, R.; Vatanpour, V. Preparation and characterization of polyimide and polyethersulfone blend membrane for gas separation. Asia Pac. J. Chem. Eng. 2011, 7, 747–754. [Google Scholar] [CrossRef]
- Klaehn, J.R.; Orme, C.J.; Peterson, E.S.; Stewart, F.F.; Urban-Klaehn, J.M. High Temperature Gas Separations Using High Performance Polymers. In Inorganic, Polymeric and Composite Membranes: Structure, Function and Other Correlations; Elsevier: Atlanta, GA, USA, 2011; Volume 14, pp. 295–307. [Google Scholar]
- Chappell, J.; Lidzey, D.G.; Jukes, P.C.; Higgins, A.M.; Thompson, R.L.; O'Connor, S.; Grizzi, I.; Fletcher, R.; O'Brien, J.; Geoghegan, M.; et al. Correlating structure with fluorescence emission in phase-separated conjugated-polymer blends. Nat. Mater. 2003, 2, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Berggren, M.; Inganas, O.; Gustafsson, G.; Rasmusson, J.; Andersson, M.R.; Hjertberg, T.; Wennerstrom, O. Light-emitting diodes with variable colours from polymer blends. Nature 1994, 372, 444–446. [Google Scholar] [CrossRef]
- Newman, D.; Laredo, E.; Bello, A.; Grillo, A.l.; Feijoo, J.L.; MuÌller, A.J. Molecular Mobilities in Biodegradable Poly(dl-lactide)/Poly(ε-caprolactone) Blends. Macromolecules 2009, 42, 5219–5225. [Google Scholar] [CrossRef]
- Deimede, V.; Voyiatzis, G.A.; Kallitsis, J.K.; Qingfeng, L.; Bjerrum, N.J. Miscibility Behavior of Polybenzimidazole/Sulfonated Polysulfone Blends for Use in Fuel Cell Applications. Macromolecules 2000, 33, 7609–7617. [Google Scholar] [CrossRef]
- Jung, K.H.; Ferraris, J.P. Preparation and electrochemical properties of carbon nanofibers derived from polybenzimidazole/polyimide precursor blends. Carbon 2012, 50, 5309–5319. [Google Scholar] [CrossRef]
- Rafailovich, M.; Sokolov, J.; Plainvie, W.; Zhu, S.; Brook, S.; Chu, B. Compatibilizer for Immiscible Polymer Blends. U.S. Patent US 6,339,121 B1, 15 January 2002. [Google Scholar]
- Robeson, L.M. Polymer Blends in Membrane Transport Processes. Ind. Eng. Chem. Res. 2010, 49, 11859–11865. [Google Scholar] [CrossRef]
- Cai, X.; Li, B.; Pan, Y.; Wu, G. Morphology evolution of immiscible polymer blends as directed by nanoparticle self-agglomeration. Polymer 2012, 53, 259–266. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, J.; Feng, J.; Wu, P. Compatibilization of Immiscible Polymer Blends using Graphene Oxide Sheets. Compatibilization of Immiscible Polymer Blends Using Graphene Oxide Sheets. ACS Nano 2011, 5, 5920–5927. [Google Scholar] [CrossRef] [PubMed]
- Utracki, L.A. Polymer Alloys and Blends; Hanser Publishers: New York, NY, USA, 1990. [Google Scholar]
- Isayev, A.I. Fundamentals. In Encyclopedia of Polymer Blends; WILEY-VCH: Weinheim, Germany, 2010. [Google Scholar]
- Trifkovic, M.; Hedegaard, A.; Huston, K.; Sheikhzadeh, M.; Macosko, C.W. Porous Films via PE/PEO Co-continuous Blends. Macromolecules 2012, 45, 6036–6044. [Google Scholar] [CrossRef]
- Xu, Y.; Thurber, C.M.; Lodge, T.P.; Hillmyer, M.A. Synthesis and Remarkable Efficacy of Model Polyethylene-graft-poly(methyl methacrylate) Copolymers as Compatibilizers in Polyethylene/Poly(methyl methacrylate) Blends. Macromolecules 2012, 45, 9604–9610. [Google Scholar] [CrossRef]
- Mickiewicz, R.A.; Ntoukas, E.; Avgeropoulos, A.; Thomas, E.L. Phase Behavior of Binary Blends of High Molecular Weight Diblock Copolymers with a Low Molecular Weight Triblock. Macromolecules 2008, 41, 5785–5792. [Google Scholar] [CrossRef]
- Gubbels, F.; Jerome, R.; Teyssie, P.; Vanlathem, E.; Deltour, R.; Calderone, A. Selective Localization of Carbon Black in Immiscible Polymer Blends: A Useful Tool To Design Electrical Conductive Composites. Macromolecules 1994, 27, 1972–1974. [Google Scholar] [CrossRef]
- Kwon, T.; Kim, T.; Ali, F.b.; Kang, D.J.; Yoo, M.; Bang, J.; Lee, W.; Kim, B.J. Size-Controlled Polymer-Coated Nanoparticles as Efficient Compatibilizers for Polymer Blends. Macromolecules 2011, 44, 9852–9862. [Google Scholar] [CrossRef]
- Panapitiya, N.P.; Wijenayake, S.N.; Hung, H.; Bushdiecker, D.; Ratanatawanate, C.; Kalaw, G.D.; Nguyen, D.; Balkus, K.J.; Musselman, I.H.; Ferraris, J.P. Stabilization of immiscible polymer blends using structure directing metal organic frameworks. Polymer 2014, 55, 2028–2034. [Google Scholar] [CrossRef]
- Panapitiya, N.P.; Wijenayake, S.N.; Nguyen, D.D.; Huang, Y.; Musselman, I.H.; Balkus, K.J.; Ferraris, J.P. Gas Separation Membranes Derived from High-Performance Immiscible Polymer Blends Compatibilized with Small Molecules. ACS Appl. Mater. Interfaces 2015, 7, 18618–18627. [Google Scholar] [CrossRef] [PubMed]
- Morel, G.; Paul, D.R. CO2 sorption and transport in miscible poly(phenyleneoxide)/polystyrene blends. J. Membr. Sci. 1982, 10, 273–282. [Google Scholar] [CrossRef]
- Maeda, Y.; Paul, D.R. Selective gas transport in miscible PPO-PS blends. Polymer 1985, 26, 2055–2063. [Google Scholar] [CrossRef]
- Muruganandam, N.; Paul, D.R. Evaluation of substituted polycarbonates and a blend with polystyrene as gas separation membranes. J. Membr. Sci. 1987, 34, 185–198. [Google Scholar] [CrossRef]
- Lokaj, J.; Pientka, Z.; Kovářová, J.; Bleha, M. Membranes based on poly[N-(3-dimethylaminophenyl)maleimide]–poly(2,6-dimethyl-1,4-phenylene oxide) blends for gas separation. J. Apply. Polym. Sci. 1992, 46, 1507–1508. [Google Scholar] [CrossRef]
- Kapantaidakis, G.C.; Kaldis, S.P.; Dabou, X.S.; Sakellaropoulos, G.P. Gas permeation through PSF-PI miscible blend membranes. J. Membr. Sci. 1996, 110, 239–247. [Google Scholar] [CrossRef]
- Bos, A.; Pünt, I.; Strathmann, H.; Wessling, M. Suppression of gas separation membrane plasticization by homogeneous polymer blending. AIChE J. 2001, 47, 1088–1093. [Google Scholar] [CrossRef]
- Dong, G.; Li, H.; Chen, V.J. Challenges and opportunities for mixed-matrix membranes for gas separation. Mater. Chem. A 2013, 1, 4610–4630. [Google Scholar] [CrossRef]
- Ismail, A.F.; Rahim, R.A.; Rahman, W.A.W.A. Characterization of polyethersulfone/Matrimid 5218 miscible blend mixed matrix membranes for O2/N2 gas separation. Sep. Purif. Technol. 2008, 63, 200–206. [Google Scholar] [CrossRef]
- Hiemenz, P.C.; Lodge, T.P. Polymer Chemistry, 2nd ed.; Taylor & Francis: Boca Raton, FL, USA, 2007. [Google Scholar]
- Hosseini, S.S.; Chung, T.S. Gas separation membranes developed through integration of polymer blending and dual-layer hollow fiber spinning process for hydrogen and natural gas enrichments. J. Membr. Sci. 2010, 349, 156–166. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, J.H.; Kim, C.K.; Kang, Y.S.; Park, H.C.; Won, J.O. Control of Phase Separation Behavior of PC/PMMA Blends and Their Application to the Gas Separation Membranes. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 2950–2959. [Google Scholar] [CrossRef]
- Toy, L.G.; Freeman, B.D.; Spontak, R.J.; Morisato, A.; Pinnau, I. Gas Permeability and Phase Morphology of Poly(1-(trimethylsilyl)-1-propyne)/Poly(1-phenyl-1-propyne) Blends. Macromolecules 1997, 30, 4766–4769. [Google Scholar] [CrossRef]
- Li, X.-G.; Kresse, I.; Springer, J.; Nissen, J.; Yang, Y.-L. Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethylcellulose. Polymer 2001, 42, 6859–6869. [Google Scholar] [CrossRef]
- de Sales, J.A.; Patrício, P.S.O.; Machado, J.C.; Silva, G.G.; Windmöller, D. Systematic investigation of the effects of temperature and pressure on gas transport through polyurethane/poly(methylmethacrylate) phase-separated blends. J. Membr. Sci. 2008, 310, 129–140. [Google Scholar] [CrossRef]
- Panapitiya, N.P. Novel compatibilised immiscible polymer blend based membranes for gas separations. Ph.D. Thesis, University of Texas at Dallas, Dallas, TX, USA, 24 May 2014. [Google Scholar]
- Vandebril, S.; Vermant, J.; Moldenaers, P. Efficiently Suppressing Coalescence in Polymer Blends Using Nanoparticles: Role of Interfacial Rheology. Soft Matter 2010, 6, 3353–3362. [Google Scholar] [CrossRef]
- Fenouillot, F.; Cassagnau, P.; Majesté, J.C. Uneven Distribution of Nanoparticles in Immiscible Fluids: Morphology Development in Polymer Blends. Polymer 2009, 50, 1333–1350. [Google Scholar] [CrossRef]
- Elias, I.; Fenouillot, F.; Majeste, J.C; Cassagnau, P. Morphology and Rheology of Immiscible Polymer Blends Filled with Silica Nanoparticles. Polymer 2007, 48, 6029–6040. [Google Scholar] [CrossRef]
- Vinckier, I.; Laun, H.M. Manifestation of Phase Separation Processes in Oscillatory Shear. Droplet-Matrix System versus Co-continuous Morphologies. Rheol. Acta. 1999, 38, 274–286. [Google Scholar] [CrossRef]
- Moon, E.J.; Yoo, J.E.; Choi, H.W.; Kim, C.K. Gas transport and thermodynamic properties of PMMA/PVME blends containing PS-b-PMMA as a compatibilizer. J. Membr. Sci. 2002, 204, 283–294. [Google Scholar] [CrossRef]
- Park, C. Morphological effect of dispersed phase on gas permeation properties through heterophase polymer membrane: theoretical and experimental approaches. Polymer 2000, 41, 1765–1771. [Google Scholar] [CrossRef]
- Semsarzadeh, M.A.; Ghalei, B. Characterization and gas permeability of polyurethane and polyvinyl acetate blend membranes with polyethylene oxide-polypropylene oxide block copolymer. J. Membr. Sci. 2012, 401, 97–108. [Google Scholar] [CrossRef]
- Lai, J.-Y.; Huang, S.-J.; Huang, S.-L.; Shyu, S.S. Poly(Methyl Methacrylate)/Polycarbonate Membrane for Gas Separation. Sep. Sci. Technol. 1995, 30, 461–476. [Google Scholar] [CrossRef]
- Baker, R.W; Low, B.T. Gas Separation Membrane Materials: A perspective. Macromolecules 2014, 47, 6999–7013. [Google Scholar] [CrossRef]
- Li, X.; Singh, R.P.; Dudeck, K.W.; Berchtold, K.A.; Benicewicz, B.C. Influence of Polybenzimidazole Main Chain Structure on H2/CO2 Separation at Elevated Temperatures. J. Membr. Sci. 2014, 461, 59–68. [Google Scholar] [CrossRef]
- Stiegel, G.J.; Ratafia-Brown, J.; Ramezan, M. Overview of Advanced Gas Separation Technologies for Gasification-Based Energy Systems. Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem. 2003, 48, 235–237. [Google Scholar]
- Ray, S.S.; Bousmina, M. Compatibilization Efficiency of Organoclay in an Immiscible Polycarbonate/Poly(methyl methacrylate) Blend. Macrol. Rapid Commun. 2005, 26, 450–455. [Google Scholar]
- Lai, J.Y.; Chen, S.H.; Lee, M.H.; Shyu, S.S. Preparation of Polycarbonate/Metal Salt Gas Separation Membrane. J. Appl. Polym. Sci. 1993, 47, 1513–1522. [Google Scholar] [CrossRef]
- Sen, D.; Kalipcilar, H.; Yilmaz, L. Development of Zeolite Filled Polycarbonate Mixed Matrix Gas Separation Membranes. Desalination 2006, 200, 222–224. [Google Scholar] [CrossRef]
- Hu, C.C.; Liu, T.C.; Lee, K.R.; Ruaan, R.C.; Lai, J.Y. Zeolite-Filled PMMA Composite Membranes: Influence of Coupling Agent Addition on Gas Separation Properties. Desalination 2006, 193, 14–24. [Google Scholar] [CrossRef]
- Hu, C.C.; Tu, C.Y.; Wang, Y.C.; Li, C.L.; Lee, K.R.; Lai, J.Y. Effects of Plasma Treatment on CO2 Plasticization of Poly(methyl methacrylate) Gas-Separation Membranes. J. Appl. Polym. Sci. 2004, 93, 395–401. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Fu, Q. Compatibilization of Immiscible Poly(propylene)/Polystyrene Blends Using Clay. Macromol. Rapid. Commun. 2003, 24, 231–235. [Google Scholar] [CrossRef]
- Thipmanee, R.; Lukubira, S.; Ogale, A.; Sane, A. Enhancing Distributive Mixing of Immiscible Polyethylene/Thermoplastic Starch Blend Through Zeolite ZSM-5 Compounding Sequence. Carbohyd. Polym. 2016, 136, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chenxia, F.; Dai, J.; Zhang, N.; Huang, T.; Wang, Y. Compatibilization of Immiscible Nylon 6/Poly(vinylidene fluoride) Blends Using Graphene Oxides. Polym. Int. 2013, 62, 1085–1093. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, T.; Yang, J.; Zhang, N.; Huang, T.; Wang, Y. Largely Enhanced Fracture Toughness of An Immiscible Polyamide 6/Acrylonitrile-butadiene-styrene Blend Achieved by Adding Chemically Modified Graphene Oxide. RSC Adv. 2015, 5, 101466–101474. [Google Scholar] [CrossRef]
- Zhao, X.; Luo, J.; Fang, C.; Jie, X. Investigation of Polylactide/Poly(ε-caprolactone)/ Multi-Walled Carbon Nanotubes Electrospun Nanofibers with Surface Texture. RSC Adv. 2015, 5, 99179–99187. [Google Scholar] [CrossRef]
- Lee, J.B.; Lee, Y.K.; Choi, G.D.; Na, S.W.; Park, T.S. Compatibilizing Effects for Improving Mechanical Properties of Biodegradable Poly(lactic acid) and Polycarbonate Blends. Polym. Degrad. Stab. 2011, 96, 553–560. [Google Scholar] [CrossRef]
- Jamian, W.N.R.; Hasbullah, H.; Mohamed, F.; Salleh, W.N.W.; Ibrahim, N.; Ali, R.R. Biodegradable Gas Separation Membrane Preparation by Manipulation of Casting Parameters. Chem. Eng. Trans. 2015, 43, 1105–1110. [Google Scholar]
- Catillo-Castro, T.D.; Castillo-Ortega, M.M.; Herrera-Franco, P.J.; Rodriguze-Felix, D.E. Compatibilization of Polyethylene/Polyaniline Blends with Polyethylene-graft-maleic anhydride. J. Apply. Polym. Sci. 2011, 119, 2895–2901. [Google Scholar] [CrossRef]
- Bahrami, R.; Lboling, T.I.; Schmalz, H.; Muller, A.H.E.; Altstadt, V. Micromechanics of “Raspberry” Morphology in PPE/SAN Polymer Blends Compatibilized with Linear ABC Triblock Terpolymers. Polymer 2015, 80, 52–63. [Google Scholar] [CrossRef]
- Cao, Y.; Feng, J.; Wu, P. Polypropylene-grafted Graphene Oxide Sheets as Multifunctional Compatibilizers for Polyolefin-based Polymer Blends. J. Mater. Chem. 2012, 22, 14997–15005. [Google Scholar] [CrossRef]
- Kar, G.P.; Biswas, S.; Bone, S. Tailoring the Interface of an Immiscible Polymer Blend by a Mutually Miscible Homopolymer Grafted onto Graphene Oxide: Outstanding Mechanical Properties. Phys. Chem. Chem. Phys. 2015, 17, 1811–1821. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.B.; Santana, R.M.C. Effect of Carboxylic Acids as Compatibilizer Agent on Mechanical Properties of Thermoplastic Starch and Polypropylene Blends. Carbohyd. Polym. 2016, 135, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Sanders, D.E.; Smith, Z.P.; Guo, R.L.; Robeson, L.M.; McGrath, J.E.; Paul, D.R.; Freeman, B.D. Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer 2013, 54, 4729–4761. [Google Scholar] [CrossRef]
- Yong, W.F.; Li, F.Y.; Xiao, Y.C.; Chung, T.S.; Tong, Y.W. High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation. J. Membr. Science, 2013, 443, 156–169. [Google Scholar] [CrossRef]
- Dai, Y.; Ruan, X.; Bai, F.; Yu, M.; Li, H.; Zhao, Z.; He, G. High solvent resistance PTFPMS/PEI hollow fiber composite membrane for gas separation. Appl. Surface Sci. Part A 2016, 164–173. [Google Scholar] [CrossRef]
- Jensvold, J.A.; Coan, F.L.; Barajas, A.J. High-flow hollow-fiber membranes containing polymer blends. U.S. Patent 9,034,957, 2 July 2014. [Google Scholar]
- Yates, S.; Zaki, R.; Arzadon, A.; Liu, C.; Chiou, J. Thin film gas separation membranes and fabricating hollow-fiber membranes. US 8016124, 15 September 2011. [Google Scholar]
Membrane | Permeability (Barrer) | Ideal Selectivity | |||
---|---|---|---|---|---|
H2 | CO2 | CH4 | H2/CO2 | CO2/CH4 | |
PBI/Matrimid (50/50 wt %) | 112.12 | 36.60 | 0.278 | 8.85 | 131.65 |
PBI/Matrimid (50/50 wt %) cross-linked | 91.0 | 3.71 | 0.104 | 24.52 | 30.50 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panapitiya, N.; Wijenayake, S.; Nguyen, D.; Karunaweera, C.; Huang, Y.; Balkus, K.; Musselman, I.; Ferraris, J. Compatibilized Immiscible Polymer Blends for Gas Separations. Materials 2016, 9, 643. https://doi.org/10.3390/ma9080643
Panapitiya N, Wijenayake S, Nguyen D, Karunaweera C, Huang Y, Balkus K, Musselman I, Ferraris J. Compatibilized Immiscible Polymer Blends for Gas Separations. Materials. 2016; 9(8):643. https://doi.org/10.3390/ma9080643
Chicago/Turabian StylePanapitiya, Nimanka, Sumudu Wijenayake, Do Nguyen, Chamaal Karunaweera, Yu Huang, Kenneth Balkus, Inga Musselman, and John Ferraris. 2016. "Compatibilized Immiscible Polymer Blends for Gas Separations" Materials 9, no. 8: 643. https://doi.org/10.3390/ma9080643
APA StylePanapitiya, N., Wijenayake, S., Nguyen, D., Karunaweera, C., Huang, Y., Balkus, K., Musselman, I., & Ferraris, J. (2016). Compatibilized Immiscible Polymer Blends for Gas Separations. Materials, 9(8), 643. https://doi.org/10.3390/ma9080643