Quaternized Cellulose Hydrogels as Sorbent Materials and Pickering Emulsion Stabilizing Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Cellulose Hydrogels
2.1.1. FTIR Studies
2.1.2. Thermogravimetry Studies
2.1.3. Carbon, Hydrogen and Nitrogen (CHN) Composition of Hydrogels
2.1.4. Hydrophile–Lipophile Balance (HLB) of Cellulose Hydrogels
2.1.5. 13C NMR Studies of Cellulose Hydrogels
2.2. Sorption Studies
2.2.1. Comparative Uptake of Single Component Carboxylate Anion
2.2.2. Equilibrium Studies of Single Component Carboxylate Anion (NAA) and OSPW Naphthenates
2.2.3. Effects of Ion Concentration on the Uptake of NAA
2.2.4. Sorption of OSPW Naphthenates by Cellulose Hydrogels
2.3. Kinetic Uptake Studies
2.3.1. Effects of Temperature and Sorbent Dosage
2.3.2. Effects of pH
2.3.3. Activation Parameters
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Cellulose Hydrogels
3.3. Characterization
3.3.1. Fourier Transform Infrared (FTIR) Spectroscopy
3.3.2. Thermal Gravimetric Analysis (TGA)
3.3.3. Carbon, Hydrogen and Nitrogen (CHN) Analyses
3.3.4. Hydrophile–Lipophile Balance (HLB)
3.3.5. Solid State 13C NMR Spectroscopy
3.4. Sorption Studies
3.4.1. Sorption of OSPW Naphthenates and Single Component Carboxylate Ions
3.4.2. Electrospray Ionization Mass Spectrometric (ESI-HRMS) Quantification
3.4.3. Sorption Isotherms and Modeling
3.5. Kinetic and Thermodynamic Studies
3.5.1. Kinetic Studies
3.5.2. Thermodynamic Studies
4. Conclusions
Acknowledgments
Author Contributions
Disclaimer
Conflicts of Interest
References
- Chang, C.; Zhang, L. Cellulose-based hydrogels: Present status and application prospects. Carbohyd. Polym. 2011, 84, 40–53. [Google Scholar] [CrossRef]
- Chang, C.; Zhang, L.; Zhou, J.; Zhang, L.; Kennedy, J.F. Structure and properties of hydrogels prepared from cellulose in naoh/urea aqueous solutions. Carbohyd. Polym. 2010, 82, 122–127. [Google Scholar] [CrossRef]
- Sannino, A.; Demitri, C.; Madaghiele, M. Biodegradable cellulose-based hydrogels: Design and applications. Materials 2009, 2, 353–373. [Google Scholar] [CrossRef]
- Molina, M.J.; Gómez-Antón, M.R.; Piérola, I.F. Determination of the parameters controlling swelling of chemically cross-linked ph-sensitive poly(n-vinylimidazole) hydrogels. J. Phys. Chem. B 2007, 111, 12066–12074. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.E.; Díez-Pascual, A.M.; Richtering, W. Layer-by-layer assembly of polyelectrolyte multilayers on thermoresponsive p(nipam-co-maa) microgel: Effect of ionic strength and molecular weight. Macromolecules 2009, 42, 1229–1238. [Google Scholar] [CrossRef]
- Qiu, X.; Hu, S. “Smart” materials based on cellulose: A review of the preparations, properties, and applications. Materials 2013, 6, 738–781. [Google Scholar] [CrossRef]
- Cavalieri, F.; Chiessi, E.; Finelli, I.; Natali, F.; Paradossi, G.; Telling, M.F. Water, solute, and segmental dynamics in polysaccharide hydrogels. Macromol. Biosci. 2006, 6, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Zoppe, J.O.; Venditti, R.A.; Rojas, O.J. Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. J. Colloid Interf. Sci. 2012, 369, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zhang, L. New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Res. Int. 2013, 52, 387–400. [Google Scholar] [CrossRef]
- Bergenstråhle, M.; Wohlert, J.; Himmel, M.E.; Brady, J.W. Simulation studies of the insolubility of cellulose. Carbohyd. Res. 2010, 345, 2060–2066. [Google Scholar] [CrossRef] [PubMed]
- Chaplin, M. Water Structure and Science: Cellulose. Available online: http://www1.lsbu.ac.uk/water/cellulose.html (accessed on 20 June 2016).
- Udoetok, I.A.; Dimmick, R.M.; Wilson, L.D.; Headley, J.V. Adsorption properties of cross-linked cellulose-epichlorohydrin polymers in aqueous solution. Carbohyd. Polym. 2016, 136, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Shuai, Q.; Gong, X.; Gu, Q.; Yu, H. Synthesis of microporous cationic hydrogel of hydroxypropyl cellulose (HPC) and its application on anionic dye removal. CLEAN Soil Air Water 2009, 37, 392–398. [Google Scholar] [CrossRef]
- Marc, G.; Mele, G.; Palmisano, L.; Pulito, P.; Sannino, A. Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem. 2006, 8, 439–444. [Google Scholar] [CrossRef]
- Chen, J.-C.; Yeh, J.-T.; Chen, C.-C. Crosslinking of cotton cellulose in the presence of alkyl diallyl ammonium salts. I. Physical properties and agent distribution. J. Appl. Polym. Sci. 2003, 90, 1662–1669. [Google Scholar] [CrossRef]
- Yang, S.P.; Fu, S.Y.; Li, X.Y.; Zhou, Y.M.; Zhan, H.Y. Preparation of salt-sensitive and antibacterial hydrogel based on quaternized cellulose. Bioresources 2010, 5, 1114–1125. [Google Scholar]
- Hu, D.Y.; Wang, P.; Li, J.; Wang, L.J. Functionalization of microcrystalline cellulose with n,n-dimethyldodecylamine for the removal of congo red dye from an aqueous solution. Bioresources 2014, 9, 5951–5962. [Google Scholar] [CrossRef]
- Vlachy, N.; Jagoda-Cwiklik, B.; Vácha, R.; Touraud, D.; Jungwirth, P.; Kunz, W. Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv. Colloid Interface Sci. 2009, 146, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Leishman, C.; Widdup, E.E.; Quesnel, D.M.; Chua, G.; Gieg, L.M.; Samuel, M.A.; Muench, D.G. The effect of oil sands process-affected water and naphthenic acids on the germination and development of arabidopsis. Chemosphere 2013, 93, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Lengger, S.K.; Scarlett, A.G.; West, C.E.; Rowland, S.J. Diamondoid diacids ('O4' species) in oil sands process-affected water. Rapid Commun. Mass Spectrom. 2013, 27, 2648–2654. [Google Scholar] [CrossRef] [PubMed]
- Reinardy, H.C.; Scarlett, A.G.; Henry, T.B.; West, C.E.; Hewitt, L.M.; Frank, R.A.; Rowland, S.J. Aromatic naphthenic acids in oil sands process-affected water, resolved by gcxgc-ms, only weakly induce the gene for vitellogenin production in zebrafish (danio rerio) larvae. Environ. Sci. Technol. 2013, 47, 6614–6620. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Ramsay, B.A.; Wang, J.; Ramsay, J. Toxicity and composition profiles of solid phase extracts of oil sands process-affected water. Sci. Total Environ. 2015, 538, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, S.B.; Anderson, J.C.; Liber, K.; Giesy, J.P. Endocrine disruption and oxidative stress in larvae of chironomus dilutus following short-term exposure to fresh or aged oil sands process-affected water. Aquat. Toxicol. 2013, 142–143, 414–421. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Patterson, S.; Wang, N.; Hecker, M.; Martin, J.W.; El-Din, M.G.; Giesy, J.P.; Wiseman, S.B. Toxicity of untreated and ozone-treated oil sands process-affected water (ospw) to early life stages of the fathead minnow (pimephales promelas). Water Res. 2012, 46, 6359–6368. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.D.; Mohamed, M.H.; Headley, J.V. Novel materials for environmental remediation of oil sands contaminants. Rev. Environ. Health 2014, 29, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Quinlan, P.J.; Tam, K.C. Stimuli-responsive pickering emulsions: Recent advances and potential applications. Soft Matter 2015, 11, 3512–3529. [Google Scholar] [CrossRef] [PubMed]
- Oyanedel-Craver, V.A.; Smith, J.A. Effect of quaternary ammonium cation loading and ph on heavy metal sorption to ca bentonite and two organobentonites. J. Hazard Mater. 2006, 137, 1102–1114. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhou, J.; Li, Q.; Guo, Y.; Zhang, L. Preparation and characterization of novel quaternized cellulose nanoparticles as protein carriers. Macromol. Biosci. 2009, 9, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.Y.; Yoo, D.I.; Shin, Y.; Seo, G. Ftir analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohyd. Res. 2005, 340, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Pei, A.; Butchosa, N.; Berglund, L.A.; Zhou, Q. Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 2013, 9, 2047–2055. [Google Scholar] [CrossRef]
- You, J.; Xiang, M.; Hu, H.; Cai, J.; Zhou, J.; Zhang, Y. Aqueous synthesis of silver nanoparticles stabilized by cationic cellulose and their catalytic and antibacterial activities. RSC Advances 2013, 3, 19319–19329. [Google Scholar] [CrossRef]
- Li, G.B.; Fu, Y.J.; Shao, Z.Y.; Zhang, F.S.; Qin, M.H. Preparing cationic cellulose derivative in naoh/urea aqueous solution and its performance as filler modifier. Bioresources 2015, 10, 7782–7794. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, L.; Gan, W.; Zhou, J.; Zhang, L. Self-assembled micelles based on hydrophobically modified quaternized cellulose for drug delivery. Colloids Surf. B 2011, 83, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Kalashnikova, I.; Bizot, H.; Cathala, B.; Capron, I. New pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 2011, 27, 7471–7479. [Google Scholar] [CrossRef] [PubMed]
- Andresen, M.; Stenius, P. Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. J. Disper. Sci. Technol. 2007, 28, 837–844. [Google Scholar] [CrossRef]
- Okushita, K.; Komatsu, T.; Chikayama, E.; Kikuchi, J. Statistical approach for solid-state nmr spectra of cellulose derived from a series of variable parameters. Polym. J. 2012, 44, 895–900. [Google Scholar] [CrossRef]
- Chaker, A.; Boufi, S. Cationic nanofibrillar cellulose with high antibacterial properties. Carbohyd. Polym. 2015, 131, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Sun, Y.; Zhang, X.; Zhou, J.; Zhang, L. Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 2008, 9, 2259–2264. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Tao, H.; Bangal, P.R. Synthesis and flocculation behavior of cationic cellulose prepared in a naoh/urea aqueous solution. CLEAN Soil Air Water 2009, 37, 39–44. [Google Scholar] [CrossRef]
- Stenstad, P.; Andresen, M.; Tanem, B.S.; Stenius, P. Chemical surface modifications of microfibrillated cellulose. Cellulose 2008, 15, 35–45. [Google Scholar] [CrossRef]
- Dzidic, I.; Somerville, A.C.; Raia, J.C.; Hart, H.V. Determination of naphthenic acids in california crudes and refinery wastewaters by fluoride ion chemical ionization mass spectrometry. Anal. Chem. 1988, 60, 1318–1323. [Google Scholar] [CrossRef]
- Fan, T.P. Characterization of naphthenic acids in petroleum by fast atom bombardment mass spectrometry. Energy Fuels 1991, 5, 371–375. [Google Scholar] [CrossRef]
- Wong, D.C.L.; van Compernolle, R.; Nowlin, J.G.; O'Neal, D.L.; Johnson, G.M. Use of supercritical fluid extraction and fast ion bombardment mass spectrometry to identify toxic chemicals from a refinery effluent adsorbed onto granular activated carbon. Chemosphere 1996, 32, 1669–1679. [Google Scholar] [CrossRef]
- St. John, W.P.; Rughani, J.; Green, S.A.; McGinnis, G.D. Analysis and characterization of naphthenic acids by gas chromatography-electron impact mass spectrometry of tert.-butyldimethylsilyl derivatives. J. Chromatogr. A 1998, 807, 241–251. [Google Scholar] [CrossRef]
- Hsu, C.S.; Dechert, G.J.; Robbins, W.K.; Fukuda, E.K. Naphthenic acids in crude oils characterized by mass spectrometry. Energy Fuels 1999, 14, 217–223. [Google Scholar] [CrossRef]
- Azad, F.S.; Abedi, J.; Iranmanesh, S. Removal of naphthenic acids using adsorption process and the effect of the addition of salt. J. Environ. Sci. Health Part A 2013, 48, 1649–1654. [Google Scholar] [CrossRef] [PubMed]
- Iranmanesh, S.; Harding, T.; Abedi, J.; Seyedeyn-Azad, F.; Layzell, D.B. Adsorption of naphthenic acids on high surface area activated carbons. J. Environ. Sci. Heal. A 2014, 49, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, A.K.; Gupta, N.; Chattopadhyaya, M.C. Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of daucus carota. J. Saudi Chem. Soc. 2014, 18, 200–207. [Google Scholar] [CrossRef]
- Marshall, A.G.; Rodgers, R.P. Petroleomics: Chemistry of the underworld. Proc. Natl. Acad. Sci. USA 2008, 105, 18090–18095. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.H.; Wilson, L.D.; Shah, J.R.; Bailey, J.; Peru, K.M.; Headley, J.V. A novel solid-state fractionation of naphthenic acid fraction components from oil sands process-affected water. Chemosphere 2015, 136, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Mufazzal Saeed, M.; Ahmed, M. Effect of temperature on kinetics and adsorption profile of endothermic chemisorption process: –tm(iii)–pan loaded puf system. Separ. Sci. Technol. 2006, 41, 705–722. [Google Scholar] [CrossRef]
- Saha, P.; Chowdhury, S. Insight into Adsorption Thermodynamics, Thermodynamics; Tadashi, M., Ed.; InTech: Rijeka, Croatia, 2011; pp. 349–365. [Google Scholar]
- Inglezakis, V.J.; Zorpas, A.A. Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems. Desalin. Water Treat. 2012, 39, 149–157. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57A, 385–470. [Google Scholar]
- Sips, R. Structure of a catalyst surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Mohamed, M.; Wilson, L. Kinetic uptake studies of powdered materials in solution. Nanomaterials 2015, 5, 969–980. [Google Scholar] [CrossRef]
Material | % C | % H | % N | Swelling (Water)% | Swelling (Octanol)% | HLB * |
---|---|---|---|---|---|---|
Cellulose | 41.0 | 6.27 | NA | 125 | NA | NA |
CQC | 42.4 | 6.48 | 1.17 | 292 | 211 | 0.720 |
QC | 42.8 | 7.43 | 0.80 | 415 | 260 | 0.625 |
Adsorbates | Isotherm Model | Parameters | Sorbent (CQC) |
---|---|---|---|
OSPW | Langmuir | Qm (mg·g−1) | 33.0 |
KL (L·mg−1) | 0.0333 | ||
SSE | 0.921 | ||
Sips | Qm (mg·g−1) | 36.9 | |
KS (L·mg−1) | 0.0370 | ||
ns | 0.904 | ||
SSE | 2.73 | ||
Freundlich | KF (L·mg·g−1) | 2.63 | |
1/nf | 1.89 | ||
SSE | 2.75 × 103 | ||
NAA | Langmuir | Qm (mg·g−1) | 69.5 |
KL (L·mg−1) | 0.0260 | ||
SSE | 0.994 | ||
Sips | Qm (mg·g−1) | 60.5 | |
KS (L·mg−1) | 0.0234 | ||
ns | 1.12 | ||
SSE | 4.10 | ||
Freundlich | KF (L·mg·g−1) | 3.47 | |
1/nf | 2.09 | ||
SSE | 1.13 × 106 |
Weight of Adsorbent | Temperature (K) | pH | Parameters | ||
---|---|---|---|---|---|
Qm (mg/g) | K1 (S−1) | R2 | |||
30 | 293 | 9 | 54.2 | 0.00184 | 0.980 |
298 | 61.3 | 0.00265 | 0.992 | ||
303 | 76.7 | 0.00491 | 0.982 | ||
100 | 293 | 16.0 | 0.00666 | 0.974 | |
298 | 17.4 | 0.00634 | 0.997 | ||
303 | 18.0 | 0.00319 | 0.992 | ||
293 | 3 | 23.2 | 0.00943 | 0.996 |
Temp (K) | ∆Ea (kJ/mol) | Activation Parameters | ||
---|---|---|---|---|
∆H* (kJ/mol) | ∆S* (J/Kmol) | ∆G* (kJ/mol) | ||
293 | 72.3 | 0.291 | −196 | 57.9 |
298 | 58.9 | |||
303 | 59.8 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udoetok, I.A.; Wilson, L.D.; Headley, J.V. Quaternized Cellulose Hydrogels as Sorbent Materials and Pickering Emulsion Stabilizing Agents. Materials 2016, 9, 645. https://doi.org/10.3390/ma9080645
Udoetok IA, Wilson LD, Headley JV. Quaternized Cellulose Hydrogels as Sorbent Materials and Pickering Emulsion Stabilizing Agents. Materials. 2016; 9(8):645. https://doi.org/10.3390/ma9080645
Chicago/Turabian StyleUdoetok, Inimfon A., Lee D. Wilson, and John V. Headley. 2016. "Quaternized Cellulose Hydrogels as Sorbent Materials and Pickering Emulsion Stabilizing Agents" Materials 9, no. 8: 645. https://doi.org/10.3390/ma9080645
APA StyleUdoetok, I. A., Wilson, L. D., & Headley, J. V. (2016). Quaternized Cellulose Hydrogels as Sorbent Materials and Pickering Emulsion Stabilizing Agents. Materials, 9(8), 645. https://doi.org/10.3390/ma9080645