
algorithms

Article

New Methodology to Approximate Type-Reduction
Based on a Continuous Root-Finding Karnik
Mendel Algorithm

Emanuel Ontiveros-Robles, Patricia Melin and Oscar Castillo *

Tijuana Institute of Technology, 22414 Tijuana, Mexico; emanuel.ontiveros@uabc.edu.mx (E.O.-R.);
pmelin@tectijuana.mx (P.M.)
* Correspondence: ocastillo@tectijuana.mx; Tel.: +52-66-4623-6318

Received: 30 May 2017; Accepted: 1 July 2017; Published: 5 July 2017

Abstract: Interval Type-2 fuzzy systems allow the possibility of considering uncertainty in models
based on fuzzy systems, and enable an increase of robustness in solutions to applications, but also
increase the complexity of the fuzzy system design. Several attempts have been previously proposed
to reduce the computational cost of the type-reduction stage, as this process requires a lot of computing
time because it is basically a numerical approximation based on sampling, and the computational cost
is proportional to the number of samples, but also the error is inversely proportional to the number
of samples. Several works have focused on reducing the computational cost of type-reduction by
developing strategies to reduce the number of operations. The first type-reduction method was
proposed by Karnik and Mendel (KM), and then was followed by its enhanced version called EKM.
Then continuous versions were called CKM and CEKM, and there were variations of this and also
other types of variations that eliminate the type-reduction process reducing the computational cost to
a Type-1 defuzzification, such as the Nie-Tan versions and similar enhancements. In this work we
analyzed and proposed a variant of CEKM by viewing this process as solving a root-finding problem,
in this way taking advantage of existing numerical methods to solve the type-reduction problem,
the main objective being eliminating the type-reduction process and also providing a continuous
solution of the defuzzification.

Keywords: interval type-2 fuzzy logic; type-reduction; type-2 fuzzy control; type-2 fuzzy
edge detection

1. Introduction

Nowadays, Type-1 and Type-2 fuzzy logic have demonstrated many advantages with respect
to classical modeling methods, for example, their robustness, and design without a plant
mathematical model. These advantages allow a relatively easy implementation in specific applications,
for example, [1,2] provide a review of control applications, [3] is an overview of pattern recognition
and classification, [4–6] details hardware implementations of fuzzy systems, image processing [7],
and many other applications as mentioned in [8]. However, the implementation of these algorithms
usually requires a higher computational cost with respect to their classical counter parts.

The computational cost of Interval Type-2 fuzzy logic was increased with respect to Type-1
fuzzy logic, of course achieving better results, but at the expense of having a higher computational
cost. The implementation of Interval Type-2 fuzzy inference systems (FISs) requires around double
the computational cost than Type-1 fuzzy inference systems, but could be even higher because the
complexity of the centroid calculation increases in IT2 FISs, and the process to obtain the centroid of
IT2 FIS is called type-reduction [9].
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The original type-reduction method was proposed by Karnik and Mendel in [10] and was called
the Karnik-Mendel Algorithm (KM), and based on this method many variations have emerged, like the
Enhanced Karnik-Mendel (EKM) [11], Continuous Karnik-Mendel (CKM), and Continuous Enhanced
Karnik-Mendel (CEKM). These variations of the KM type reductions were proposed in order to reduce
the type-reduction computational cost; and this is because in an IT2 FIS the process that requires the
highest computational cost is in fact the type reduction.

The goal of decreasing the type-reduction computational cost have been considered by several
researchers, for example, in [12] the need for sorting is eliminated, in [13] a linear approximation of
KM type reduction was realized, in [14] a polynomial regression for type reduction is realized, [15]
introduces the Nie-Tan type reduction as an alternative to reduce the computational cost of this process
by eliminating the type-reduction process, and [16] provides an study of several type-reduction
alternatives focused on computational cost reduction.

The contribution of the present work is a proposed new CEKM type-reduction approximation and
also providing a methodology for its implementation. This method is based on CEKM as root-finding
problem, which was proposed by Liu and Mendel in [17]. This method for type reduction is based on
two proposed equations that allow approximation of the output points through numerical methods,
like Newton Raphson [18]. The objective is to provide a solution of type-reduction/defuzzification
problem that eliminates the iterations and sampling requirements. In addition, we compare this
approximation method with respect to the classical type-reductions approaches and propose in which
context is recommendable to use our approach.

The organization of the present work is as follows: Section 2 introduces the concepts of Interval
Type-2 fuzzy inference systems, then Section 3 is focused on the type-reduction process, Section 4
presents the fundamentals of the proposed approximation of type reduction, Section 5 introduces
the proposed methodology to realize the type-reduction approximation, Sections 6 and 7 outline two
applications of our proposed methodology and their corresponding results, and finally Section 8
contains the conclusion and future work.

2. Interval Type 2 Fuzzy Inference Systems

Type-1 fuzzy logic was proposed as a vagueness model of human language [19], by considering
continuous membership degrees between 0 and 1 related with concepts or attributes in order to make
decisions. Now, the emergence of Interval Type-2 fuzzy logic provides not only a vagueness model
but also an uncertainty model [20,21], in this way increasing the systems’ robustness and improving
their performance.

Interval Type-2 fuzzy membership functions are defined by two Type-1 membership functions,
called upper membership function and lower membership function, and the area between these
membership functions is called the footprint of uncertainty. A graphical illustration of these concepts
can be appreciated in Figure 1 and it is mathematically defined in Equation (1).

Ã = {((x, u), 1)
∣∣∣∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (1)

Figure 1. Interval Type-2 Membership Function.
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The implementation of Interval Type-2 fuzzy logic concepts require also to extend the special
T-norm and S-norm operations to the join and meet operations [22], and the fuzzy inference system is
modified as illustrated in Figure 2.

Figure 2. Type-1 and Interval Type-2 Mamdani Fuzzy Inference Systems.

The main difference resides in the defuzzification; this process is very interesting because in
Type-1 fuzzy inference systems it is realized by the centroid method, but in an IT2 FIS the process for
defuzzification is realized by a new process called type-reduction. This process is significantly more
complex than defuzzification and is explained in Section 3.

3. Type-Reduction Algorithms

Currently, there exist different algorithms in order to obtain the centroid of the IT2 MFs [9], and
the most-used type-reduction methods are inspired in the Karnik Mendel algorithm. This algorithm is
summarized in Table 1.

Table 1. Karnik Mendel algorithm.

Step Left Point Right Point

1 Sort xi by increasing order Sort xi by increasing order

2

Initialize wi as:

wi =
wi + wi

2

Initialize wi as:

wi =
wi + wi

2

3

Compute:

y =
∑N

i=1 xiwi

∑N
i=1 wi

Compute:

y =
∑N

i=1 xiwi

∑N
i=1 wi

4
Find the switch point k where

xk < y < xk+1

Find the switch point k where

xk < y < xk+1

5

Set

wi =

{
wi , i ≤ k
wi , i > k

Set

wi =

{
wi , i ≤ k
wi , i > k

6

Compute:

y′ = ∑N
i=1 xiwi

∑N
i=1 wi

Compute:

y′ = ∑N
i=1 xiwi

∑N
i=1 wi

7 If y == y′ then stop, set yl = y and L = k, if not go to step 8. If y == y′ then stop, set yr = y and R = k if not go to step 8.

8 Set y = y′ and go to step 3. Set y = y′ and go to step 3.
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The main goal of this algorithm is to find the critical points that define the combination of upper
and lower membership functions, and these points are called the switch points.

4. Continuous Karnik-Mendel Algorithm as a Root-Finding Problem

In [17] a CKM that extends the KM type-reduction algorithm in a continuous form, as shown
Equations (2) and (3), is presented.

Ẑl =

∫ ξ
a zµ(z)dz +

∫ b
ξ zµ(z)dz∫ ξ

a µ(z)dz +
∫ b

ξ µ(z)dz
(2)

Ẑu =

∫ ξ
a zµ(z)dz +

∫ b
ξ zµ(z)dz∫ ξ

a µ(z)dz +
∫ b

ξ µ(z)dz
(3)

Starting with Equations (2) and (3) is possible to express the type-reduction process as a
root-finding problem [18]. In this regard, Liu and Mendel proposed Equations (4) and (5).

ϕ(ξ) =
∫ ξ

x0

(ξ − x)µ(x)dx +
∫ x f

ξ
(ξ − x)µ(x)dx (4)

ψ(ξ) =

ξ∫
x0

(ξ − x)µ(x)dx +

x f∫
ξ

(ξ − x)µ(x)dx (5)

Thanks to this proposal it is possible to use root-finding numerical methods, for example
Newton-Raphson, and now the problem can be expressed as follows (Equations (6) and (7)).

ξl+1 = ξl −
ϕ(ξl)

ϕ(ξl)
′ (6)

ξr+1 = ξr −
ψ(ξr)

ψ(ξr)
′ (7)

However, the mathematical development for obtaining an analytical solution still represents a
challenge for the implementation. This is because in real applications, the upper and lower membership
functions for type-reduction are composed functions, which results on an inference system with many
factors that add complexity to the functions.

5. Proposed CEKM Approximation and Methodology

In order to reduce the type-reduction computational cost, we propose a methodology for
type-reduction approximation. First, we propose that the first iteration of the Newton Raphson
method, expressed in Equations (6) and (7), is a good enough type-reduction approximation and this
can be expressed in Equations (8) and (9).

ξl ≈ ξl0 −
ϕ(ξl0)

ϕ(ξl0)
′ (8)

ξr ≈ ξr0 −
ψ(ξr0)

ψ(ξr0)
′ (9)

where ξl0 and ξr0 respectively are based on the EKM initialization explained by Liu et al. in [23],
and these are expressed in Equation (10).

ξl0 =
(x f − xo)

2.4
+ x0ξr0 =

(x f − xo)

1.7
+ x0 (10)
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This type-reduction approximation proposed in Equations (14) and (15) shows several advantages
with respect to classical type reduction, such as KM or EKM, and some examples of these advantages
is that the approximation does not require discretization, and this is because it is an analytical
solution, another advantage is that it is easy to implement in limited platforms, for example,
in hardware applications.

However, this approximation is not possible without a mathematical definition of the ϕ(ξ) and
ψ(ξ) functions, and these functions are defined by intervals. The mathematical approach for the
ϕ(ξ) and ψ(ξ) functions is very complex because they depend on the composition operation for all
consequent membership functions and rule-firing forces.

In order to outline a methodology, a mathematical development is presented that allows describing
Equations (4) and (5) by using intervals.

Considering Equations (11) and (12) based on the concept of integration by parts

ϕ(ξ) = (ξ − x)
ξ∫

x0

µ(x)dx +

ξ∫
x0

(∫
µ(x)dx

)
dx + (ξ − x)

x f∫
ξ

µ(x)dx +

x f∫
ξ

(∫
µ(x)dx

)
dx (11)

ψ(ξ) = (ξn − x)
ξ∫

x0

µ(x)dx +

ξ∫
x0

(∫
µ(x)dx

)
dx + (ξ − x)

x f∫
ξ

µ(x)dx +

x f∫
ξ

(∫
µ(x)dx

)
dx (12)

To simplify, we propose the A and V upper and lower functions that compose the ϕ(ξ) and ψ(ξ)

functions expressed in Equations (11) and (12). The functions A and V are expressed in Equation (13).

A = (ξ − x)
∫

µ(x)dx , V =
∫
(
∫

µ(x)dx)dx
A = (ξ − x)

∫
µ(x)dx , V =

∫ (∫
µ(x)dx

)
dx

(13)

Now, based on the A and V functions, Equation (14) express the ϕ(ξ) and ψ(ξ) functions.

ϕ(ξl) =
bl−1
∑

i=1
A
∣∣x fi
x0i

+ A
∣∣ξl
xbl

+
bl−1
∑

i=1
V
∣∣x fi
x0i

+ V
∣∣ξl
xibl

+ A|
x fbl
ξl

+
n
∑

i=bl+1
A|

x fi
x0i

+ V|
x fbl
ξl

+
n
∑

i=1
V|

x fi
x0i

ψ(ξr) =
br−1
∑

i=1
A|

x fi
x0i

+ A|ξr
xbr

+
br−1
∑

i=1
V|

x fi
x0i

+ V|ξr
xibr

+ A
∣∣x fbr
ξr

+
n
∑

i=br+1
A
∣∣x fi
x0i

+ V
∣∣x fbr
ξr

+
n
∑

i=1
V
∣∣x fi
x0i

(14)

where ξl and ξr are the initial switch points, computed with Equation (10), and is necessary to identify
the intervals where there points are located, and these are denoted in Equation (14) as bl , bl , br, and br.

Now, based on Equation (14), we propose a methodology to obtain the functions by intervals
and finally be able to use Equations (8) and (9) to obtain the analytical CEKM approximation. This
methodology is summarized in Table 2.

Following this proposed methodology, the final results are two equations in function of the firing
force and the initial centroids, remembering that these initial centroids are static and are computed by
the CEKM criteria.

The resultant equations are non-iterative and do not depend on sampling, and this is the reason
of the computational cost reduction.

• Implementation restrictions.

The approximate CEKM implementation success depends on the mathematical approach to
Equations (11) and (12), remembering that in an FIS, these equations will be dynamic by the variation
of the system inputs.

To obtain Equations (11) and (12) it is necessary before to obtain the fuzzy set B, expressed in
Equation (15), and this fuzzy set is the result of the composition operation. This means the implication
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of each rule-firing force with their respective output fuzzy set (Equation (16)), and the aggregation of
all implications (Equation (16)).

Br(θr, x) = θr
⊗

µg(x) (15)

where θr represents the rule firing force, µg(x) represents the membership degree with respect to the
corresponding output fuzzy set, and the implication is realized by the T-norm operation.

B(θr, x) =
r⊗
i
(Bi(θi, x)) (16)

On the other hand, the aggregation is realized by the S-Norm operation.

Table 2. Proposed methodology.

Step Action

1

Define rules partial knowledge of the system.

Br =
(

θr × µr(z), θr × µr(z)
)

2

Determinate the interval of each partial knowledge

Zr =
([

Zir , Z fr

]
,
[

Zir
, Z fr

])
* Note: Considerate some interval can be composed.

3

Compute the intersection of the intervals obtained in step 2.

Zr ∩ Zr =
([

Zir , Z fr

]
∩
[

Zir , Z fr

]
,
[

Zir
, Z fr

]
∩
[

Zir
, Z fr

])
The interceptions are determinate as the combination of the number of consequent
membership functions.
* Note: Several interceptions can contain empty domains.

4 Realize the integration of each interval, evaluating the defined integral the results are
obtained in firing force’s function.

5 Found elements A and V.

6 Found ξl0 and ξr0 and bl and bu.

7 Compute Equations (8) and (9).

The selection of the operations for implication and aggregation is very important; the most-used
composition is the Mamdani implication, Max as the S-Norm, and Min as the T-Norm.

We propose to use the probor-prod composition, and this is because it is necessary to mathematically
define these operations.

Figure 3 shows four different composition operations and their corresponding centroids.
This Type-1 MF used for this example has three Triangular MFs. The centroids of these composition
alternatives are a slightly different; however, the restriction on the proposed methodology is the use of
the Probor-Prod composition, because this composition is mathematically more approachable.
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Figure 3. Different types of composition operators.

6. Water Level Control in a Tank

The water level control in a tank, illustrated in Figure 4, is a classical benchmark control problem
and has been considered as a study case to improve the performance of FLC controllers and to compare
FLC T1 and FLC T2, and other works with this plant can be found in [24,25].

Figure 4. Water level tank control.
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The main formulation of this plant is expressed in Equation (17).

h(t) = h(0) +
∫ t

0

1
A
(
qin
(
t′
)
− qout

(
t′
))

dt′ =
∫ t

0

1
A

(
qin
(
t′
)
− a
√

2gh(t′)
)

dt′ (17)

The output fuzzy set contains five MFs that are distributed without intersections as illustrated in
Figure 5.

Figure 5. Output membership fuctions.

• Step 1

Define the partial knowledge of the system; and this can be expressed in Equations (18)–(22).

MF1 = θ1trim f (z, [−1.05,−0.9,−0.75]) =

{
x+1.05

0.15 , −1.05 < x < −0.9
−0.85−x

0.15 , −0.9 < x < −0.75
(18)

MF2 = θ2trim f (z, [−0.65,−0.5,−0.35]) =

{
x+0.65

0.15 , −0.65 < x < −0.5
−0.35−x

0.15 , −0.5 < x < −0.35
(19)

MF3 = θ3trim f (z, [−0.15, 0, 0.15]) =

{
x+0.15

0.15 , −0.15 < x < 0
0.15−x

0.15 , 0 < x < 0.15
(20)

MF4 = θ4trim f (z, [0.15, 0.3, 0.45]) =

{
x−0.15

0.15 , 0.15 < x < 0.3
0.45−x

0.15 , 0.3 < x < 0.45
(21)

MF5 = θ5trim f (z, [0.8, 0.9, 1]) =

{
x−0.75

0.15 , 0.75 < x < 0.9
1.05−x

0.15 , 0.9 < x < 1.05
(22)

• Step 2

Table 3 defines the intervals of the partial knowledge and their functions. In this case, the number
of intervals is double the number of MFs because these are composed functions.

Table 3. Output MF intervals.

Upper MFs Lower MFs

Interval Partial Knowledge Interval Partial Knowledge

−1.05 < x < −0.9 θ1
x+1.05

0.15 −0.95 < x < −0.9 θ1
x+0.95

0.05

−0.9 < x < −0.75 θ1
−0.75−x

0.15 −0.9 < x < −0.85 θ1
−0.85−x

0.05

−0.65 < x < −0.5 θ2
x+0.65

0.15 −0.55 < x < −0.5 θ2
x+0.55

0.05

−0.5 < x < −0.35 θ2
−0.35−x

0.15 −0.5 < x < −0.45 θ2
−0.45−x

0.05
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Table 3. Cont.

Upper MFs Lower MFs

Interval Partial Knowledge Interval Partial Knowledge

−0.15 < x < 0 θ3
x+0.15

0.15 −0.05 < x < 0 θ3
x+0.05

0.05

0 < x < 0.15 θ3
0.1−x
0.15 0 < x < 0.05 θ3

0.05−x
0.05

0.15 < x < 0.3 θ4
x−0.15

0.15 0.25 < x < 0.3 θ4
x−0.25

0.05

0.3 < x < 0.45 θ4
0.45−x

0.15 0.3 < x < 0.35 θ4
0.35−x

0.05

0.75 < x < 0.9 θ5
x−0.75

0.15 0.85 < x < 0.9 θ5
x−0.85

0.05

0.9 < x < 1.05 θ5
1.05−x

0.15 0.9 < x < 0.95 θ5
0.95−x

0.05

• Step 3

In this case study, step 3 is not necessary because the MFs do not have intersections.

• Step 4

Tables 4 and 5 report the integrals of the upper and lower MFs.

Table 4. Upper MF integrals.

I Interval Partial Knowledge First Integral Second Integral

1 −1.05 < x < −0.9 θ1
x+0.15

0.15 θ1
(x+0.15)2

0.3
θ1

(x+0.15)3

0.9

2 −0.9 < x < −0.75 θ1
−0.75−x

0.15 −θ1
(−0.75−x)2

0.3
θ1

(−0.75−x)3

0.9

3 −0.65 < x < −0.5 θ2
x+0.65

0.15 θ2
(x+0.65)2

0.3
θ2

(x+0.65)3

0.9

4 −0.5 < x < −0.35 θ2
−0.35−x

0.15 −θ2
(−0.35−x)2

0.3
θ2

(−0.35−x)3

0.9

5 −0.15 < x < 0 θ3
x+0.15

0.15 θ3
(x+0.15)2

0.3
θ3

(x+0.15)3

0.9

6 0 < x < 0.15 θ3
0.1−x
0.15 −θ3

(0.1−x)2

0.3
θ3

(0.1−x)3

0.9

7 0.15 < x < 0.3 θ4
x−0.15

0.15 θ4
(x−0.15)2

0.3
θ4

(x−0.15)3

0.9

8 0.3 < x < 0.45 θ4
0.45−x

0.15 −θ4
(0.45−x)2

0.3
θ4

(0.45−x)3

0.9

9 0.75 < x < 0.9 θ5
x−0.75

0.15 θ5
(x−0.75)2

0.3
θ5

(x−0.75)3

0.9

10 0.9 < x < 1.05 θ5
1.05−x

0.15 −θ5
(1.05−x)2

0.3
θ5

(1.05−x)3

0.9

Table 5. Lower MF integrals.

I Interval Partial knowledge First Integral Second Integral

1 −0.95 < x < −0.9 θ1
x+0.95

0.05 θ1
(x+0.95)2

0.1
θ1

(x+0.95)3

0.3

2 −0.9 < x < −0.85 θ1
−0.85−x

0.05 −θ1
(−0.85−x)2

0.1
θ1

(−0.85−x)3

0.3

3 −0.55 < x < −0.5 θ2
x+0.55

0.05 θ2
(x+0.55)2

0.1
θ2

(x+0.55)3

0.3

4 −0.5 < x < −0.45 θ2
−0.45−x

0.05 −θ2
(−0.45−x)2

0.1
θ2

(−0.45−x)3

0.3

5 −0.05 < x < 0 θ3
x+0.05

0.05 θ3
(x+0.05)2

0.1
θ3

(x+0.05)3

0.3

6 0 < x < 0.05 θ3
0.05−x

0.05 −θ3
(0.05−x)2

0.1
θ3

(0.05−x)3

0.3

7 0.25 < x < 0.3 θ4
x−0.25

0.05 θ4
(x−0.25)2

0.1
θ4

(x−0.25)3

0.3

8 0.3 < x < 0.35 θ4
0.35−x

0.05 −θ4
(0.35−x)2

0.1
θ4

(0.35−x)3

0.3

9 0.85 < x < 0.9 θ5
x−0.85

0.05 θ5
(x−0.85)2

0.1
θ5

(x−0.85)3

0.3

10 0.9 < x < 0.95 θ5
0.95−x

0.05 −θ5
(0.95−x)2

0.1
θ5

(0.95−x)3

0.3
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• Step 5

Equation (23) expresses ξl0 and ξr0 and bl and bu

ξl0 =
2

2.4
− 1 ξr0 =

2
1.7
− 1 ξl0 = −0.1666 ξr0 = 0.176 (23)

bl is in an empty interval between 4 and 5, and bu is the 7th interval.

• Step 6

Tables 6 and 7 contain the necessary elements to build the final equation for type reduction.

Table 6. A and V.

I Interval A V

1 −1.05 < x < −0.9 (ξ0 + 0.9)θ1
(0.15)2

0.3
θ1

(0.15)3

0.9

2 −0.9 < x < −0.75 (ξ0 + 0.9)θ1
(0.15)2

0.3
−θ1

(0.15)3

0.9

3 −0.65 < x < −0.5 (ξ0 + 0.5)θ2
(0.15)2

0.3
θ2

(0.15)3

0.9

4 −0.5 < x < −0.35 (ξ0 + 0.5)θ2
(0.15)2

0.3
−θ2

(0.15)3

0.9

5 −0.15 < x < 0 (ξ0 + 0)θ3
(0.15)2

0.3
θ3

(0.15)3

0.9

6 0 < x < 0.15 (ξ0 + 0)θ3
(0.15)2

0.3
−θ3

(0.15)3

0.9

7 0.15 < x < 0.3 (ξ0 − 0.3)θ4
(0.15)2

0.3
θ4

(0.15)3

0.9

8 0.3 < x < 0.45 (ξ0 − 0.3)θ4
(0.15)2

0.3
−θ4

(0.15)3

0.9

9 0.75 < x < 0.9 (ξ0 − 0.9)θ5
(0.15)2

0.3
θ5

(0.15)3

0.9

10 0.9 < x < 1.05 (ξ0 − 0.9)θ5
(0.15)2

0.3
−θ5

(0.15)3

0.9

Table 7. A and V.

I Interval A V

1 −0.95 < x < −0.9 (ξ0 + 0.5)θ1
(0.05)2

0.1
θ1

(0.05)3

0.3

2 −0.9 < x < −0.85 (ξ0 + 0.5)θ1
(0.05)2

0.1
−θ1

(0.05)3

0.3

3 −0.55 < x < −0.5 (ξ0 + 0.5)θ2
(0.05)2

0.1
θ2

(0.05)3

0.3

4 −0.5 < x < −0.45 (ξ0 + 0.5)θ2
(0.05)2

0.1
−θ2

(0.05)3

0.3

5 −0.05 < x < 0 (ξ0 + 0)θ3
(0.05)2

0.1
θ3

(0.05)3

0.3

6 0 < x < 0.05 (ξ0 + 0)θ3
(0.05)2

0.1
−θ3

(0.05)3

0.3

7 0.25 < x < 0.3 (ξ0 − 0.3)θ4
(0.05)2

0.1
θ4

(0.05)3

0.3

8 0.3 < x < 0.35 (ξ0 − 0.3)θ4
(0.05)2

0.1
−θ4

(0.05)3

0.3

9 0.85 < x < 0.9 (ξ0 − 0.9)θ5
(0.05)2

0.1
θ5

(0.05)3

0.3

10 0.9 < x < 0.95 (ξ0 − 0.9)θ5
(0.05)2

0.1
−θ5

(0.05)3

0.3

• Step 7
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Using Tables 3–7 we applied Equations (13) and (14) to obtain Equations (24) and (25).

A1

ϕ(ξ) =

︷ ︸︸ ︷
(ξ0 + 0.9)θ1

(0.05)2

0.1
+

A2︷ ︸︸ ︷
(ξ0 + 0.9)θ1

(0.05)2

0.1
+

A3︷ ︸︸ ︷
(ξ0 + 0.5)θ2

(0.05)2

0.1

+

A4︷ ︸︸ ︷
(ξ0 + 0.5)θ2

(0.05)2

0.1
+

A5︷ ︸︸ ︷
(ξ0 + 0)θ3

(0.15)2

0.3
+

A6︷ ︸︸ ︷
(ξ0 + 0)θ3

(0.15)2

0.3

+

A7︷ ︸︸ ︷
(ξ0 − 0.3)θ4

(0.15)2

0.3
+

A8︷ ︸︸ ︷
(ξ0 − 0.3)θ4

(0.15)2

0.3
+

A9︷ ︸︸ ︷
(ξ0 − 0.9)θ5

(0.15)2

0.3

+

A10︷ ︸︸ ︷
(ξ0 − 0.9)θ5

(0.15)2

0.3

(24)

ψ(ξ) =

A1︷ ︸︸ ︷
(ξ0 + 0.9)θ1

(0.05)2

0.1
+

A2︷ ︸︸ ︷
(ξ0 + 0.9)θ1

(0.05)2

0.1
+

A3︷ ︸︸ ︷
(ξ0 + 0.5)θ2

(0.05)2

0.1

+

A4︷ ︸︸ ︷
(ξ0 + 0.5)θ2

(0.05)2

0.1
+

A5︷ ︸︸ ︷
(ξ0 + 0)θ3

(0.05)2

0.1
+

A6︷ ︸︸ ︷
(ξ0 + 0)θ3

(0.05)2

0.1

+

Abl︷ ︸︸ ︷
(ξ0 − 0.3)θ4

(0.15)2

0.3
− θ4

(ξ0 − 0.3)(ξ0 − 0.15)2

0.3
+

A8︷ ︸︸ ︷
(ξ0 − 0.3)θ4

(0.15)2

0.3

+

A9︷ ︸︸ ︷
(ξ0 − 0.9)θ5

(0.15)2

0.3
+

A10︷ ︸︸ ︷
(ξ0 − 0.9)θ5

(0.15)2

0.3

(25)

And after derivation we obtain Equations (26) and (27).

ϕ′(ξ) =
(
2θ1 + 2θ2

) (0.15)2

0.3
+ (2θ3 + 2θ4 + 2θ5)

(0.05)2

0.1
(26)

ψ′(ξ) = (2θ1 + 2θ2 + 2θ3)
(0.05)2

0.1 + . . .

−
(

θ4
0.3

)(
(ξ0 − 0.15)2 + 2(ξ0 − 0.3)(ξ0 − 0.15)

)
+
(
2θ4 + 2θ5

) (0.15)2

0.3

(27)

• Experiments.

In order to evaluate the proposed approximate CEKM type reductions, in this section, the proposed
method is compared based on their computational cost, reliability with respect to the original method
contrasted with other alternatives to reduce computational cost, and the control performance with
respect to KM type reduction.

• Control surface comparison and execution time

The control surface represents the behavior of a controller, and is because of this reason that it is a
very useful way to compare the proposed type-reduction approximation with respect to a classical
type reduction, and Figure 6 illustrates both control surfaces.
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Figure 6. IT2 FLC control surfaces.

In Table 8, four type-reduction methods are compared by the absolute average errors with respect
to a KM type reduction with ten thousand samples. The type-reduction methods that are compared
are the KM, EKM, NT and the proposed approximate CEKM.

Table 8. Type reduction comparison.

Samples
KM EKM NT Approximate CEKM

Time E. Average Time E. Average Time E. Average Time E. Average

30 0.0295 0.0123 0.0299 0.0123 0.028 0.0279 0.0113 0.0381
40 0.0304 0.0045 0.0298 0.0045 0.0279 0.0261 0.0113 0.0381
50 0.0301 0.002 0.0302 0.002 0.0279 0.0277 0.0113 0.0381
60 0.0301 0.0025 0.0307 0.0025 0.0273 0.0271 0.0113 0.0381
70 0.0304 0.0021 0.0377 0.0021 0.027 0.0276 0.0113 0.0381
80 0.03 0.0011 0.0306 0.0011 0.0317 0.0273 0.0113 0.0381
90 0.0305 0.0007 0.0307 0.0007 0.0269 0.0274 0.0113 0.0381

100 0.0365 0.0011 0.0305 0.0011 0.027 0.0277 0.0113 0.0381

The experiments are realized by changing the number of samples of the type-reduction methods
to observe their behavior in execution time and error, but remembering that the approximate CEKM
type reduction is not iterative and does not requires sampling.

Figures 7 and 8 illustrate the results reported 100 in Table 8, and as we can observe, the proposed
approximate CEKM has the largest error (although note high), but is considerably faster.

Figure 7. Execution time comparison of the type-reduction algorithms.
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Figure 8. Average error comparison of the type-reduction algorithms.

• Performance comparison

On the other hand, we evaluate the performance of the KM algorithm with ten thousand samples.
Table 9, reports the results of the control performance and execution time in a simulation, and this

performance is reported with the IAE, ITAE and RMSE control metrics.

Table 9. Performance comparison.

KM Type Reduction Approximate CEKM Type Reduction
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I1 I2 I3

I4 I5 I6

I7 I8 I9

D1

D2

D3D4

ISE 1.9451 ISE 1.9691
IAE 2.9357 IAE 3.2730

ITAE 7.7548 ITAE 11.6868
Time 0.0322 s Time 0.0129 s

In these experiments we can observe that the IT2 FLC with EKM TR obtains better performance
results with respect to the same controller with approximated CEKM TR, however, the proposed
alternative reduces the execution time of the IT2 FLC by 60%, which is good for real world problems.

7. Edge Detection

As another case study we are presenting image edge detection with IT2 fuzzy systems. Edge
detection is a recent area of application with great results for IT2 fuzzy logic, and for example the
works in [26–28].

The IT2 FIS can be used to find if a pixel is or not an edge, and is necessary to consider the pixel’s
neighborhood as shown in Figure 9.

This is because the pixel’s gradient is obtained as shown in Equation (28), this strategy, using the
gradients is used for example in [6] and produces a good result.
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D1 = |I2− I8|
D2 = |I4− I6|
D3 = |I3− I7|
D4 = |I1− I9|

(28)

The gradients are approximated in this case as the differences in absolute values and these are the
inputs to the IT2 FIS, the values are from 0 to 255, and the fuzzy sets can be found in Figure 10.

Figure 9. Neighborhood of a particular pixel.

Figure 10. Fuzzy sets of the gradients.

The MFs distribution for the fuzzy sets are the same for each input, and are parameterized as
proposed in [6] allowing adaptation to different contexts.

The proposed fuzzy sets are formed by two type-2 fuzzy membership functions as is shown in
Figure 11.

Figure 11. Output Fuzzy set.
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As can be observed, the output fuzzy set is a composed function.

• Step 1

Equations (29) and (30) define the partial knowledge of the system.

µB(z) =


2θN(127− z), 0 < z < 127

2θE(z− 127), 127 < z < 255
0, otherwise

(29)

µB(z) =


2θN(117− z), 0 < z < 117

2θE(z− 117), 137 < z < 255
0, otherwise

(30)

• Step 2

Defines the output membership functions intervals, and these domains are reported in Table 10.

Table 10. Output intervals.

Upper MFs Lower MFs

Interval Partial Knowledge Interval Partial Knowledge

1 0 < z < 127 2θN(127− z) 0 < z < 117 2θN(117− z)
2 127 < z < 255 2θE(z− 127) 137 < z < 255 2θE(z− 117)

• Step 3

In this case, study, step 3 is not necessary because the MFs do not have intersections.

• Step 4

Tables 11 and 12 show the integral of each interval for the output MFs.

Table 11. A and V.

Upper MFs

Interval Partial Knowledge A V

1 0 < z < 127 2θN(127− z) −(ξ0 − z)θN(z− 127)2 θN(z−127)3

3
2 127 < z < 255 2θE(z− 127) (ξ0 − z)θE(z− 127)2 θE(z−127)3

3

Table 12. A and V.

Lower MFs

Interval Partial Knowledge A V

1 0 < z < 117 2θN(117− z) −(ξ0 − z)θN(117− z)2 θN(117−z)3

3
2 137 < z < 255 2θE(z− 117) (ξ0 − z)θE(z− 117)2 θE(z−117)3

3

• Step 5

Equation (31) expresses ξl0 and ξr0 and bl and bu

ξl0 =
255
2.4

ξr0 =
255
1.7

, ξl0 = 106.25ξr0 = 150 (31)
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• Step 6

Tables 13 and 14 contain the elements A and V of upper and lower partial knowledge intervals.

Table 13. A and V.

Upper MFs

Interval Partial Knowledge A V

1 0 < z < 127 2θN(127− z) (ξ0)θN(127)2 −θN(127)3

3
2 127 < z < 255 2θE(z− 127) (ξ0 − 127)θE(127)2 θE(127)3

3

Table 14. A and V.

Lower MFs

Interval Partial Knowledge First Integral Second Integral

1 0 < z < 117 2θN(117− z) (ξ0)θN(117)2 −θN(117)2

3
2 137 < z < 255 2θE(z− 117) (ξ0 − 255)θE(137)2 − (ξ0 − 137)θE(20)2 θE(137)3

3 − θE(20)3

3

• Step 7

Using Tables 10–14 we propose the functions ϕ(ξ) and ψ(ξ), and these functions are expressed in
Equations (32) and (33).

ϕ(ξ) =

Abl︷ ︸︸ ︷
(ξ0)θN(127)2 +

Vbl︷ ︸︸ ︷
θN(ξ0 − 127)3

3
− θN(−127)3

3
−

Vbl︷ ︸︸ ︷
θN(117− ξ0)

3

3

−

A2︷ ︸︸ ︷
(ξ0 − 255)θE(137)2 + (ξ0 − 137)θE(20)2 +

V2︷ ︸︸ ︷
θE(137)3

3
− θE(20)3

3

(32)

ψ(ξ) =

A1︷ ︸︸ ︷
(ξ0)θN(117)2 −

V1︷ ︸︸ ︷
θN(117)3

3
−

Abl︷ ︸︸ ︷
(ξ0 − 137)θE(20)2 +

Vbl︷ ︸︸ ︷
θE(ξ0 − 117)3

3
− θE(20)3

3

+

Abr︷ ︸︸ ︷
(ξ0 − 255)θE(128)2 +

Vbr︷ ︸︸ ︷
θE(128)3

3
− θE(ξ0 − 127)3

3

(33)

And Equations (34) and (35) express the derivatives of these functions.

∂(ϕ(ξ))

∂ξ
= θN(127)2 + θN(ξ0 − 127)2 + θN(117− ξ0)

2−θE(137)2 + θE(20)2 (34)

∂(ψ(ξ))

∂ξ
= θN(117)2 + θE(20)2 + θE(ξ0 − 117)2 + θE(128)2 − θE(ξ0 − 127)2 (35)

Finally, we can define the approximate system outputs, and these equations are functions of the
firing forces, and this eliminates the need to discretize and realize an iterative type reduction.

• Experiments

To evaluate the approximate CEKM Type Reduction, it is proposed to realize the edge detection
based on the image illustrated in Figure 12, where the original image can be found and the corresponding
obtained edges.
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Figure 12. Test image and their edges detected.

It is proposed to add Gaussian noise to the original image to test the performance of IT2 FLC in
noisy environments, which in this case is a Gaussian noise with a variance of 0.1, and the illustration
of these image plus noise can be appreciated in Figure 13.

Figure 13. Test image plus noise.

Table 15 reports the results obtained by the edge detection of the image illustrated in Figure 13,
the results are presented with a widely accepted performance metric known as Figure of Merit
of Pratt (FOM) [29], and are compared with respect to the classical KM type reduction with ten
thousand samples.

Table 15. Edge detection comparison with respect to classical KM type reduction.

KM Type Reduction Approximate CEKM Type Reduction

1 
 

   

1 
 

   
FOM 0.8269 FOM 0.8290
Time 22.9257 Time 12.6712
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The FOM of both edge detectors is very similar, the percentage of equal pixels is 93.93%, however,
the main results are in the execution time, with a reduction of 45% in the execution time and
a competitive performance, and in this form the approximate CEKM Type Reduction shows an
improvement with respect to EKM Type Reduction.

In order to compare the proposed approximate type reduction with respect to other improved
type-reduction algorithms, these algorithms are also considered as alternatives to reduce the execution
time of the process. The results are reported on Table 16. Figures 14 and 15 illustrate, in a graphical
way, the results reported on Table 16.

Table 16. Edge detection comparison by variating the type-reduction method.

Samples KM EKM NT Approximate CEKM

Time E. Average Time E. Average Time E. Average Time E. Average

30 19.6797 0.8331 20.2114 0.8389 17.7394 0.8335 12.1348 0.8272
40 19.7803 0.8366 20.2952 0.8195 18.1575 0.818 12.1348 0.8272
50 19.8204 0.8319 20.2071 0.8291 18.0473 0.8323 12.1348 0.8272
60 19.7011 0.8299 20.2435 0.8327 18.081 0.8149 12.1348 0.8272
70 20.2153 0.829 20.3531 0.8109 18.2579 0.8334 12.1348 0.8272
80 20.0018 0.805 20.5294 0.8178 18.2121 0.8304 12.1348 0.8272
90 19.9427 0.83 20.6222 0.8248 18.1986 0.8347 12.1348 0.8272

100 20.2376 0.811 20.6882 0.8346 18.3465 0.807 12.1348 0.8272

Figure 14. Execution time comparison for different type-reduction methods.Algorithms 2017, 10, 77 18 of 20 
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8. Conclusions

As a conclusion we have evaluated the proposed approximate CEKM type-reduction method
with respect to the classical type-reduction algorithms and we can summarize the advantages and
disadvantages in Table 17.
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The proposed approximation is faster than other approximations, such as the NT Method. This
is because it provides a continuous approximation of the output, which means that it not only
eliminates the type-reduction process, but also reduces the defuzzification method to a polynomial,
and on the other hand presents slightly higher error with respect to the theoretical model and other
approximations. Based on the presented comparison we can state that the proposed algorithm is not
recommended for:

• Applications where the error is a critical requirement.
• Applications that require adapting the IT2 FIS online.

We recommend the implementation of this approximate CEKM type-reduction algorithm in:

• Applications that require a high processing rate.
• Image processing applications that need calculation in real problems.
• Hardware implemented applications.
• Applications that execute the IT2 FIS as sub process.

Table 17. Advantages and Disadvantages of the Approximate CEKM method.

Criteria KM, CEKM, NT Approximate CEKM

Error Can obtain lowers errors Have inherent errors

Iterations number Depends the problem Non iterative

Samples number Error decreasing by increment the
samples number Do not requires sampling

Execution time Increase by increment the samples
number

Constant and significantly lower with
respect to KM

Hardware implementation Hardest to implement Ideal for hardware implementation

Mathematical
development

Does not require additional
mathematical development

Requires a methodology to be able to
implement it

Adaptation Do not requires additional
mathematical development

Requires to realize the methodology again
to each variation

Some examples of applications where the proposed approximation recommended is the use
of fuzzy systems to make the parameters to be adaptive for a metaheuristic algorithm to optimize
systems or mathematical functions [30–34]. This is because if, for example, the optimization takes one
month, with the proposed approximation we can realize the same task in about two weeks, allowing
to accelerate achieving the results of the research.
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