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Abstract: This article focuses on the dynamic parameter adaptation in the harmony search algorithm
using Type-1 and interval Type-2 fuzzy logic. In particular, this work focuses on the adaptation
of the parameters of the original harmony search algorithm. At present there are several types of
algorithms that can solve complex real-world problems with uncertainty management. In this case
the proposed method is in charge of optimizing the membership functions of three benchmark control
problems (water tank, shower, and mobile robot). The main goal is to find the best parameters for
the membership functions in the controller to follow a desired trajectory. Noise experiments are
performed to test the efficacy of the method.

Keywords: Type-1 fuzzy sets; fuzzy control; Type-1 fuzzy logic systems; interval Type-2 fuzzy logic
systems; fuzzy harmony search; dynamic parameter adaptation

1. Introduction

At present there are different techniques to solve optimization problems [1–4]. This article focuses
on the optimization of parameters to achieve the tracking of a trajectory applied to benchmark control
problems. The proposed method is based on the original harmony search algorithm, which mimics
the process of music improvisation, which has been widely used to solve different problems, as
shown in [5–9]. The proposed method is called fuzzy harmony search algorithm (FHS) that performs
an adaptation of parameters with Type-1 and interval Type-2 fuzzy logic and it is used to optimize fuzzy
tracking controllers so that they follow desired trajectories for benchmark control problems. Other
metaheuristics that have been used to solve optimization problems based on fuzzy logic are [10–15].
In previous works this HS algorithm has been used for different optimization problems, as can be
found in [16–19].

The operation of non-linear plants with traditional logic or Type-1 fuzzy logic can be complex for
a person who does not have exact knowledge of each of the characteristics that compose it, and using
fuzzy set concepts and the principles of fuzzy logic can model the functioning of a plant in a more
natural way with the use of linguistic variables as they could have valves like little, much, etc. so that
anyone could understand the operation of such plants. In 1965 Zadeh proposed the concepts of a
fuzzy set in [20], fuzzy logic in [21], and the concept of a membership functions in [22]. Based on these
concepts, complex problems can be solved by using fuzzy rules to represent an expert knowledge of
a problem in a more natural way using linguistic variables.

Zadeh also proposed interval Type-2 fuzzy logic in [22], to achieve better management of the
uncertainty of a problem, and this type of system is used to solve complex problems where there is
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uncertainty on the degree of membership of a value in a particular fuzzy set. Applying the concepts of
Type-2 fuzzy logic, we can design a better fuzzy system since with the handling of uncertainty we can
approximate the exact behavior of the real world; this is done using a footprint of uncertainty in the
membership functions, which consider a range of membership degrees and not only one particular
membership degree.

The main contribution of this paper is the optimization of the values of the membership function
of the fuzzy system of the three benchmark control problems presented and the stability obtained in
the trajectory tracking of each case. The proposed method uses the harmony search algorithm with
dynamic parameter adaptation with Type-1 and interval Type-2 fuzzy logic.

This article is organized as follows: Section 2 gives a description of the original harmony search
algorithm, Section 3 shows the fuzzy harmony search algorithm with dynamic parameter adaptation,
Section 4 describes the benchmark control problems, Section 5 describes the simulation results, Section 6
shows the statistical comparison, and Section 7 presents conclusions.

2. Harmony Search Algorithm

The harmony search algorithm is a recently proposed metaheuristic search technique that mimics
the process of music improvisation [23–27]. There are different variants of this algorithm that have
been created to improve it or solve specific problems [19,28–30]. This method is composed of the
following steps:

• Step 1: Initialize the problem and parameters

Minimize
f (x)s.t.x(j) ∈ [LB(j), UB(j), j = 1, 2, . . . , n], (1)

where f (x) is the objective function, x(j) is the decision variables, n is the number of design variables,
and LB(j), UB(j) are the lower and upper of the design variables, respectively.

• Step 2: Initialize the harmony memory (HM)

The harmony memory (HM) is a matrix of harmony solution vectors, where its size depends
on the harmony memory size (HMS). The HM is occupied by many randomly generated solution
vectors and sorted by the objective function value, where Xi = {xi(1), xi(2), . . . , xi(n)} represents the
ith harmony vector, which is randomly generated as follows: xi(j) = LB(j) + (UB(j)− LB(j))× r for
j = 1, 2, . . . , n and i = 1, 2, . . . , HMS, where r is a uniform random number [0, 1].

HM =


x1

1 x1
2 . . . x1

N f
(
x1)

x2
1 x2

2 . . . x2
N f

(
x2)

...
...

...
...

...
xHMS

1 xHMS
2 . . . xHMS

N f
(
xHMS)


(2)

• Step 3: Improvise a new harmony

This step is the most important because it influences the overall performance of the HS algorithm.
A new harmony memory vector is improvised using three selected operators, which are the memory
considerations (HMR), pitch adjustment (PAR), and randomization. The random numbers, r1 and r2

range between 0 and 1. In each improvisation or iteration, if r1 is less than HMR the solution vector
and xnew(j) is generated from the memory consideration; otherwise, xnew(j) is selected through
randomization. Next, if r2 is less than the PAR, the solution vector xnew(j) from the memory
consideration is further modified with the bandwidth distance using Equation (3):

Xnew(j) = Xnew(j)± r × BW, (3)
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where r is a uniform random number ranging from 0 and 1. The function of BW is an arbitrary distance
bandwidth. The value of BW is determined by the changes in quantity of the new solution vector and
its presence is enhanced by the performance of HS.

• Step 4: Update harmony memory

To update the HM with a new solution vector, xnew, an objective function will be used to evaluate
it. A comparison is made to see if the new vector solution is better than the worst historical vector
solution and the worst historical solution is excluded and replaced with a new one.

• Step 5: Check the stopping criteria

The process is repeated until the number of improvisations (NI) is satisfied; otherwise the process
repeats steps 3 and 4. The HMR parameter represents the intensification or exploitation; the PAR and
randomization parameters represent the diversification or exploration in the algorithm.

3. Fuzzy Harmony Search Algorithm with Dynamic Parameter Adaptation

The value of the HMR parameter is constant during the process of improvisation of the traditional
HS algorithm; based on this it was decided to make it a fuzzy parameter for achieving dynamic
parameter adaptation. The proposed method is based on the original harmony search algorithm
described in Section 2, and specifically focuses on step 3, which is improvisation and uses fuzzy
logic to perform the dynamic adjustment of the HMR parameter as the number of iterations or
improvisations advance to achieve an improvement in the convergence of the algorithm and obtain
better results. To represent this idea, this parameter is converted into a fuzzy parameter. In this method,
this value is considered to be fuzzy as it is updated within the FHS progress, and is determined by
Equation (4), where HMR has a changing value in the range 0–1:

HMR =
∑rhmr

i=1 µhmr
i (hmr1i)

∑rhmr
i=1 µhmr

i
, (4)

where HMR is the memory considerations; rhmr is the number of rules of the fuzzy system
corresponding to hmr; hmr1i is the output result for rule i corresponding to hmr; and µhmr

i is the
membership function of rule i corresponding to hmr. To represent this idea in a concise way, the
pseudocode of the proposed method is shown in Figure 1:
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The proposed Type-1 fuzzy system is illustrated in Figures 2 and 3, representing the input and
output for this method. The interval Type-2 fuzzy system is illustrated by Figures 4 and 5, which show
the input and output for this method.
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The Type-1 and Type-2 FHS methods use an output that is HMR parameter and the input is the
iterations as presented in Figures 3 and 5, respectively.

The representation of the input and the output variables in the fuzzy systems are shown in
Figures 3 and 5. The input is known as the “iteration”, and is granulated into three triangular
membership functions, which are low, medium, and high. The output called “HMR” uses values from
0 to 1, the output is granulated into three triangular membership functions, low, medium, and high,
and the fuzzy systems are of Mamdani type and contain three rules.

The rules are designed based on the study of parameters of the algorithm, so that the initial
iterations explore and the final iterations exploit the search space. In this case the rules have an
increasing trend, as shown in Table 1. These rules are the same in the Type-1 and interval Type-2
fuzzy systems.

Table 1. Rules for theType-1 and interval Type-2 fuzzy system.

Iteration
HMR

Low Medium High

Low Low - -
Medium - Medium -

High - - High

Table 1 represents the idea of increasing the rules as iterations are progressing. To represent the
linguistic variable of iterations, the following equation is used:

Iterations =
Current Iteration

Maximun o f iterations
. (5)

This phase considers a percentage of elapsed iterations to find the values of HMR. It initializes
with low values of HMR so that the algorithm has diversification and then achieves intensification.

4. Control Cases

This section gives a description of the three cases of benchmark control considered for achieving
the control of the reference and with these three problems the operation of the proposed method is
verified using dynamical parameter adaptation with Type-1 and interval Type-2 fuzzy logic.

4.1. Water Tank Controller

The main goal of the water tank controller is to maintain the level of water in a tank and the
activation of the valve to keep the tank full, preventing the water from draining out of the tank.
The diagram of the operation of this problem is shown in Figure 6.



Algorithms 2017, 10, 82 6 of 17

Algorithms 2017, 10, 82 6 of 17 

 
Figure 6. Diagram of the water tank controller. 

Water enters the tank from the top at a rate proportional to the voltage, V, applied to the pump. 
The water leaves through an opening in the tank base at a rate that is proportional to the square root 
of the water height, H, in the tank. This controller uses fuzzy logic to control the valve that determines 
how fast the water can enter the tank to maintain the desired level of water. The presence of the 
square root in the water flow rate results in a nonlinear plant. The mathematical model of the water 
tank can be represented as a differential equation and is given by Equation (6): ௗௗ௧ ݈ܸ = ܣ ௗுௗ௧ = ܾܸ −  (6) .ܪ√ܽ

Equation (6) describes the height of water H as a function of time, due to the difference between 
flow rates into and out of the tank. 

Vol is the volume of water in the tank 
V is the voltage applied to the pump 
A is the cross-sectional area of the tank 
b is a constant related to the flow rate into the tank 
a is a constant related to the flow rate out of the tank 

This controller has two inputs and one output; the first input is the level, which has three 
Gaussian membership functions with linguistic variables called high, okay, and low. The second 
input is the rate, which has three Gaussian membership functions with linguistic variables of 
negative, none, and positive. The output is the valve, which has five triangular membership functions 
with linguistic variables of close fast, close low, no change, open slow, and open fast. This controller 
is of the Mamdani type and uses five rules, which are presented in detail in Table 2. 

Table 2. Rules for the water tank controller. 

Rule Number 
Inputs Output 

Level Operator Rate Valve 
1 okay - - no change 
2 low - - open fast 
3 high - - close fast 
4 okay and positive close slow 
5 okay and negative open slow 

The rules that are outlined in Table 2 are those that maintain control of the opening of the valve 
and with this have leveled the water tank. Figure 7 shows the structure of the fuzzy system for this 
controller. 

Figure 6. Diagram of the water tank controller.

Water enters the tank from the top at a rate proportional to the voltage, V, applied to the pump.
The water leaves through an opening in the tank base at a rate that is proportional to the square root of
the water height, H, in the tank. This controller uses fuzzy logic to control the valve that determines
how fast the water can enter the tank to maintain the desired level of water. The presence of the square
root in the water flow rate results in a nonlinear plant. The mathematical model of the water tank can
be represented as a differential equation and is given by Equation (6):

d
dt

Vol = A
dH
dt

= bV − a
√

H. (6)

Equation (6) describes the height of water H as a function of time, due to the difference between
flow rates into and out of the tank.

Vol is the volume of water in the tank
V is the voltage applied to the pump
A is the cross-sectional area of the tank
b is a constant related to the flow rate into the tank
a is a constant related to the flow rate out of the tank

This controller has two inputs and one output; the first input is the level, which has three Gaussian
membership functions with linguistic variables called high, okay, and low. The second input is the
rate, which has three Gaussian membership functions with linguistic variables of negative, none, and
positive. The output is the valve, which has five triangular membership functions with linguistic
variables of close fast, close low, no change, open slow, and open fast. This controller is of the Mamdani
type and uses five rules, which are presented in detail in Table 2.

Table 2. Rules for the water tank controller.

Rule Number
Inputs Output

Level Operator Rate Valve

1 okay - - no change
2 low - - open fast
3 high - - close fast
4 okay and positive close slow
5 okay and negative open slow

The rules that are outlined in Table 2 are those that maintain control of the opening of the valve
and with this have leveled the water tank. Figure 7 shows the structure of the fuzzy system for
this controller.
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4.2. Temperature Controller

The main goal of this controller is to regulate the temperature and water flow. This controller is
composed of two inputs and two outputs, the first input is the temp, which has two trapezoidal and
one triangular membership functions with linguistic variables of Cold, Good, and Hot. The second
input is the flow, which has two trapezoidal and one triangular membership functions with linguistic
variables of Soft, Good, and Hard. The first output is the cold variable, which has five triangular
membership functions with linguistic values of close fast, close low, steady, open slow, and open fast.
The second output is the hot variable, which has five triangular membership functions with linguistic
values of close fast, close low, steady, open slow, and open fast. The diagram of the operation of this
controller is illustrated in Figure 8.
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This controller is of the Mamdani type and uses nine fuzzy rules, which are presented in a detailed
fashion in Table 3.
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Table 3. Fuzzy rules for the temperature controller.

Rule Number
Inputs Output

Temp Operator Flow Cold Hot

1 cold and soft open slow open fast
2 cold and good close slow open slow
3 cold and hard close fast close slow
4 good and soft open slow open slow
5 good and good steady steady
6 good and hard close slow close slow
7 hot and soft open fast open slow
8 hot and good open slow close slow
9 hot and hard close slow close fast

Table 3 presents in a detailed fashion each of the rules that compose the temperature controller to
achieve the control objective of this controller, and Figure 9 shows the structure of the fuzzy system for
this controller.
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4.3. Mobile Robot Controller

The main goal of this controller is to follow a reference trajectory, based on the model of a unicycle
mobile robot [31], which is composed of two drive wheels located on the same axis and a front free
wheel that is used only for stability. The graphical representation of this model can be found in
Figure 10.
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The operation of the robot model is determined by Equations (7) and (8):

M(q)
.
v + C

(
q,

.
q
)
v + Dv = τ+ P(t), (7)

where

q = (x, y, θ)T is the vector of the configuration coordinates;

v = (v, w)T is the vector of velocities;
τ = (τ1, τ2) is the vector of torques applied to the wheels of the robot where τ1 and τ2 denote the
torques of the right and left wheel, respectively;
P ∈ R2 is the uniformly bounded disturbance vector;
M(q) ∈ R2X2 is the positive-definite inertia matrix;
C
(
q,

.
q
)
ϑ is the vector of centripetal and Coriolis forces;

D ∈ R2X2 is a diagonal positive-definite damping matrix.

The kinematic system is determined by Equation (8):

.
q =


cos θ 0
sin θ 0

0 1


[ v

w

]
, (8)

where

(x,y) is the position in the X−Y (world) reference frame;
θ is the angle between the heading direction and the x-axis;
v and w are the linear and angular velocities, respectively

Equation (9) represents the non-holonomic constraint this system has, which corresponds to a
non-slip wheel condition preventing the robot from moving sideways:

.
y cos θ − .

x sin θ = 0 (9)

This controller is composed of two inputs and two outputs; the first input is the ev (error in the
linear velocity), which has two trapezoidal and one triangular membership functions with linguistic
variables called N, Z, and P. The second input is the ew (error in the angular velocity), which has two
trapezoidal and one triangular membership functions with linguistic variables of N, Z, and P. The first
output is T1 (torque 1), which has three triangular membership functions with linguistic variables of
N, Z, and P. The second output is T2 (torque 2), which has three triangular membership functions with
linguistic variables of N, Z, and P. This controller is of the Mamdani type and uses nine fuzzy rules,
which are presented in detail in Table 4.

Table 4. Fuzzy rules for the robot mobile controller.

Rule Number
Inputs Output

Ev Operator Ew T1 T2

1 N and N N N
2 N and Z N Z
3 N and P N P
4 Z and N Z N
5 Z and Z Z Z
6 Z and P Z P
7 P and N P N
8 P and Z P Z
9 P and P P P
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Table 4 presents in detail each of the rules that compose the robot mobile controller to achieve the
main objective of this controller. Figure 11 shows the structure of the fuzzy system for this controller.
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5. Simulation Results

This section presents the results obtained by optimizing the membership functions using the
dynamic parameter adaptation with Type-1 and interval Type-2 fuzzy logic. This methodology was
applied to the three benchmark problems shown in Section 4, where the objective is to follow a desired
trajectory, and 30 experiments were carried out with disturbances and without disturbances with the
original algorithm of harmony search (HS), Type-1 fuzzy harmony search algorithm (FHS), and interval
Type-2 fuzzy harmony search (FHS2). The noise applied to each plant was at a level of 0.5 using the
uniform random number generator. The objective function of the methods is the root mean square
error (RMSE) of the trajectory, although other control metrics were also used: MSE (Mean Squared
Error), ISE (Integral Squared error), IAE (Integral Absolute Error), ITSE (Integral of Time-weighted
Squared Error) and ITAE (Integral Time-weighted Absolute Error), and SNR (Signal to noise ratio),
respectively, as shown in Equations (10)–(16).

RMSE =

√√√√ 1
N

N

∑
t=1

(xt − x̂t)
2 (10)

MSE =
1
N

N

∑
K=1

[X(K)−Y(K)]2 (11)

I1 =
∫ ∞

0
e2(t)dt (12)

I2 =
∫ ∞

0
e(t)dt (13)

I3 =
∫ ∞

0
te2(t)dt (14)

I4 =
∫ ∞

0
te(t)dt (15)

SNRdB = 10log10

(
Psignal
Pnoise

)
(16)

The parameters used to perform the experiments are as follows: 100 iterations, PA rate of 0.75,
HMR of 0.95 (Only for the HS), and HM of 30. Experimental results in Tables 5–7 show the best
experiment without perturbation in the fuzzy logic controller for each algorithm applied to each case
study (water tank controller, temperature controller, and robot mobile controller). Tables 8–10 show
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the results obtained using the water tank controller, temperature controller, and robot mobile controller
with noise. These results correspond to the averages of the 30 experiments for each method.

Table 5. Errors obtained from the water tank controller without noise.

Performance Index HS FHS FHS2

RMSE 3.18 × 10−2 2.61 × 10−1 2.49 × 10−2

MSE 4.58 × 10−2 7.56 × 10−2 5.75 × 10−2

ITAE 3.87 × 104 9.93 × 105 3.68 × 104

ITSE 2.57 × 104 2.43 × 106 2.39 × 104

IAE 7.91 × 10 2.01 × 103 7.53 × 10
ISE 5.28 × 10 4.96 × 103 4.90 × 10

Table 6. Errors obtained from the temperature controller without noise.

Performance Index HS FHS FHS2

RMSE 6.34 × 10−2 6.75 × 10−2 6.25 × 10−2

MSE 2.44 × 10−2 4.55 × 10−3 4.62 × 10−3

ITAE 7.01 × 105 7.04 × 105 7.03 × 105

ITSE 1.06 × 106 1.07 × 106 1.07 × 106

IAE 1.40 × 103 1.41 × 103 1.41 × 103

ISE 2.11 × 103 2.12 × 103 2.12 × 103

Table 7. Errors obtained from the robot mobile controller without noise.

Performance Index HS FHS FHS2

RMSE 2.33 × 10−1 1.37 × 10−1 1.11 × 10−1

MSE 8.56 × 10 5.07 × 10 6.06 × 10
ITAE 2.18 × 105 2.11 × 105 3.03 × 106

ITSE 1.05 × 105 9.44 × 104 2.86 × 107

IAE 4.38 × 102 4.24 × 102 6.09 × 103

ISE 2.11 × 102 1.90 × 102 5.72 × 104

Table 8. Errors obtained from the water tank controller with noise.

Performance Index HS FHS FHS2

RMSE 3.18 × 10−2 2.49 × 10−2 1.32 × 10−2

MSE 4.58 × 10−2 5.75 × 10−2 6.36 × 10−2

ITAE 3.87 × 104 3.68 × 104 3.49 × 104

ITSE 2.57 × 104 2.39 × 104 2.08 × 104

IAE 7.91 × 10 7.53 × 10 7.17 × 10
ISE 5.28 × 10 4.90 × 10 4.29 × 10

Table 9. Errors obtained from the temperature controller with noise.

Performance Index HS FHS FHS2

RMSE 6.34 × 10−2 1.24 × 10−1 6.29 × 10−4

MSE 2.44 × 10−2 1.54 × 10−2 3.64 × 10−2

ITAE 7.01 × 105 6.98 × 105 6.98 × 105

ITSE 1.06 × 106 1.05 × 106 1.05 × 106

IAE 1.40 × 103 1.39 × 103 1.40 × 103

ISE 2.11 × 103 2.10 × 103 2.10 × 103

The noise used for the two methods was at a level of 0.5 with the uniform random number
10.7128 dB for Type-1 and 12.1449 dB for Type-2 for the water tank problem.
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Table 10. Errors obtained from the robot mobile controller with noise.

Performance Index HS FHS FHS2

RMSE 2.33 × 10−1 3.82 × 10−2 3.69 × 10−2

MSE 8.56 × 10 7.67 × 10 6.06 × 10
ITAE 2.18 × 105 3.09 × 106 3.10 × 106

ITSE 1.05 × 105 3.26 × 107 3.28 × 107

IAE 4.38 × 102 6.46 × 103 6.47 × 103

ISE 2.11 × 102 6.47 × 104 6.49 × 104

The noise used for the two methods was 0.5 with the uniform random number 19.9196 dB for
Type-1 and 22.1073 dB for Type-2 for the temperature problem.

The noise used for the two methods was 0.5 with the uniform random number 39.6227 dB for
Type-1 and 41.2338 dB for Type-2 for the robot mobile problem.

Analyzing the results obtained in Tables 5–10, we can verify an improvement in the experiments
when using the Type-1 and Type-2 methods with noise. Figures 12–14 show the best trajectory found
for each method out of 30 experiments using noise: Figure 12 shows the best result for the water
tank controller problem, Figure 13 shows the best result for the temperature controller problem, and
Figure 14 shows the best result for the robot mobile controller. It is observed that the original method
is more unstable in all cases and the Type-1 and Type-2 fuzzy methods achieve better stability and
tracking of the desired trajectory.
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Figure 12. Simulation results of the water tank controller for the three methods. (a) The best 
result is shown using original harmony search algorithm (HS); (b) the best result is shown 
using the Type-1 fuzzy harmony search (FHS); (c) the best result is shown using the Type-2 
fuzzy harmony search (FHS2). These methods were applied with noise to verify the stability of 
the methods. The blue line represents the desired trajectory and the pink line the obtained 
trajectory; the objective is for the obtained line to resemble the desired one. 

Figure 12. Simulation results of the water tank controller for the three methods. (a) The best result is
shown using original harmony search algorithm (HS); (b) the best result is shown using the Type-1
fuzzy harmony search (FHS); (c) the best result is shown using the Type-2 fuzzy harmony search (FHS2).
These methods were applied with noise to verify the stability of the methods. The blue line represents
the desired trajectory and the pink line the obtained trajectory; the objective is for the obtained line to
resemble the desired one.
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Figure 13. Simulation results of the temperature controller for the three methods. (a) The best result 
is shown using original harmony search algorithm (HS); (b) the best result is shown using the Type-
1 fuzzy harmony search (FHS); (c) the best result is shown using the Type-2 fuzzy harmony search 
(FHS2). These methods were applied with noise to verify the stability of the methods. The blue line 
represents the desired trajectory and the pink line the obtained trajectory; the objective is for the 
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Figure 13. Simulation results of the temperature controller for the three methods. (a) The best result is
shown using original harmony search algorithm (HS); (b) the best result is shown using the Type-1
fuzzy harmony search (FHS); (c) the best result is shown using the Type-2 fuzzy harmony search (FHS2).
These methods were applied with noise to verify the stability of the methods. The blue line represents
the desired trajectory and the pink line the obtained trajectory; the objective is for the obtained line to
resemble the desired one.
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Figure 14. Simulation results of the robot mobile controller for the three methods. (a) The best result is
shown using original harmony search algorithm (HS); (b) the best result is shown using the Type-1
fuzzy harmony search (FHS); (c) the best result is shown using the Type-2 fuzzy harmony search
(FHS2). These methods were applied with noise to verify the stability of the methods. The green line is
the desired trajectory and the blue line the obtained trajectory, and the objective is for the obtained line
to resemble the desired one.

6. Statistical Comparison

This section shows a statistical comparison of the original method and the proposed methods
applied to the three control problems mentioned above. The statistical test method that was applied is
the z-test, and the parameters used are shown in Table 11.

The alternative hypothesis indicates that the Type-1 (FHS) and Type-2 (FHS2) fuzzy harmony
search methods values are smaller than the original harmony search algorithm (HS) method and the
null hypothesis indicates otherwise, with a rejection region for values lower than −1.645. The equation
of the z-test is shown as follows:

Z =

(
X1 − X2

)
− (u1 − u2)

σX1−X2

(17)

Tables 12–17 show the values of z, “S” means that evidence of significance is found and “N.S”
refers to a case in which no evidence of significance is found. In all Tables 12–17 the result of the
Evidence of the first row represents the comparison between FHS and HS, the result of the Evidence of
the second row represents the comparison between FHS2 and HS, and finally the result of the Evidence
of the third row is the comparison between FHS and FHS2 methods.
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Table 11. Parameters for the statistical z-test.

Parameter Value

Level of Significance 95%
Alpha 0.05%

Ha µ1 < µ2
H0 µ1 ≥ µ2

Critical Value −1.645

Table 12. Results for the statistical test with Type-1 and Type-2 FHS and HS without noise.

Water Tank Controller

Method Mean Standard Deviation z-Value Evidence

HS 3.19 × 10−2 3.13 × 10−2 35.8789 N.S
FHS 2.60 × 10−1 1.55 × 10−2 −50.7296 S

FHS2 2.56 × 10−2 1.97 × 10−2 −1.1733 N.S

Table 13. Results for the statistical test with Type-1 and Type-2 FHS and HS without noise.

Temperature Controller

Method Mean Standard Deviation z-Value Evidence

HS 6.34 × 10−2 3.12 × 10−3 6.4226 N.S
FHS 6.75 × 10−2 1.59 × 10−3 −14.0672 S

FHS2 6.25 × 10−2 1.13 × 10−3 −1.4778 N.S

Table 14. Results for the statistical test with Type-1 and Type-2 FHS and HS without noise.

Robot Mobile Controller

Method Mean Standard Deviation z-Value Evidence

HS 2.33 × 10−1 2.18 × 10−1 −2.0706 S
FHS 1.37 × 10−1 1.57 × 10−1 −0.7959 N.S

FHS2 1.11 × 10−1 1.37 × 10−1 −2.7100 S

Table 15. Results for the statistical test with Type-1 and Type-2 FHS and HS with noise.

Water Tank Controller

Method Mean Standard Deviation z-Value Evidence

HS 3.18 × 10−2 3.13 × 10−2 −1.0134 N.S
FHS 2.49 × 10−2 2.01 × 10−2 −2.5236 S

FHS2 1.32 × 10−2 1.54 × 10−2 −2.9164 S

Table 16. Results for the statistical test with Type-1 and Type-2 FHS and HS with noise.

Temperature Controller

Method Mean Standard Deviation z-Value Evidence

HS 6.34 × 10−2 3.12 × 10−3 72.5412 N.S
FHS 1.24 × 10−1 3.34 × 10−3 −201.3932 S

FHS2 6.29 × 10−4 1.07 × 10−4 −109.8982 S

Table 17. Results for the statistical test with Type-1 and Type-2 FHS and HS with noise.

Robot Controller

Method Mean Standard Deviation z-Value Evidence

HS 2.33 × 10−1 2.18 × 10−1 −4.8553 S
FHS 3.82 × 10−2 4.22 × 10−2 −0.2277 N.S

FHS2 3.69 × 10−2 4.20 × 10−2 −4.8866 S
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7. Conclusions

In this paper a comparative study of dynamic parameter adaptation using the Type-1 and Type-2
fuzzy harmony search algorithm is presented. The proposed method uses fuzzy logic for dynamic
parameter adaptation and was applied to three benchmark problems—the water tank, temperature,
and robot mobile controller—for disturbed and undisturbed trajectory tracking. In the analysis of
the results we obtain a significant improvement in the three benchmark control problems when
using dynamic parameter adaptation with interval Type-2 fuzzy logic. This verifies that for complex
problems the handling of uncertainty is important for obtaining better stability and therefore better
results with or without noise.

It was verified that the proposed method manages to maintain the control of a reference line in
the three cases presented in Section 5, and in the statistical tests it can be validated that when using
dynamic parameter adaptation the optimization of the values of the membership functions of these
control cases is achieved by reducing the mean quadratic error and following the desired path.

In future work, the proposed method will be tested with different types of problems or controllers
to verify the efficiency of the method; we will also try to improve the fuzzy system with which
the internal parameters of the algorithm are adapted to achieve improvements when applied to
control problems.
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