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Abstract: The interpretation of Myocardial Infarction (MI) via electrocardiogram (ECG) signal is a
challenging task. ECG signals’ morphological view show significant variation in different patients
under different physical conditions. Several learning algorithms have been studied to interpret MI.
However, the drawback of machine learning is the use of heuristic features with shallow feature
learning architectures. To overcome this problem, a deep learning approach is used for learning
features automatically, without conventional handcrafted features. This paper presents sequence
modeling based on deep learning with recurrent network for ECG-rhythm signal classification.
The recurrent network architecture such as a Recurrent Neural Network (RNN) is proposed to
automatically interpret MI via ECG signal. The performance of the proposed method is compared
to the other recurrent network classifiers such as Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU). The objective is to obtain the best sequence model for ECG signal processing.
This paper also aims to study a proper data partitioning ratio for the training and testing sets of
imbalanced data. The large imbalanced data are obtained from MI and healthy control of PhysioNet:
The PTB Diagnostic ECG Database 15-lead ECG signals. According to the comparison result, the
LSTM architecture shows better performance than standard RNN and GRU architecture with identical
hyper-parameters. The LSTM architecture also shows better classification compared to standard
recurrent networks and GRU with sensitivity, specificity, precision, F1-score, BACC, and MCC is
98.49%, 97.97%, 95.67%, 96.32%, 97.56%, and 95.32%, respectively. Apparently, deep learning with the
LSTM technique is a potential method for classifying sequential data that implements time steps in
the ECG signal.

Keywords: deep learning; gated recurrent unit; long short-term memory; myocardial infarction;
recurrent neural network; sequence modeling

1. Introduction

Electrocardiogram (ECG) is a key component of the clinical diagnosis and management of
inpatients and outpatients that can provide important information about cardiac diseases [1]. Some
cardiac diseases can be recognized only through an ECG signal as has been presented in [2–6]. ECG
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records electrical signals related to heart activity and producing a voltage-chart cardiac rate and being
a cardiological test that has been used in the past 100 years [7]. ECG signals have three different
waveforms for each cardiac cycle: P wave, QRS complex, and T wave in normal rate [8]. In other cases,
ECG form changes in the T waveform, the ST interval length, and ST elevation. Its morphology causes
a cardiac abnormality, i.e., Ischemic Heart Disease (IHD) [9]. The IHD is the single largest cause of the
main contributors to the disease burden in developing countries [10]. The two leading manifestations
of IHD are angina and Acute Myocardial Infarction (MI) [10]. Angina is the characteristic caused by
atherosclerosis leading to stenosis of one or more coronary arteries. Then, MI occurs due to a lack of
oxygen demand in the cardiac muscle tissue. If cardiac muscle activity increases, oxygen demand also
increases [11]. MI is the most dangerous form of IHD with the highest mortality rate [10].

MI is usually diagnosed by changes in the ECG due to the increase of serum enzymes, such
as creatine phosphokinase and troponin T or I [10]. ECG is the most reliable tool for interpreting
MI [12–14], apart from the emergence of expensive and sophisticated alternatives [7]. However,
interpreting MI via morphological ECG is a challenging task due to its significant variation in different
patients under different physical conditions [15,16]. To prevent the misinterpretation of MI diagnosis,
a study uses the nature of ECG signals in a sequence model is automatically necessary. The sequential
model consists of sequences of ordering events, with or without concrete notions of time. The algorithm
that is usually used for sequential models is a deep learning technique [17]. Some deep learning
algorithms that used the sequential model to interpret MI from ECG signals have been presented in
References [12,14]. These studies combine Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM) architecture to interpret MI only in one (Lead I) or several leads (I, II, V1, V2, V3,
V4, V5, V6). A sequence modeling is synonymous with recurrent networks that maintain a vector of
hidden activations that are propagated through time for most deep learning practitioners [17].

Basic recurrent network architectures are notoriously difficult to train due to the large increase in
the norm of the gradient during training, and the opposite behavior when long term components go
exponentially fast to norm zero [18]. Some elaborate architectures are commonly used instead, such as
the LSTM [19] and GRU [20,21]. Other architectural innovations and training techniques for recurrent
networks have been introduced and continue to be actively explored [22–25]. Unfortunately, none of
these studies suggested which recurrent network is a suitable method for classification.

In the present paper, three sequence model classifiers to classify MI and healthy control of 15-lead
ECG signals are discussed. The comparison of the recurrent network algorithms is proposed to
automatically interpret MI via ECG signal. The recurrent network classifiers include Recurrent Neural
Network (RNN), LSTM, and GRU. The objective is to obtain the optimum sequence model in ECG
signal recording. To evaluate the performance of recurrent network classifiers in a sequence model, the
metric evaluation is proposed. This study also analyzes classifier performance in imbalanced data
that the sample size of the data classes is unevenly distributed, among the class of MI and cardiac
normal in healthy control patients [26]. In such situations, the classification method tends to be biased
towards the majority class. Therefore, this paper uses metric performance balanced accuracy (BACC)
and Matthew’s Correlation Coefficient (MCC) to produce better analysis in imbalanced data of MI [26].
In some studies, the use of leads is an important factor for determining the performance results of
classifiers [12,13]. The sequence model classifier can be used for 15-lead ECG instead of only use for
one or several leads.

2. Materials and Methods

This paper proposes the ECG processing method to calculate appropriate features from 15-lead
ECG raw data. The method consists of window sized segmentation, classification of sequence modeling,
and evaluation of classifier performance based on performance metrics as presented in Figure 1.
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The sequential data of ECG signals are obtained from the open access database Physionet: PTB 
Diagnostic ECG, National Metrology Institute of Germany [27]. The PTB Diagnostic ECG database 
contains 549 records from 290 patients (consisting of 209 males and 81 females). Each patient was 
associated with one to five ECG record records. Each ECG record includes 15 signals measured 
simultaneously: 12 conventional leads (I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6) along 
with 3 Frank leads ECG (vx, vy, vz) in the .xyz file. The PTB Diagnostic ECG database contains ECG 
signals that represent normal heart conditions and nine heart abnormalities (one of them is MI). 
However, this study [27] only uses diagnostic classes of healthy controls and myocardial infarction. 
In fact, there is a number of potential data that can be used for further study which consist of 80 ECG 
records of the healthy control and 368 ECG records of MI.  

2.2. ECG Segmentation 

An initial stage of ECG signal pre-processing is the segmentation of the window in the same 
size. This segmentation is used due to the length of the PTB Diagnostic ECG signal data that varies 
between each ECG record. The length of the ECG signal for MI ranges from 480000 to 1800180 
samples (480–1800 s). For the length of the ECG signal in the healthy control with a range of 1455000–
1800180 samples (1455–1800 s). Each window consists of 4 s of data samples at a time, which includes 
at least three heart beats at a normal heart rate. Each signal has been digitized at 1000 samples per 
second. A total of 12.359 signal data has been segmented of each window sized for 4 s (see in Figure 
2). The number of sequence data for the class of MI and healthy control is 10.144 and 2.215 of the total 
data, respectively. 

Figure 1. Electrocardiogram (ECG) processing.

2.1. ECG Raw Data

The sequential data of ECG signals are obtained from the open access database Physionet: PTB
Diagnostic ECG, National Metrology Institute of Germany [27]. The PTB Diagnostic ECG database
contains 549 records from 290 patients (consisting of 209 males and 81 females). Each patient was
associated with one to five ECG record records. Each ECG record includes 15 signals measured
simultaneously: 12 conventional leads (I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6) along with
3 Frank leads ECG (vx, vy, vz) in the .xyz file. The PTB Diagnostic ECG database contains ECG signals
that represent normal heart conditions and nine heart abnormalities (one of them is MI). However, this
study [27] only uses diagnostic classes of healthy controls and myocardial infarction. In fact, there is a
number of potential data that can be used for further study which consist of 80 ECG records of the
healthy control and 368 ECG records of MI.

2.2. ECG Segmentation

An initial stage of ECG signal pre-processing is the segmentation of the window in the same
size. This segmentation is used due to the length of the PTB Diagnostic ECG signal data that varies
between each ECG record. The length of the ECG signal for MI ranges from 480000 to 1800180 samples
(480–1800 s). For the length of the ECG signal in the healthy control with a range of 1455000–1800180
samples (1455–1800 s). Each window consists of 4 s of data samples at a time, which includes at
least three heart beats at a normal heart rate. Each signal has been digitized at 1000 samples per
second. A total of 12.359 signal data has been segmented of each window sized for 4 s (see in Figure 2).
The number of sequence data for the class of MI and healthy control is 10.144 and 2.215 of the total
data, respectively.
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2.3. Sequence Modeling Classifier

2.3.1. Recurrent Neural Network

Recurrent Neural Network (RNN) is a type of artificial neural network architecture with recurrent
connections to process input data [12]. RNN is categorized as a deep learning technique due to an
automatic process of feature calculation without predetermining some appropriate features [28]. RNN
has “memory”, namely, state (st) that captures information about all input elements (xt) to output
ŷt [29]. Original RNN, also known as vanilla RNN, has similar forward pass and backward pass
processes as other artificial neural networks. The difference is only in the backpropagation process
where the term being backpropagation is defined through time (BPTT) [30].

The model refers to three matrix weights in Figure 3, namely the weight between the input
and hidden layers

(
whx ∈ Rh∗x

)
, the weight between two hidden layers

(
whh ∈ Rh∗h

)
, and the weights

between hidden and output layers
(
wyh ∈ Ry∗h

)
. Otherwise, the bias is added to the hidden layer(

bh ∈ Rh
)
, and the bias vector is added to the output layer

(
by ∈ Ry

)
. The RNN model can be represented

in Equations (1) to (3):
ht = fw(ht−1, xt) (1)

ht = f (whxxt + whhxt−1 + bh) (2)

ŷt = f
(
wyhht + by

)
. (3)
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It is also well known that the RNN method is sequentially trained method with supervised
learning. For step time t, the error results from the difference between the predictions and actual is
defined as (ŷt − yt), where, the error or loss ` is the sum of loss at the time step from t to T :

`(ŷ, y) =
T∑

t=1

`(ŷt, yt) (4)

Theoretically, the original RNN can handle input dependencies in the long-term, but in practice,
the training process of such networks will result to vanishing problems or exploding gradients which
is more inefficient when the number of time spans in the input sequence increases [18]. Suppose the
ECG data have a total error in all time steps T:

∂E
∂W

=
T∑

t=1

∂Et

∂W
(5)

By applying the chain rules, Equation (5) can be explained as

∂E
∂W

=
T∑

t=1

∂E
∂yt

∂yt

∂ht

∂ht

∂hk

∂hk
∂W

(6)
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Equation (6) is a derivative of a hidden state that stores memory at time t which is related to the
hidden state at the previous time k. This phase involves the Jacobians matrix for the current time t and
one-time k:

∂ht

∂hk
=

∂ht

∂ht−1

∂ht−1

∂ht−2
· · ·
∂hk+1

∂hk
=

t∏
i=k+1

∂hi
∂hi−1

(7)

The Jacobian matrix in Equation (7) displays the Eigen Decomposition is given by WTdiag[ f ′(ht−1)];
the eigenvalues are produced λ1,λ2, . . . ,λn, where |λ1| >|λ2| . . .|λn| and that corresponds to eigenvectors
ν1,ν2, . . . νn. If the largest eigenvalue is produced λi < 1 there will be vanishing gradient, on the contrary,
if the value of λi > 1, then there will be an exploding gradient. To overcome vanishing and exploding
gradient problems on RNN standard, LSTM and GRU can be used [18].

2.3.2. Long Short-Term Memory

The gating mechanism controls the amount of information from the previous time step, which
contributes to the current output. Using this gating mechanism, LSTM overcomes vanishing or
exploding gradients, wherein a standard RNN there is no gate [29]. The LSTM gate mechanism
implements three components; (1) inputs, (2) forget, and (3) output gate [29]. The LSTM input layer
must be in 3-dimension vectors (samples, time steps, features). The samples are the amount of train or
test set, time steps are 15-lead ECG signals, and features are 4000 samples (4 s) in each window size.

In the LSTM algorithm, the process consists of a forward and backward pass, as shown in Figure 4.
A forward pass is calculated as input x with a length T by starting t = 1 and recursively by applying
an update equation while adding, t. The scripts i, f and o refer to the input, forget, and output gates
from the block, respectively. The script c refers to one of the C memory cells. In time, t, LSTM receives
a new input in the form of vector xt (including bias), and the output of the vector ht−1 in the previous
time steps (which ⊗ denotes element-wise product Hadamard).

Algorithms 2019, 12, x FOR PEER REVIEW 6 of 12 

vanishing gradient, on the contrary, if the value of 𝜆 > 1, then there will be an exploding gradient. 
To overcome vanishing and exploding gradient problems on RNN standard, LSTM and GRU can be 
used [18].  

2.3.2. Long Short-Term Memory 

The gating mechanism controls the amount of information from the previous time step, which 
contributes to the current output. Using this gating mechanism, LSTM overcomes vanishing or 
exploding gradients, wherein a standard RNN there is no gate [29]. The LSTM gate mechanism 
implements three components; (1) inputs, (2) forget, and (3) output gate [29]. The LSTM input layer 
must be in 3-dimension vectors (samples, time steps, features). The samples are the amount of train 
or test set, time steps are 15-lead ECG signals, and features are 4000 samples (4 s) in each window 
size. 

In the LSTM algorithm, the process consists of a forward and backward pass, as shown in Figure 
4. A forward pass is calculated as input x with a length T by starting t = 1 and recursively by 
applying an update equation while adding, t. The scripts 𝑖, 𝑓 and o refer to the input, forget, and 
output gates from the block, respectively. The script c refers to one of the C memory cells. In time, 
t, LSTM receives a new input in the form of vector 𝑥௧ (including bias), and the output of the vector  ℎ௧ିଵ in the previous time steps (which ⊗ denotes element-wise product Hadamard). 

 
 

(a) (b) 

Figure 4. (a) Forward, and (b) backward passes in the Long Term-Short Term Memory (LSTM). 

Weights from cell c to input, forget, and output gates are annotated as 𝑤, 𝑤, 𝑤 respectively. 
The equations are given by 𝑎௧ = 𝑡𝑎𝑛ℎ( 𝑊𝑥௧ + 𝑈ℎ௧ିଵ) (8) 𝑖௧ = 𝜎(𝑊𝑥௧ + 𝑈ℎ௧ିଵ) = 𝜎(𝚤̂௧) (9) 𝑓௧ = 𝜎(𝑊𝑥௧ + 𝑈ℎ௧ିଵ) = 𝜎(𝑓መ௧) (10) 𝑜௧ = 𝜎(𝑊𝑥௧ + 𝑈ℎ௧ିଵ) = 𝜎(𝑜ො௧) (11) 

Ignoring the non-linearities, 

𝑧௧ = ൦𝑎ො௧𝚤̂௧𝑓መ௧𝑜ො௧൪ = ൦𝑊𝑊𝑊𝑊
𝑈𝑈𝑈𝑈൪ •  𝑥௧

ℎ௧ିଵ൨ = 𝑊 • 𝐼௧ (12) 

Then, the memory cell values updated by combining 𝑎௧ and the contents of the previous cell 𝑐௧ିଵ. The combination is based on the magnitude of the gate input 𝑖௧ dan forget gate 𝑓௧: 𝑐௧ = 𝑖௧ • 𝑎௧ + 𝑓௧ • 𝑐௧ିଵ (13) 

Figure 4. (a) Forward, and (b) backward passes in the Long Term-Short Term Memory (LSTM).

Weights from cell c to input, forget, and output gates are annotated as wi, w f , wo respectively.
The equations are given by

at = tan h(Wcxt + Ucht−1) (8)

it = σ
(
Wixt + Uiht−1

)
= σ

(
ît
)

(9)

f t = σ
(
W f xt + U f ht−1

)
= σ

(
f̂ t
)

(10)

ot = σ
(
Woxt + Uoht−1

)
= σ

(
ôt
)

(11)
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Ignoring the non-linearities,

zt =


ât

ît

f̂ t

ôt

 =


Wc Uc

Wi Ui

W f U f

Wo Uo

•
[

xt

ht−1

]
= W•It (12)

Then, the memory cell values updated by combining at and the contents of the previous cell ct−1.
The combination is based on the magnitude of the gate input it dan forget gate f t:

ct = it•at + f t
•ct−1 (13)

In the end, the LSTM cell calculates the output value by passing an updated cell value through
non-linearity:

ht = ot
• f

(
ct
)

(14)

Backward pass computes starting from t = T and recursively calculating the derivative unit in
each time step. As standard RNN, all status and activations are initialized to zero at t = 0, and all
δ = 0 at t = T + 1.

2.3.3. Gated Recurrent Unit

The Gated Recurrent Unit (GRU) architecture consists of two gates: reset gate and update gate [31].
Basically, these are two vectors which decide what information should be passed to the output.
Mathematically, the GRU algorithm can be described in the flowchart presented in Figure 5:
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The hidden-state model of vanilla RNN, LSTM, and GRU can be represented in the equations
listed in Table 1. The difference is in calculating the parameters of each hidden state:

Table 1. The Hidden State in Sequence Modeling Classifier.

Classifier Hidden State Model

RNN ht = tan h(
t∑

k=1
Wt−k

c Winxk)

LSTM ht = σ(WoIt) tan h(
t∑

k=1

 t∏
j=k+1

σ
(
W f I j

)σ(WiIk) tan h(WinIk))

GRU ht =
t∑

k=1

 t∏
j=k+1

σ
(
WzI j

)(1− σ(Wzxk)) tan h(Wxk)

3. Evaluation Performance

The stages of the learning process in neural networks are validated, which is the determination of
whether the conceptual model for simulation of the system of interpretation of MI via ECG signals
is an accurate representation of the real system being modeled. Evaluation parameters used in the
validation process in the binary classification process between the class of MI and normal heart are
using confusion matrix, which contains information about the actual classification and predictions
made by the classification system. The data in the classification process are divided into two different
classes, namely positive (P) and negative (N). This classification produces four types; two types of
classifications that are true (or true), namely, true positive (TP) and true negative (TN); and two types
of false classifications, namely, false positive (FP) and false negative (FN) [32] (Table 2).

Table 2. The Diagnostic Test.

Diagnostic MI Healthy Control Total

MI True Positive (TP) False Positive (FP) All Positive Test (T+)
Healthy Control False Negative (FN) True Negative (TN) All Negative Test (T−)

Total Total of MI Total of Healthy Control Total Sample

For the overall testing results of the binary classification, in this study, we use the proposed
evaluation for binary classification with Balanced Accuracy (BACC) in Equation (15) and Matthew’s
Correlation Coefficient (MCC) in Equation (16) for classification in imbalanced data.

BACC =
1
2
(

TP
P

+
TN
N

) (15)

MCC =
(TP× TN) − (FP× FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(16)

4. Results and Discussion

The comparison of three main sequence models, i.e. Vanilla RNN, LSTM, and GRU is used to
classify MI and the healthy control. For all sequence model classifiers, the same hyper-parameters are
used. Adam optimization method with learning rate as 0.0001 and 100 epochs were trained in Jupyter
Notebook on GPU NVIDIA GeForce RTX 2080. The average of each epoch for the most complex
classifier was 13 s. In the sequence model classifier, the number of feed-forward neural network (FFNN)
in a unit is different, with vanilla RNN, LSTM, and GRU is one, four, and three FFNN, respectively.
The number of FFNN is represented by gates in LSTM and GRU. Knowing the number of FFNN before
and after quantization of the sequence model will be useful because it can reduce the size of the model
file or even reduce the time needed for model inference.
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Furthermore, five different data partitioning ratios of the training and testing set are also compared
in the sequence modeling classifier. It consists of 90%:10%, 80%:20%, 70%:30%, 60%:40% and 50%:50%
for the training and testing set, respectively (as presented in Table 3). A value of 12.359 of the sequential
data is randomly separated with automatic data splitting (shuffled sampling). The training set used is
not used for testing and vice versa. We trained all the sequence model classifiers to obtain an optimum
model. We have a large imbalanced class of the healthy control and MI i.e., a 4.57 imbalanced ratio. We
split the training set to be larger than the testing set initially prior to the data partitioning with the
same ratio. As overall, the good result in all data partitioning with training larger than testing set is
90%:10% in all the sequence model classifiers with the average sensitivity, specificity, precision and
F1 scores being 90.45%, 94.66%, 93.37% and 91.79%, respectively. Due to having a larger training set,
the algorithms are better for understanding the patterns in the set and learning to identify specific
examples of training sets. This can optimize the computational time of the validation in the long-term
because it can prevent too much overfitting. To evaluate the classifier performance in the imbalanced
data, Table 3 describes the results of evaluating binary classifications using BACC and MCC. If the
comparison of data between two classes is balanced, it is not recommended to use BACC. The ‘regular’
accuracy metric is sufficient. The average proportion corrects each class individually calculated by
BACC. Otherwise, MCC takes values in the interval [−1. 1] with 1 showing a complete agreement
and −1 refer to a complete disagreement and 0 showing that the prediction was uncorrelated with
label [26]. A coefficient of +1 represents a perfect prediction due to takes into account the balance
ratios of the TP, TN, FP and FN categories. The best result in all data partitioning ratio, the average
BACC and MCC is 94.81% and 92.98%, respectively.

Table 3. The result of the sequence model classifier performance.

Training:
Testing (%)

Sequence Model
Classifier

Performance Metrics (%)

Sensitivity Specificity Precision F1-score BACC MCC

90:10 Vanilla RNN 85.81 87.92 89.56 84.97 88.14 89.85
LSTM 98.49 97.97 95.67 96.32 97.56 95.32
GRU 87.07 98.10 94.89 94.08 98.73 93.78

80:20 Vanilla RNN 86.86 87.28 88.37 82.40 81.66 89.64
LSTM 92.47 97.62 90.11 88.57 89.81 79.62
GRU 87.17 88.49 90.60 86.69 88.90 87.90

70:30 Vanilla RNN 81.88 90.78 60.46 63.60 75.00 67.08
LSTM 88.18 93.61 71.51 82.55 83.33 78.78
GRU 92.59 93.60 71.51 82.27 83.33 78.78

60:40 Vanilla RNN 67.09 91.12 60.46 69.56 75.00 67.08
LSTM 97.61 92.16 65.11 74.91 75.00 67.08
GRU 96.85 93.79 72.67 81.43 83.33 78.78

50:50 Vanilla RNN 31.44 88.70 64.53 42.28 73.14 54.71
LSTM 88.14 93.00 69.18 77.52 83.33 78.78
GRU 51.02 87.80 43.41 46.91 67.06 48.50

All data partitioning as presented in Table 3 shows that Vanilla RNN or standard RNN does
not learn properly. This problem is due to the vanishing or exploding gradient. The large increase
in the norm of the gradient during training and the opposite behavior when long term components
go exponentially fast to norm zero. To overcome these problems in standard RNN. LSTM and GRU
are used and show better results than Vanilla RNN. The best sequence model classifier is LSTM with
90%:10% for the training and testing set with sensitivity, specificity, precision, F1-score, BACC and
MCC is 98.49%, 97.97%, 95.67%, 96.32%, 97.56% and 95.32%, respectively (see in Figures 6 and 7). With
our proposed sequence model, specifically the LSTM, MI class can be detected properly.
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5. Conclusions

The characteristic of deep learning is to automate feature learning process without hand-crafted
creatures. Recurrent network classifiers in a deep learning process that is used for sequential data to
binary classification. These classifiers have the characteristic in terms of the number of parameters used
in training process. The shared weight in a recurrent network has an advantage due to many fewer
parameters to train. The problems of the recurrent network standard have a vanishing or gradient
problem. The gating mechanism in LSTM and GRU control some information from the time step to
minimize this problem. With fewer ECG pre-processing stages that used in our study, a simple LSTM
network presented better classification results of performance in the training and testing setsthan the
RNN standard and GRU. It is due to the LSTM method is able to stores more information about the
pattern of data compared to the RNN standard and GRU. LSTM is able to learns and selects which
data need to be stored or discarded that affects LSTM performance better (forget gates) than other
comparable methods. The LSTM structure with 90%:10% for training and testing set presents the
sensitivity, specificity, precision and F1-score of 98.49%, 97.97%, 95.67%, and 96.32%, respectively.

Furthermore, to evaluate binary classification in imbalanced data MCC and BACC have a
closed form and it is very well suited to be used for building the optimal classifier. However, the
performance results in the initial stage show unsatisfied due to the lack of ECG signal processing
before being classified by sequence modeling classifier. Our LSTM model suggests the presence of
crucial information in 15-lead ECG to predict the future clinical course, especially for detecting chest
discomfort in real time.
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